Organic Rice Transition in a Changing Environment: Linking Farmers’ Benefits to Adaptation and Mitigation
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Benefits of Organic Rice Farming
3.1.1. Reducing Environmental Impact of Weed and Pest Management
3.1.2. Promoting Soil Health and Nutrient Management
3.1.3. Water Quality and Management
3.1.4. Human Health
3.1.5. Biodiversity
Benefit Category | Benefits Reported in Vietnamese Context | Sources |
---|---|---|
Environmental benefits | Improved soil health via organic farming techniques and organic fertilisers | [65,96,97,148] |
Reduced pollution from chemical fertilisers, herbicides, and pesticides | [64,65,97,104,149,150] | |
Enhanced biodiversity and encouragement of natural pest predators | [97,148,151] | |
Improved crop resistance to diseases & pests | [64,66] | |
Preservation of ecological condition | [65,152] | |
Soil activation condition leading to favourable habitat for beneficial animals | [95,96] | |
Health benefits | The production of nutritious organic goods for the consumption of consumers | [65,68,148] |
Reduced health risks for farmers and consumers | [97,152] | |
Agricultural and farming benefits | Strong plants with increased resilience to extreme events (e.g., storms) | [63] |
Enhanced rice grain yield | [63,64,152] | |
Reduction in pest & disease pressure on crops | [63,64,66] | |
Enhancement of nutrient uptake efficiency in rice plants | [65] | |
Social benefits | Improved livelihoods for farmers | [66] |
Provide farmers with support, training and resources to grow organic rice | [148] | |
Strengthening cooperatives and partnerships in agricultural production | [148,150] | |
Creating sustainable production chains | [63,150,153] | |
Increasing farmers’ incomes | [65,148,150,152] |
3.1.6. Socio-Economic Opportunities and Challenges
3.2. Challenges for the Transition to Organic Farming in a Changing Climate
3.2.1. Salinity Intrusion
3.2.2. Flooding
3.2.3. Drought
3.2.4. Reducing GHG Emissions
Benefit | Link to Climate Resilience | Challenge | Recommendation | |
---|---|---|---|---|
Chemical contamination (−) | Social and environmental vulnerability (−) | Horizontal communication strategies, company compensation for yield deficits | ||
Weed & pest management | Number of species (+) | Human health (+) | Farmer scepticism on effectiveness and resulting yield | |
Cost-effectiveness (+) | Biodiversity support (+) | |||
SOM/SOC (+) | Resilience to hazards (flood, drought, salinity intrusion, erosion) (+) | Integrated irrigation strategies at the farm and inter-provincial level | ||
Soil Health | Heavy metals (−) Nutrient availability (+) Chemical contamination (−) | Human health (+) Biodiversity support (+) | Managing cross-contamination | |
Chemical contamination (−) | Resilience to hazards (flood, drought, salinity intrusion) (+) | Identify point sources, change pollution management approaches | ||
Water Quality | Water-use efficiency (+) | Human health (+) | Managing chemical flows and extreme flood events | |
Water retention (+) | Biodiversity support (+) | |||
Economic gain | Input costs (−) | Socio-economic vulnerability (−) | Certification, market prices and labour costs | Enhance market connections, develop local production of farm inputs |
Profit potential (+) |
3.2.5. Managing Water and Soil Contamination
3.2.6. Certification Processes, Costs and Markets
3.2.7. Knowledge Management—Farmer Education and Training
3.2.8. Values, Institutional and Policy Frameworks
4. Discussion and Recommendations
4.1. Values, Institutional and Policy Frameworks
4.2. Managing Water and Soil Contamination
4.3. Context-Specific Policy
4.4. Knowledge Management–Farmer Education, Training and Support
4.5. Limitations of the Work Presented
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MKD | Mekong Delta |
ORF | Organic rice farming |
CRF | Conventional rice farming |
GHG emissions | Greenhouse gas emissions |
SOM | Soil organic matter |
SOC | Soil organic carbon |
RSC | Residual sodium carbonate |
Pb, As, Cd, Zn, Cu | Lead, arsenic, cadmium, zinc, copper |
NPK | Nitrogen, phosphorus, kalium |
References
- Borron, S. Building Resilience for an Unpredictable Future: How Organic Agriculture Can Help Farmers Adapt to Climate Change; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011; Available online: https://www.fao.org/3/ah617e/ah617e.pdf (accessed on 24 November 2024).
- Gonzalez, C.G. Climate change, food security, and agrobiodiversity: Toward a just, resilient, and sustainable food system. Fordham Environ. Law Rev. 2011, 22, 493–522. [Google Scholar]
- Smith, P.; Calvin, K.; Nkem, J.; Campbell, D.; Cherubini, F.; Grassi, G.; Korotkov, V.; Le Hoang, A.; Lwasa, S.; McElwee, P.; et al. Which practices co-deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification? Glob. Change Biol. 2020, 26, 1532–1575. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, E.E.; Webber, H.; Asseng, S.; Boote, K.; Durand, J.L.; Ewert, F.; Martre, P.; MacCarthy, D.S. Climate change impacts on crop yields. Nat. Rev. Earth Environ. 2023, 4, 831–846. [Google Scholar] [CrossRef]
- Criveanu, R.C.; Sperdea, N.M. Organic agriculture, climate change, and food security. Econ. Manag. Financ. Mark. 2014, 9, 118–123. [Google Scholar]
- Muller, A.; Olesen, J.; Smith, L.; Davis, J.; Dytrtová, K.; Gattinger, A.; Lampkin, N.; Niggli, U. Reducing Global Warming and Adapting to Climate Change: The Potential of Organic Agriculture. Working Papers in Economics: No. 526; University of Gothenburg, Department of Economics: Gothenburg, Sweden, 2012. [Google Scholar]
- Ziervogel, G.; Ericksen, P.J. Adapting to climate change to sustain food security. Wiley Interdiscip. Rev. 2010, 1, 525–540. [Google Scholar] [CrossRef]
- Willer, H.; Trávníček, J.; Schlatter, S. The World of Organic Agriculture. Statistics and Emerging Trends 2024; Research Institute of Organic Agriculture FiBL & IFOAM—Organics International: Bonn, Germany, 2024. [Google Scholar]
- Scialabba, N.E.-H.; Müller-Lindenlauf, M. Organic agriculture and climate change. Renew. Agric. Food Syst. 2010, 25, 158–169. [Google Scholar] [CrossRef]
- Goh, K.M. Greater Mitigation of Climate Change by Organic than Conventional Agriculture: A Review. Biol. Agric. Hortic. 2011, 27, 205–229. [Google Scholar] [CrossRef]
- Patle, G.T.; Badyopadhyay, K.K.; Kumar, M. An overview of organic agriculture: A potential strategy for climate change mitigation. J. Appl. Nat. Sci. 2014, 6, 872–879. [Google Scholar] [CrossRef]
- Ferdous, Z.; Zulfiqar, F.; Datta, A.; Hasan, A.K.; Sarker, A. Potential and challenges of organic agriculture in Bangladesh: A review. J. Crop Improv. 2021, 35, 403–426. [Google Scholar] [CrossRef]
- Reganold, J.; Wachter, J. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef]
- Kerdnoi, T.; Prabudhanitisarn, S.; Sangawongse, S.; Prapamontol, T.; Santasup, C. The struggle of organic rice in Thailand: A multi-level perspective of barriers and opportunities for up scaling. Environ. Nat. Resour. J. 2014, 12, 95–115. [Google Scholar]
- Charyulu, D.K. Technical, allocative and economic efficiency of organic input units in India. Indian J. Agric. Econ. 2010, 65, 722–738. [Google Scholar]
- Evenson, R.E.; Gollin, D. Assessing the impact of the Green Revolution, 1960 to 2000. Science 2003, 300, 758–762. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.B. Environmental consequences of agricultural development: A case study from the Green Revolution state of Haryana, India. Agric. Ecosyst. Environ. 2000, 82, 97–103. [Google Scholar] [CrossRef]
- John, D.A.; Babu, G.R. Lessons from the aftermaths of green revolution on food system and health. Front. Sustain. Food Syst. 2021, 5, 644559. [Google Scholar] [CrossRef]
- Noppol, A.; Sereenonchai, S.; Wang, C. Carbon footprint and predicting the impact of climate change on carbon sequestration ecosystem services of organic rice farming and conventional rice. J. Environ. Manag. 2021, 289, 112458. [Google Scholar] [CrossRef]
- Ditzler, L.; Breland, T.A.; Francis, C.; Chakraborty, M.; Singh, D.K.; Srivastava, A.; Eyhorn, F.; Groot, J.C.J.; Six, J.; Decock, C. Identifying viable nutrient management interventions at the farm level: The case of smallholder organic Basmati rice production in Uttarakhand, India. Agric. Syst. 2018, 161, 61–71. [Google Scholar] [CrossRef]
- Le, T. Human Behavior to the Ecological Environment in the Mekong Delta. Communist Review, 2008. Available online: https://tapchicongsan.org.vn/tin-tieu-diem-10-06/-/2018/3734/ung-xu-cua-con-nguoi-voi-moi-truong-sinh-thai-o-dong-bang-song-cuu-long.aspx (accessed on 1 April 2025). (In Vietnamese).
- Galli, A.; Winkler, M.S.; Doanthu, T.; Fuhrimann, S.; Huynh, T.; Rahn, E.; Stamm, C.; Staudacher, P.; Van Huynh, T.; Loss, G. Assessment of pesticide safety knowledge and practices in Vietnam: A cross-sectional study of smallholder farmers in the Mekong Delta. J. Occup. Environ. Hyg. 2022, 19, 509–523. [Google Scholar] [CrossRef] [PubMed]
- Phung, D.; Connell, D.; Miller, G.; Rutherford, S.; Chu, C. Pesticide regulations and farm worker safety: The need to improve pesticide regulations in Viet Nam. Bull. World Health Organ. 2012, 90, 468–473. [Google Scholar] [CrossRef]
- Hou, X.; Han, M.; Dai, X.; Yang, X.; Yi, S. A multi-residue method for the determination of 124 pesticides in rice by modified QuEChERS extraction and gas chromatography—Tandem mass spectrometry. Food Chem. 2013, 138, 1198–1205. [Google Scholar] [CrossRef]
- Truong, A. The Risk of Environmental Pollution from Field Waste. Quang Nam Online. Available online: https://baoquangnam.vn/moi-truong/nguy-co-o-nhiem-moi-truong-tu-rac-thai-dong-ruong-140758.html (accessed on 3 November 2023). (In Vietnamese).
- Dhankhar, N.; Kumar, J. Impact of increasing pesticides and fertilisers on human health: A review. Mater. Today Proc. 2023, 3, 766. [Google Scholar]
- Le, D.H. Pesticide Abuse: A Threat to Health and the Environment; Tap Chi Viet Nam Huong Sac. Available online: https://tapchivietnamhuongsac.vn/lam-dung-thuoc-bao-ve-thuc-vat-moi-de-doa-den-suc-khoe-va-moi-truong-1800.html (accessed on 26 April 2025). (In Vietnamese).
- Nguyen, H.L.; Ngo, Q.D.; Nguyen, V.C.; Ngo, K.D.; Lam, V.N.; Dang, T.N.; Tran, Q.H.; Phung, T.D.; Nguyen, K.T.; Nguyen, T.V.; et al. Organophosphate Pesticide Exposure: Effect on Farmers’ Sperm Quality in the Mekong Delta, Vietnam. J. Agromedicine 2024, 29, 404–414. [Google Scholar] [CrossRef]
- Do, H. To Ensure that Agricultural Activities Do not Affect the Ecosystem and Biodiversity; Government News; 27 August 2021. Available online: https://baochinhphu.vn/de-hoat-dong-nong-nghiep-khong-tac-dong-toi-he-sinh-thai-da-dang-sinh-hoc-102299273.htm (accessed on 17 November 2024). (In Vietnamese).
- Nguyen, T.H. An Overview of Agricultural Pollution in Vietnam: The Crops Sector; World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Sebesvari, Z.; Le, H.T.T.; Van Toan, P.; Arnold, U.; Renaud, F. Agriculture and Water Quality in the Vietnamese Mekong Delta. In The Mekong Delta System; Renaud, F., Kuenzer, C., Eds.; Springer Environmental Science and Engineering: Dordrecht, The Netherlands, 2012; pp. 331–361. [Google Scholar]
- Minh, G. Abuse of Chemical Fertilisers and Pesticides in Agricultural Production; Dien Bien Radio and Television Station: 2012. Available online: https://dienbientv.vn/tin-tuc-su-kien/kinh-te/201704/dien-bien-lam-dung-phan-bon-hoa-hoc-va-thuoc-bao-ve-thuc-vat-trong-san-xuat-nong-nghiep-5529127 (accessed on 16 November 2024). (In Vietnamese).
- Doan, T.T. It is Necessary to Limit Environmental Pollution from Agricultural Production. Tap San Khuyen Nong; 3 February 2023. Available online: https://khuyennongnghean.com.vn/index.php/trong-trot/can-han-che-gay-o-nhiem-moi-truong-tu-san-xuat-nong-nghiep-1388.html (accessed on 16 November 2024). (In Vietnamese).
- Wassmann, R. Fertiliser use and GHG Emissions in Agriculture/Paddy Field. Clim. Change Crop Prod. 2010, 419–443. [Google Scholar]
- Canh, K. 25–30% of Total Emissions in Vietnam from Agricultural Production. Tien Phong. Available online: https://tienphong.vn/25-30-tong-luong-khi-thai-o-viet-nam-tu-san-xuat-nong-nghiep-post1456582.tpo (accessed on 16 November 2024). (In Vietnamese).
- Nguyen, D.T.; Pham, T.T.; Tang, T.K.H. The State of Biodiversity in the Mekong Delta, Vietnam.; Technical Report 30; CIFOR: Bogor, Indonesia; ICRAF: Nairobi, Kenya, 2024; Available online: https://www.cifor-icraf.org/publications/pdf_files/WPapers/CIFOR-ICRAF-WP-30.pdf (accessed on 8 September 2025). (In Vietnamese)
- Hazra, K.K.; Swain, D.K.; Bohra, A.; Singh, S.S.; Kumar, N.; Nath, C.P. Organic rice: Potential production strategies, challenges and prospects. Org. Agric. 2018, 8, 39–56. [Google Scholar] [CrossRef]
- Dass, A.; Shekhawat, K.; Choudhary, A.K.; Sepat, S.; Rathore, S.S.; Mahajan, G.; Chauhan, B.S. Weed management in rice using crop competition—A review. Crop Prot. 2017, 95, 45–52. [Google Scholar] [CrossRef]
- Kaur, S.; Singh, S. Impact of crop establishment methods and weed control on weeds, insect-pest and disease infestation in rice in north-western indo-gangetic plains. IJ Agric. Sci. 2015, 7, 487–491. [Google Scholar]
- Singh, A.; Pazhanisamy, S.; Devi, R.C.; Singh, A.K.; Mehta, C.M. Weed Management Strategies in Organic Rice Production System—A Review. IJ Environ. Clim. Change 2020, 10, 519–528. [Google Scholar] [CrossRef]
- Muneret, L.; Mitchell, M.; Seufert, V.; Aviron, S.; Djoudi, E.A.; Pétillon, J.; Plantegenest, M.; Thiéry, D.; Rusch, A. Evidence that organic farming promotes pest control. Nat. Sustain. 2018, 1, 361–368. [Google Scholar] [CrossRef]
- Scherner, A.; Schreiber, F.; Andres, A.; Concenço, G.; Martins, M.B.; Pitol, A. Rice crop rotation: A solution for weed management. In Rice Crop-Current Developments; Shah, F., Khan, Z.H., Iqbal, A., Eds.; InTechOpen: London, UK, 2018; pp. 83–98. [Google Scholar]
- Ram, M.; Davari, M.; Sharma, S. Organic farming of rice (Oryza sativa L.)—Wheat (Triticum aestivum L.) cropping system: A review. IJ Agron. Plant Prod. 2011, 2, 114–134. [Google Scholar]
- Savary, S.; Horgan, F.; Willocquet, L.; Heong, K.L. A review of principles for sustainable pest management in rice. Crop Prot. 2012, 32, 54–63. [Google Scholar] [CrossRef]
- Sukristiyonubowo, R.; Wiwik, H.; Sofyan, A.; Benito, H.; Neve, S.D. Change from conventional to organic rice farming system: Biophysical and socioeconomic reasons. Int. Res. J. Agric. Sci. Soil Sci. 2011, 1, 172–182. [Google Scholar]
- Singh, Y.V.; Singh, B.V.; Pabbi, S.; Singh, P.K. Impact of Organic Farming on Yield and Quality of BASMATI Rice and Soil Properties. In Zwischen Tradition und Globalisierung, 9. Wissenschaftstagung Ökologischer Landbau; Zikeli, S., Claupein, W., Dabbert, S., Kaufmann, B., Müller, T., Valle Zárate, A., Eds.; Verlag Dr. Köster: Berlin, Germany, 2007; p. 10742. [Google Scholar]
- Chau, L.M.; Heong, K.L. Effects of organic fertilisers on insect pest and diseases of rice. Omonrice 2005, 13, 26–33. [Google Scholar]
- Fujita, D.; Kohli, A.; Horgan, F.G. Rice Resistance to Planthoppers and Leafhoppers. Crit. Rev. Plant Sci. 2013, 32, 162–191. [Google Scholar] [CrossRef]
- Johannes, H.P.; Priadi, C.R.; Herdiansyah, H. Organic rice farming: An alternative to sustainable agriculture. IOP Conf. Ser. 2019, 546, 022008. [Google Scholar] [CrossRef]
- Heong, K.L.; Wong, L.; Delos Reyes, J.H. Addressing Planthopper Threats to Asian Rice Farming and Food Security: Fixing Insecticide Misuse. In Rice Planthoppers; Heong, K., Cheng, J., Escalada, M., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 65–76. [Google Scholar]
- Spangenberg, J.H.; Douguet, J.-M.; Settele, J.; Heong, K.L. Escaping the lock-in of continuous insecticide spraying in rice: Developing an integrated ecological and socio-political DPSIR analysis. Ecol. Model. 2015, 295, 188–195. [Google Scholar] [CrossRef]
- Srinivas, M.; Anusha, B.; Reddy, C.V.; Satyanarayana, P.; Munirathnam, P. Effect of Weed Management Practices on Productivity and Economics of Rice-Rice Crop sequence under Organic Production System. Int. J. Bio-Resour. Stress Manag. 2019, 10, 124–127. [Google Scholar] [CrossRef]
- Horgan, F.G.; Vu, Q.; Mundaca, E.A.; Crisol-Martínez, E. Restoration of Rice Ecosystem Services: Ecological Engineering for Pest Management; Incentives and Practices in the Mekong Delta Region of Vietnam. Agronomy 2022, 12, 1042. [Google Scholar] [CrossRef]
- Tschumi, M.; Albrecht, M.; Entling, M.H.; Jacot, K. High effectiveness of tailored flower strips in reducing pests and crop plant damage. Proc. Biol. Sci. 2015, 282, 20151369. [Google Scholar] [CrossRef]
- Westphal, C.; Vidal, S.; Horgan, F.G.; Gurr, G.M.; Escalada, M.; Van Chien, H.; Tscharntke, T.; Heong, K.L.; Settele, J. Promoting multiple ecosystem services with flower strips and participatory approaches in rice production landscapes. Basic Appl. Ecol. 2015, 16, 681–689. [Google Scholar] [CrossRef]
- Saksongmuang, V.; Michalko, R.; Petcharad, B.; Bumrungsri, S. Changes in community composition and prey capture of web-building spiders during rice field development. Basic Appl. Ecol. 2024, 79, 29–37. [Google Scholar] [CrossRef]
- De Andrade França, J.; Latini, A.O.; Stein, K.; Barbosa, M.A.; Araújo, G.S.S.; Pimenta Pereira, A.C. Enhancing rice yield in paddy fields through beneficial organisms. J. Nat. Conserv. 2024, 77, 126544. [Google Scholar] [CrossRef]
- Othsu, K. Study of acute toxicity test method to Fipronil and Imidacloprid for the larvae of Japanese common meadowhawk (Sympetrum frequens). Jpn. J. Environ. Toxicol. 2019, 22, 31–40. [Google Scholar]
- Hayasaka, D.; Korenaga, T.; Suzuki, K.; Saito, F.; Sánchez-Bayo, F.; Goka, K. Cumulative ecological impacts of two successive annual treatments of imidacloprid and fipronil on aquatic communities of paddy mesocosms. Ecotoxicol. Environ. Saf. 2012, 80, 355–362. [Google Scholar] [CrossRef]
- Jinguji, H.; Ohtsu, K.; Ueda, T.; Goka, K. Effects of short-term, sublethal fipronil and its metabolite on dragonfly feeding activity. PLoS ONE 2018, 13, e0200299. [Google Scholar] [CrossRef]
- Horgan, F.G.; Mundaca, E.A.; Hadi, B.A.; Crisol-Martínez, E. Diversified rice farms with vegetable plots and flower strips are associated with fewer pesticide applications in the Philippines. Insects 2023, 14, 778. [Google Scholar] [CrossRef] [PubMed]
- Le, B.Y. WEHG Biological Products Accompany Organic Rice. Vietnam Farmer’s Union: Agriculture and Environment, Hanoi. 2021. Available online: https://nongnghiep.vn/che-pham-sinh-hoc-wehg-dong-hanh-cung-lua-huu-co-d302519.html (accessed on 16 November 2024). (In Vietnamese).
- Tuan, K. Bac Lieu Expands Agricultural Production in an Organic Direction; Dan Toc & Mien Nui, Hanoi; 17 May 2022. Available online: https://dantocmiennui.vn/bac-lieu-nhan-rong-san-xuat-nong-nghiep-theo-huong-huu-co/320154.html (accessed on 17 November 2024). (In Vietnamese).
- Nguyen, C.D. Initial Effectiveness of Some Rice Production Models in an Organic Direction; Thanh Tuu Khoa Hoc—Cong Nghe: 2021. Available online: https://vinhlong.gov.vn/Portals/1038/Khoa%20h%E1%BB%8Dc%20-%20C%C3%B4ng%20ngh%E1%BB%87/50.pdf?ver=FF7NtlYSurOBIxWVeTqm2w%3D%3D (accessed on 17 November 2024). (In Vietnamese)
- Lan, A.; Tran, T. Quang Tri-Double Profits Through Organic Rice Growing Linked To Product Consumption; Agriculture Extension Center, Quang Tri Province: 7 June 2023. Available online: https://khuyennong.quangtri.gov.vn/mo-hinh-kinh-nghiem/quang-tri-loi-nhuan-gap-doi-nho-trong-lua-huu-co-lien-ket-tieu-thu-san-pham-703.html (accessed on 16 November 2024). (In Vietnamese)
- Ngan, N.T.; Ngoc, T.H. Development of organic agriculture in Vietnam: Some theoretical and practical issues. Am. Res. J. Humanit. Soc. Sci. 2022, 5, 36–42. [Google Scholar]
- Nguyen, V.K. Perception of Challenges in Opportunities for Organic Food Research and Development in Vietnam. In Regulatory Issues in Organic Food Safety in the Asia Pacific; Goh, B., Price, R., Eds.; Springer: Singapore, 2020; pp. 199–216. [Google Scholar]
- Sihi, D.; Dari, B.; Sharma, D.K.; Pathak, H.; Nain, L.; Sharma, O.P. Evaluation of soil health in organic vs. conventional farming of basmati rice in North India. J. Plant Nutr. Soil Sci. 2017, 180, 389–406. [Google Scholar]
- Amarasekara, M.G.T.S.; Waduge, K.; Bandara, A.M.K.R. Characteristics of Rice Growing Soils under Conventional and Organic Input Systems in Sri Lanka. Int. J. Adv. Sci. Res. Manag. 2019, 5, 10–18. [Google Scholar]
- Surekha, K.; Satishkumar, Y.S. Productivity, Nutrient Balance, Soil Quality, and Sustainability of Rice (Oryza sativa L.) under Organic and Conventional Production Systems. Commun. Soil Sci. Plant Anal. 2014, 45, 415–428. [Google Scholar] [CrossRef]
- Babu, S.; Singh, R.; Avasthe, R.K.; Yadav, G.S.; Das, A.; Singh, V.K.; Mohapatra, K.P.; Rathore, S.S.; Chandra, P.; Kumar, A. Impact of land configuration and organic nutrient management on productivity, quality and soil properties under baby corn in Eastern Himalayas. Sci. Rep. 2020, 10, 16129. [Google Scholar] [CrossRef]
- Kumawat, A.; Kumar, D.; Shivay, Y.S.; Bhatia, A.; Rashmi, I.; Yadav, D.; Kumar, A. Long-term impact of biofertilization on soil health and nutritional quality of organic basmati rice in a typic ustchrept soil of India. Front. Environ. Sci 2023, 1, 1031844. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Liu, X.; Di, Z.; Li, L.; Li, W.; Sheng, L. Effects of long-term application of organic fertiliser on improving organic matter content and retarding acidity in red soil from China. Soil Tillage Res. 2019, 195, 104382. [Google Scholar] [CrossRef]
- Singh, Y.; Singh, B.; Ladha, J.K.; Khind, C.S.; Gupta, R.K.; Meelu, O.P.; Pasuquin, E. Long-Term Effects of Organic Inputs on Yield and Soil Fertility in the Rice—Wheat Rotation. Soil Sci. Soc. Am. J. 2004, 68, 845–853. [Google Scholar] [CrossRef]
- Tashi, S.; Wangchuk, K. Organic vs. conventional rice production: Comparative assessment under farmers’ condition in Bhutan. Org. Agric. 2016, 6, 255–265. [Google Scholar] [CrossRef]
- Roder, W.; Schürmann, S.; Chittanavanh, P.; Sipaseuth, K.; Fernandez, M. Soil fertility management for organic rice production in the Lao PDR. Renew. Agric. Food Syst. 2006, 21, 253–260. [Google Scholar] [CrossRef]
- Dalal, R.C.; Allen, D.E.; Chan, K.Y.; Singh, B.P. Soil organic matter, soil health and climate change. In Soil Health and Climate Change—Soil Biology; Singh, B., Cowie, A., Chan, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 29, pp. 87–106. [Google Scholar]
- Surekha, K.; Latha, P.C.; Rao, K.V.; Kumar, R.M. Grain Yield, Yield Components, Soil Fertility, and Biological Activity under Organic and Conventional Rice Production Systems. Commun. Soil Sci. Plant Anal. 2010, 41, 2279–2292. [Google Scholar] [CrossRef]
- Ofori, J.; Kamidouzono, A.; Masunaga, T.; Wakatsuki, T. Organic Amendment and Soil Type Effects on Dry Matter Accumulation, Grain Yield, and Nitrogen Use Efficiency of Rice. J. Plant Nutr. 2005, 28, 1311–1322. [Google Scholar] [CrossRef]
- Cedeño, K. Soil Quality of a Rice Organic Farm in Langkong, M’lang, Cotabato. Southeast Philipp. J. Res. Dev. 2019, 24, 35–53. [Google Scholar] [CrossRef]
- Min, B. Identifying an influential spreader from a single seed in complex networks via a message-passing approach. Eur. Phys. J. B 2018, 91, 18. [Google Scholar] [CrossRef]
- Ghori, N.-H.; Ghori, T.; Hayat, M.Q.; Imadi, S.R.; Gul, A.; Altay, V.; Ozturk, M. Heavy metal stress and responses in plants. Int. J. Environ. Sci. Technol. 2019, 16, 1807–1828. [Google Scholar] [CrossRef]
- Zakaria, Z.; Zulkafflee, N.S.; Mohd Redzuan, N.A.; Selamat, J.; Ismail, M.R.; Praveena, S.M.; Tóth, G.; Abdull Razis, A.F. Understanding Potential Heavy Metal Contamination, Absorption, Translocation and Accumulation in Rice and Human Health Risks. Plants 2021, 10, 1070. [Google Scholar] [CrossRef] [PubMed]
- Duan, G.; Zhang, H.; Liu, Y.; Jia, Y.; Hu, Y.; Cheng, W. Long-term fertilization with pig-biogas residues results in heavy metal accumulation in paddy field and rice grains in Jiaxing of China. Soil Sci. Plant Nutr. 2012, 58, 637–646. [Google Scholar]
- Angon, P.B.; Islam, M.; Shafiul, K.; Shreejana, D.; Arpan, A.; Nafisa, P.; Amrit, S.; Shaharia, A. Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain. Heliyon 2024, 10, e28357. [Google Scholar] [CrossRef]
- Azhar, U.; Ahmad, H.; Shafqat, H.; Babar, M.; Shahzad, M.; Hafiz, M.; Sagir, M. Remediation techniques for elimination of heavy metal pollutants from soil: A review. Environ. Res. 2022, 214 Pt 4, 113918. [Google Scholar] [CrossRef]
- Nazia, T.; Ullah, A.; Tahir, A.; Rashid, H.U.; Rehman, T.U.; Danish, S. Strategies for reducing Cd concentration in paddy soil for rice safety. J. Clean. Prod. 2022, 316, 128116. [Google Scholar]
- Cao, C.; Yang, Y.; Kwan, M.-P.; Ma, Z.-B.; Karthikeyan, R.; Wang, J.-J.; Chen, H. Crop selection reduces potential heavy metal(loid)s health risk in wastewater contaminated agricultural soils. Sci. Total Environ. 2022, 819, 152502. [Google Scholar] [CrossRef]
- Puppe, D.; Kaczorek, D.; Stein, M.; Schaller, J. Silicon in Plants: Alleviation of Metal(loid) Toxicity and Consequential Perspectives for Phytoremediation. Plants 2023, 12, 2407. [Google Scholar] [CrossRef]
- Hnini, M.; Rabeh, K.; Oubohssaine, M. Interactions between beneficial soil microorganisms (PGPR and AMF) and host plants for environmental restoration: A systematic review. Plant Stress 2024, 11, 100391. [Google Scholar] [CrossRef]
- Ngo, H.T.T.; Hang, N.T.T.; Nguyen, X.C.; Nguyen, N.T.M.; Truong, H.B.; Liu, C. Toxic metals in rice among Asian countries: A review of occurrence and potential human health risks. Food Chem. 2024, 460 Pt 1, 140479. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, S.; Cai, K.; Huang, F.; Pan, B.; Wang, W. Cd accumulation, biomass and yield of rice are varied with silicon application at different growth phases under high concentration cadmium-contaminated soil. Chemosphere 2020, 242, 125128. [Google Scholar] [CrossRef]
- Yang, X.; Ni, Y.; Li, Z.; Yue, K.; Wang, J.; Li, Z. Silicon in paddy fields: Benefits for rice production and the potential of rice phytoliths for biogeochemical carbon sequestration. Sci. Total Environ. 2024, 929, 172497. [Google Scholar] [CrossRef]
- Ca Mau People Committee. Dual Benefits from the Organic Rice Model. Doanh Nghiep Hoi Nhap 27 April 2021. Ca Mau province, Vietnam. Available online: https://doanhnghiephoinhap.vn/ca-mau-loi-ich-kep-tu-mo-hinh-lua-huu-co-55904.html (accessed on 17 November 2024). (In Vietnamese).
- Huu, N. Dong Thap Aims to Produce Organic Rice; Nhan Dan Online, Official newspaper of the Communist Party of Vietnam, Hanoi; 26 October 2022. Available online: https://nhandan.vn/dong-thap-huong-toi-san-xuat-lua-huu-co-post721282.html (accessed on 18 November 2024). (In Vietnamese).
- Tran, D.D.; Park, E.; Van, C.T.; Nguyen, T.D.; Nguyen, A.H.; Linh, T.C.; Quyen, P.H.; Tran, D.A.; Nguyen, H.Q. Advancing sustainable rice production in the Vietnamese Mekong Delta insights from ecological farming systems in An Giang Province. Heliyon 2024, 10, e37142. [Google Scholar] [CrossRef] [PubMed]
- Lisenbee, W.; Saha, A.; Mohammadpour, P.; Cibin, R.; Kaye, J.; Grady, C.; Chaubey, I. Water quality impacts of recycling nutrients using organic fertilizers in circular agricultural scenarios. Agric. Syst. 2024, 219, 104041. [Google Scholar] [CrossRef]
- Sihi, D.; Dar, B.; Yan, Z.; Sharma, D.K.; Pathak, H.; Sharma, O.P.; Nain, L. Assessment of Water Quality in Indo-Gangetic Plain of South-Eastern Asia under Organic vs. Conventional Rice Farming. Water 2020, 12, 960. [Google Scholar] [CrossRef]
- Gheewala, S.H.; Silalertruksa, T.; Nilsalab, P.; Mungkung, R.; Perret, S.R.; Chaiyawannakarn, N. Water footprint and impact of water consumption for food, feed, fuel crops production in Thailand. Water 2014, 6, 1698–1718. [Google Scholar] [CrossRef]
- Gattinger, A.; Muller, A.; Haeni, M.; Skinner, C.; Fliessbach, A.; Buchmann, N.; Niggli, U. Enhanced top soil carbon stocks under organic farming. Proc. Natl. Acad. Sci. USA 2012, 109, 18226–18231. [Google Scholar] [CrossRef]
- Junge, S.M.; Storch, J.; Finckh, M.R.; Schmidt, J.H. Developing Organic Minimum Tillage Farming Systems for Central and Northern European Conditions. In No-Till Farming Systems for Sustainable Agriculture; Dang, Y., Dalal, R., Menzies, N., Eds.; Springer: Cham, Switzerland, 2020; pp. 173–192. [Google Scholar]
- Prikhodko, I.A.; Vladimirov, S.A.; Alexandrov, D.A. Improving the elements of organic farming in rice cultivation. IOP Conf. Ser. 2021, 659, 012062. [Google Scholar] [CrossRef]
- Le, T.; Chau, P. Growing Organic Rice Combined with Raising Clean Shrimp in Bac Lieu, Farmers are Healthy and Have Much Better Income; Danviet. Vn 21 March 2023. Available online: https://danviet.vn/trong-lua-huu-co-o-bac-lieu-kieu-gi-ma-chua-gat-da-co-nguoi-doi-mua-lai-con-nuoi-tom-su-to-bu-20230321124620828.htm (accessed on 16 November 2024). (In Vietnamese).
- UNEP United Nations Environment Programme. Synthesis Report on the Environmental and Health Impacts of Pesticides and Fertilisers and Ways to Minimize Them; UNEP: Geneva, Switzerland, 2022. [Google Scholar]
- EEA European Environment Agency. How Pesticides Impact Human Health and Ecosystems in Europe; Office for the Publications of the European Union: Luxembourg, 2023. [Google Scholar]
- Shah, R. Pesticides and Human Health. In Emerging Contaminants; Nuro, A., Ed.; IntechOpen: London, UK, 2020; pp. 57–78. [Google Scholar]
- Alves, G.H.; Paraginski, R.T.; Lamas, N.D.; Hoffmann, J.F.; Vanier, N.L.; de Oliveira, M. Effects of Organic and Conventional Cropping Systems on Technological Properties and Phenolic Compounds of Freshly Harvested and Stored Rice. J. Food Sci. 2017, 82, 2276–2285. [Google Scholar] [CrossRef]
- Bergman, C.; Pandhi, M. Organic rice production practices: Effects on grain end-use quality, healthfulness, and safety. Foods 2022, 12, 73. [Google Scholar] [CrossRef]
- Sihi, O.; Sharma, O.; Pathak, H.; Singh, V.; Sharma, C.; Chaudhary, A.; Oari, B. Effect of organic farming on productivity and quality of basmati rice ORYZA-An. Int. J. Rice 2012, 49, 24–29. [Google Scholar]
- Vanavichit, A. The Next Green Revolution of Organic Rice. Open Access Government. 6 January 2023. Available online: https://www.openaccessgovernment.org/article/green-revolution-organic-rice-yield-environment/149446/ (accessed on 17 November 2024).
- Lamers, M.; Anyusheva, M.; La, N.; Nguyen, V.V.; and Streck, T. Pesticide pollution in surface- and groundwater by paddy rice cultivation: A case study from Northern Vietnam. Clean Soil Air Water 2011, 39, 356–361. [Google Scholar] [CrossRef]
- Toan, P.V.; Sebesvari, Z.; Blasing, M.; Rosendahl, I.; Renaud, F.G. Pesticide management and their residues in sediments and surface and drinking water in the Mekong Delta, Vietnam. Sci. Total Environ. 2013, 452/453, 28–39. [Google Scholar] [CrossRef]
- Chau, N.D.G.; Sebesvari, Z.; Amelung, W.; Renaud, F.G. Pesticide pollution of multiple drinking water sources in the Mekong Delta, Vietnam: Evidence from two provinces. Environ. Sci. Pollut. Res. Int. 2015, 22, 9042–9058. [Google Scholar] [CrossRef]
- Phung, D.T.; Connell, D.; Miller, G.; Rutherford, S.; Chu, C. Needs Assessment for Reducing Pesticide Risk: A Case Study With Farmers in Vietnam. J. Agromed. 2013, 18, 293–303. [Google Scholar] [CrossRef]
- Dasgupta, S.; Meisner, C.; Wheeler, D.; Xuyen, K.; Lam, N.T. Pesticide poisoning of farm workers—Implications of blood test results from Vietnam. Int. J. Hyg. Environ. Health 2007, 210, 121–132. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Sudaryanto, A.; Tu, B.M.; Bui, H.N.; Isobe, T.; Takahashi, S.; Pham, H.V.; Tanabe, S. Kinetic differences of legacy organochlorine pesticides and polychlorinated biphenyls In Vietnamese human breast milk. Chemosphere 2010, 81, 1006–1011. [Google Scholar] [CrossRef]
- Phung, D.T.; Connell, D.; Miller, G.; Hodge, M.; Patel, R.; Cheng, R.; Abeyewardene, M.; Chu, C. Biological monitoring of chlorpyrifos exposure to rice farmers in Vietnam. Chemosphere 2012, 87, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.; Pham, G.; Nguyen-Viet, H. Emerging health risks from agricultural intensification in Southeast Asia: A systematic review. Int. J. Occup. Environ. Health 2017, 23, 250–260. [Google Scholar] [CrossRef]
- Hien, M. Agricultural Waste Treatment. Nhan Dan Online, Official newspaper of the Communist Party of Vietnam 23 August 2022. Available online: https://nhandan.vn/xu-ly-rac-thai-nong-nghiep-post711677.html (accessed on 18 November 2024). (In Vietnamese).
- Liebman, M.; Schulte, L.A. Enhancing agroecosystem performance and resilience through increased diversification of landscapes and cropping systems. Elem. Sci. Anthr. 2015, 3, 000041. [Google Scholar] [CrossRef]
- Horgan, F.G.; Crisol-Martínez, E.; Stuart, A.M.; Villegas, J.M.; Peñalver-Cruz, A.; Mundaca, E.A.; Perez, M.O.; Bernal, C.C.; Almazan, M.L.P.; Ramal, A.F. Direct and Indirect Effects of Planting Density, Nitrogenous Fertiliser and Host Plant Resistance on Rice Herbivores and Their Natural Enemies. Agriculture 2022, 12, 2053. [Google Scholar] [CrossRef]
- Dardonville, M.; Bockstaller, C.; Villerd, J.; Therond, O. Resilience of agricultural systems: Biodiversity-based systems are stable, while intensified ones are resistant and high-yielding. Agric. Syst. 2022, 197, 103365. [Google Scholar] [CrossRef]
- Katayama, N.; Osada, Y.; Mashiko, M.; Baba, Y.G.; Tanaka, K.; Kusumoto, Y.; Okubo, S.; Ikeda, H.; Natuhara, Y. Organic farming and associated management practices benefit multiple wildlife taxa: A large-scale field study in rice paddy landscapes. J. Appl. Ecol. 2019, 56, 1970–1981. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef]
- Firbank, L.G. Striking a new balance between agricultural production and biodiversity. Ann. Appl. Biol. 2005, 146, 163–175. [Google Scholar] [CrossRef]
- Stein-Bachinger, K.; Gottwalkd, F.; Haub, A.; Schmidt, E. To what extent does organic farming promote species richness and abundance in temperate climates? A review. Org. Agric. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Holzer, K.A.; Bayers, R.P.; Nguyen, T.T.; Lawler, S.P. Habitat value of cities and rice paddies for amphibians in rapidly urbanizing Vietnam. J. Urban. Ecol. 2017, 3, 3. [Google Scholar] [CrossRef]
- Miyashita, T.; Chishiki, Y.; Takagi, S.R. Landscape heterogeneity at multiple spatial scales enhances spider species richness in an agricultural landscape. Popul. Ecol. 2012, 54, 573–581. [Google Scholar] [CrossRef]
- Watanabe, K.; Koji, S.; Hidaka, K.; Nakamura, K. Abundance, diversity, and seasonal population dynamics of aquatic Coleoptera and Heteroptera in rice fields: Effects of direct seeding management. Environ. Entomol. 2013, 42, 841–850. [Google Scholar] [CrossRef]
- Fried, O.; Westphal, C.; Schellenberg, J.; Grescho, V.; Kühn, I.; Nguyen, V.S.; Settele, J.; Bergmeier, E. Vascular plant species diversity in Southeast Asian rice ecosystems is determined by climate and soil conditions as well as the proximity of non-paddy habitats. Agric. Ecosyst. Environ. 2021, 314, 107346. [Google Scholar] [CrossRef]
- Guo, L.; Zhao, L.; Ye, J.; Ji, Z.; Tang, J.-J.; Bai, K.; Zheng, S.; Hu, L.; Chen, X. Using aquatic animals as partners to increase yield and maintain soil nitrogen in the paddy ecosystems. eLife 2022, 11, 73869. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.C.; Shiraishi, H.; Nakagawa, M.; Takamura, N. Combined impact of pesticides and other environmental stressors on animal diversity in irrigation ponds. PLoS ONE 2020, 15, e0229052. [Google Scholar] [CrossRef]
- Ishiwaka, N.; Hashimoto, K.; Masayoshi, K.; Hiraiwa, M.; Sanchez-Bayo, F.; Kadoya, T.; Hayasaka, D. Can warming accelerate the decline of Odonata species in experimental paddies due to insecticide fipronil exposure? Environ. Pollut. 2024, 341, 122831. [Google Scholar]
- Scholes, R.; Montanarella, L.; Brainich, A.; Barger, N.; ten Brink, B.; Cantele, M.; Erasmus, B.; Fisher, J.; Gardner, T.; Holland, T.G.; et al. Summary for Policymakers of the Assessment Report on Land Degradation and Restoration of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES secretariat: Bonn, Germany, 2018. [Google Scholar]
- Gao, P.; Wang, H.; Deng, S.; Dong, E.; Dai, Q. Influence of organic rice production mode on weed composition in the soil seed bank of paddy fields. Front. Plant Sci. 2022, 13, 1056975. [Google Scholar] [CrossRef]
- Shaner, D.L. Lessons Learned From the History of Herbicide Resistance. Weed Sci. 2014, 62, 427–431. [Google Scholar] [CrossRef]
- Baba, Y.G.; Kusumoto, Y.; Tanaka, K. Effects of agricultural practices and fine-scale landscape factors on spiders and a pest insect in Japanese rice paddy ecosystems. BioControl 2018, 63, 265–275. [Google Scholar] [CrossRef]
- Ibáñez, C.; Curcó, A.; Riera, X.; Ripoll, I.; Sánchez, C. Influence on Birds of Rice Field Management Practices during the Growing Season: A Review and an Experiment. Waterbirds 2010, 33, 167–180. [Google Scholar] [CrossRef]
- Lori, M.; Symnaczik, S.; Mäder, P.; de Deyn, G.; Gattinger, A. Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression. PLoS ONE 2017, 12, e0180442. [Google Scholar] [CrossRef]
- Gong, S.; Zhou, X.; Zhu, X.; Huo, J.; Faghihinia, M.; Li, B.; Zou, Y. Organic rice cultivation enhances the diversity of above-ground arthropods but not below-ground soil eukaryotes. Agric. Ecosyst. Environ. 2023, 347, 108390. [Google Scholar]
- Sattler, C.; Gianuca, A.T.; Schweiger, O.; Franzen, M.; Settele, J. Pesticides and land cover heterogeneity affect functional group and taxonomic diversity of arthropods in rice agroecosystems. Agric. Ecosyst. Environ. 2020, 297, 106927. [Google Scholar] [CrossRef]
- Elphick, C.S.; Baicich, P.; Parsons, K.C.; Fasola, M.; Mugica, L. The Future for Research on Waterbirds in Rice Fields. Waterbirds 2010, 33, 231–243. [Google Scholar] [CrossRef]
- Vietnam Academy of Agricultural Sciences. Building a Sustainable Ecosystem for the Mekong Delta Region. 11 January 2023. Available online: https://vaas.vn/vi/nong-nghiep-trong-nuoc/xay-dung-he-sinh-thai-ben-vung-cho-vung-dbscl (accessed on 18 November 2024). (In Vietnamese).
- Tuyet, C. Mekong Delta: Challenges in Nature Conservation and Biodiversity. Resources and Environment 2 July 2019. Available online: https://baotainguyenmoitruong.vn/dbscl-thach-thuc-trong-bao-ton-thien-nhien-va-da-dang-sinh-hoc-241920.html (accessed on 17 November 2024). (In Vietnamese).
- Mai, C. Mekong Delta: Agricultural Wastewater Alarm. Resources and Environment. 27 August 2019. Available online: https://baotainguyenmoitruong.vn/dong-bang-song-cuu-long-bao-dong-nuoc-thai-nong-nghiep-294481.html (accessed on 16 November 2024). (In Vietnamese).
- WBCSD World Business Council for Sustainable Development. Deep dive: Rice production in the Mekong Delta, Vietnam. In Roadmap to Nature Positive: Foundations for the Agri-Food System; WBCSD: Geneva, Switzerland, 2024. [Google Scholar]
- Nguyen, C.T.; Nguyen, V.M.; Nguyen, V.A.; Phan, T.P.T.; Doan, T.H.C.; Nguyen, T.H.; Nguyen, T.H. Some Initial Results on Research and Modeling of Organic Rice Production in the Mekong Delta, Vietnam. Int. J. Energy Environ. Sci. 2017, 1, 29–36. [Google Scholar]
- Nguyen, C.T.; Vo, T.T.; Nguyen, T.X.; Nguyen, H.P.; Bui, D.D.; Nguyen, V.M.; Duong, V.H. Assessment of Pesticide Residues in Organic Rice Production in The Mekong Delta, Vietnam. Eur. J. Dev. Stud. 2022, 2, 1–11. [Google Scholar] [CrossRef]
- Nguyen, C.T. Linking Farmers and Businesses in Integrated Organic Rice and Shrimp Farming—The Best Way for Enhancing Farmer’s Income and Sustainable Agriculture Development. Agric. Ext. J. 2019, 3, 58–66. [Google Scholar]
- STAMEQ Directorate for Standards, Metrology and Quality. Vietnam National Standard on Organic Agriculture—Part 2: Organic Crops (TCVN 11041-2:2017). Ministry of Science and Technology. 2017. Available online: https://caselaw.vn/van-ban-phap-luat/343712-tieu-chuan-quoc-gia-tcvn-11041-2-2017-ve-nong-nghiep-huu-co-phan-2-trong-trot-huu-co-nam-2017 (accessed on 17 November 2024). (In Vietnamese).
- Thai, H.; Vietnam’s Agriculture Is Making Steady Progress with Organic Rice. Vietnam Organic Agriculture Association, Hanoi. 23 December 2024. Available online: https://nongnghiephuuco.vn/nen-nong-nghiep-viet-nam-tien-vung-chac-tu-lua-huu-co-3713.html. (accessed on 8 September 2025). (In Vietnamese).
- Nguyen, C.T.; Van, T.T.T. Development of Organic Agriculture in the Mekong Delta—Opportunities and Challenges. Eur. J. Dev. Stud. 2021, 1, 29–35. [Google Scholar]
- Grimm, M.; Luck, N.; Steinhübel, F. Consumers’ willingness to pay for organic rice: Insights from a non-hypothetical experiment in Indonesia. Aust. J. Agric. Res. Econ. 2023, 67, 83–103. [Google Scholar]
- Pawitri, G.; Budiraharjo, K.; Setiawan, B.M. The Production Efficiency in Organic Rice Farming. SOCA J. Sos. Ekon. Pertan. 2021, 15, 450–457. [Google Scholar]
- Reddy, B.S. Organic Farming: Status, Issues and Prospects—A Review. Agric. Econ. Res. Rev. 2010, 23, 343–358. [Google Scholar]
- Ashraf, I.; Ahmad, I.; Nafees, M.; Yousaf, M.M.; Ahmad, B. A review on organic farming for sustainable agricultural production. Pure Appl. Biol. 2021, 5, 277–286. [Google Scholar] [CrossRef]
- Eyhorn, F.; van den Berg, M.; Decock, C.; Maat, H.; Srivastava, A. Does Organic Farming Provide a Viable Alternative for Smallholder Rice Farmers in India? Sustainability 2018, 10, 4424. [Google Scholar] [CrossRef]
- Adhikari, R.K. Economics of organic rice production. J. Agric. Environ. 2011, 12, 97–103. [Google Scholar] [CrossRef]
- Mungara, E.; Indradewa, D.; dan Rogomulyo, R. Analysis of Growth and Rice Yields (Oryza sativa L.) Conventional, Organic Transitional, and Organic Farming System. Vegetalika 2013, 2, 1–12. [Google Scholar]
- Tuan, C.M.; Lee, S.H. Factors Affecting Organic Fertiliser Adoption in Rice Production in Vietnam. J. Korean Soc. Int. Agric. 2021, 33, 130–138. [Google Scholar] [CrossRef]
- Rahman, F.H.; Mukherjee, S.; Das, S.; Mukhopadhyay, K.; Bera, R.R.; Seal, A. Improvement of Soil and Plant Health through Adoption of an Organic Package of Practice for Rice Cultivation in New Alluvial Soil of West Bengal. Curr. J. Appl. Sci. Technol. 2020, 39, 99–108. [Google Scholar] [CrossRef]
- Salam, M.A.; Sarker, M.N.I.; Sharmin, S. Do organic fertiliser impact on yield and efficiency of rice farms? Empirical evidence from Bangladesh. Heliyon 2021, 7, e07731. [Google Scholar]
- Aulakh, C.S.; Ravisankar, N. Organic farming in Indian context: A perspective. Agric. Res. J. 2017, 54, 149–164. [Google Scholar] [CrossRef]
- Rentschler, J.; Salhab, M.; Jafino, B.A. Flood exposure and poverty in 188 countries. Nat. Commun. 2022, 13, 3527. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Tang, Y.; Li, H.; Zhang, L.; Ngo-Duc, T.; Chen, D.; Tang, Q. Saltwater intrusion into groundwater systems in the Mekong Delta and links to global change. Adv. Clim. Change Res. 2021, 12, 342–352. [Google Scholar] [CrossRef]
- Thai, D.V.H.; Cong, V.T.; Nestmann, F.; Oberle, P.E.; Trung, N.N. Land use based flood hazards analysis for the Mekong Delta. In Proceedings of the 19th IAHR-APD Congress, Hanoi, Vietnam, 21–24 September 2014. [Google Scholar]
- Hopmans, J.W.; Qureshi, A.S.; Kisekka, I.; Munns, R.; Grattan, S.R.; Rengasamy, P.; Ben-Gal, A.; Assouline, S.; Javaux, M.; Minhas, P.S.; et al. Critical knowledge gaps and research priorities in global soil salinity. Adv. Agron. 2021, 16, 1–191. [Google Scholar]
- Chandramohanan, K.T.; Sreeja, P. An indigenous saline resistant organic rice tract in north Kerala—Practices and challenges. In Proceedings of the Lake 2016: Conference on Conservation and Sustainable Management of Ecologically Sensitive Regions in Western Ghats, 10th Biennial Lake Conference, Karnataka, India, 28–30 December 2016. [Google Scholar]
- Vanaja, T.; Neema, V.P.; Mammootty, K.P.; Balakrishnan, P.C.; Jayaprakash, N.B. The first high yielding saline tolerant rice variety suited to the Kaipad tidal farming ecosystem of Kerala, India, and suited for flood prone and water scarce environments: ‘Ezhome-1’. J. Org. 2015, 2, 21–32. [Google Scholar]
- Vanaja, T.; Neema, V.P.; Mammootty, K.P.; Balakrishnan, P.C.; Jayaprakash, N.B. A high yielding organic rice variety suited for coastal saline and non-saline fields: ‘Ezhome-2’. J. Org. 2017, 4, 21–28. [Google Scholar]
- Hossain, M.S.; Khan, H.R.; Akter, S. Consequences of Indigenous Organic Amendments and Moisture Conditions on the Growth and Yield of Rice Grown on Saline Soil. Int. J. Sci. Eng. Investig. 2017, 6, 108–114. [Google Scholar]
- Eslami, S.; Hoekstra, P.; Minderhoud, P.S.; Trung, N.N.; Hoch, J.M.; Sutanudjaja, E.H.; Dung, D.D.; Tho, T.Q.; Voepel, H.E.; Woillez, M.N.; et al. Projections of salt intrusion in a mega-delta under climatic and anthropogenic stressors. Commun. Earth Environ. 2021, 2, 142. [Google Scholar] [CrossRef]
- Kaveney, B.; Barrett-Lennard, E.; Minh, K.C.; Duy, M.D.; Thi, K.P.N.; Kristiansen, P.; Orgill, S.; Stewart-Koster, B.; Condon, J. Inland dry season saline intrusion in the Vietnamese Mekong River Delta is driving the identification and implementation of alternative crops to rice. Agric. Syst. 2023, 207, 103632. [Google Scholar] [CrossRef]
- Poelma, T.; Bayrak, M.M.; Van Nha, D.; Tran, T.A. Climate change and livelihood resilience capacities in the Mekong Delta: A case study on the transition to rice–shrimp farming in Vietnam’s Kien Giang Province. Clim. Change 2021, 164, 9. [Google Scholar] [CrossRef]
- Kolsky, M. Flood Resilience in Agriculture: Safeguarding Food Supply. Agritask. 26 July 2023. Available online: https://start.agritask.com/blog/flood-resilience-in-agriculture/ (accessed on 22 November 2024).
- Nguyen, H.N.; Vu, K.T.; Nguyen, X.N. Flooding in Mekong River Delta, Viet Nam. In Human Development Report 2007/2008; Human Development Report Office, Ed.; UNDP United Nations Development Programme: Nairobi, Kenya, 2007; pp. 1–23. [Google Scholar]
- Van, C.T.; Thuy, H.T.T.; Viet, C.T.; Anh, L.N.; Van Anh, V.T.; Tran, D.D. Unveiling flood vulnerability in the Vietnamese Mekong Delta: A case study of An Giang province. Int. J. Disaster Risk Reduct. 2024, 106, 104429. [Google Scholar] [CrossRef]
- Jacob, S.; Subramannian, S. Pokkali: An Exquisite Climate Resilient and Organic Rice-Prawn Production System for Future. Kerala Karshakan 2022, 10, 4–8. [Google Scholar]
- Vanaja, T.; Neema, V.P. Saline and flood tolerant organic red rice variety (Oryza sativa L.) from Kerala. Int. J. Trop. Agric. 2021, 39, 113–118. [Google Scholar]
- Setyorini, D.; Hartatik, W. Nutrients balance under organic rice farming system in Central Java, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 648, 012154. [Google Scholar] [CrossRef]
- Alagappan, S.; Venkitaswamy, R.; Mariappan, G. Impacts of different sources of organic manures on soil physico-chemical properties, nutrient balance and yield of rice-greengram cropping sequence under organic farming. Agric. Updat. 2017, 12, 2044–2066. [Google Scholar] [CrossRef]
- Gaind, S. Effect of organic farming on quality of soil under rice cultivation. J. Agroecol. Nat. Resour. 2015, 2, 391–393. [Google Scholar]
- Sujianto; Gunawan, E.; Saptana; Syahyuti; Darwis, V.; Ashari; Syukur, M.; Ariningsih, E.; Saliem, H.P.; Mardianto, S.; et al. Farmers’ perception, awareness, and constraints of organic rice farming in Indonesia. Open Agric. 2022, 7, 284–299. [Google Scholar] [CrossRef]
- Mendoza, T.C. Evaluating the Benefits of Organic Farming in Rice Agroecosystems in the Philippines. J. Sustain. Agric. 2004, 24, 93–115. [Google Scholar] [CrossRef]
- Hossain, M.; Elahi, S.; Khondaker, M. A comparison between ecological and conventional rice farming systems in Bangladesh. In Proceedings of the 7th International Specialized Conference on Diffuse Pollution and Basin Management, Dublin, Ireland, 18–22 August 2003. [Google Scholar]
- Loc, H.H.; Van Binh, D.; Park, E.; Shrestha, S.; Dung, T.D.; Son, V.H.; Truc, N.H.T.; Mai, N.P.; Seijger, C. Intensifying saline water intrusion and drought in the Mekong Delta: From physical evidence to policy outlooks. Sci. Total Environ. 2021, 757, 143919. [Google Scholar] [CrossRef] [PubMed]
- Lavane, K.; Kumar, P.; Meraj, G.; Han, T.G.; Ngan, L.H.B.; Lien, B.T.B.; Van Ty, T.; Thanh, N.T.; Downes, N.K.; Nam, N.D.G.; et al. Assessing the effects of drought on rice yields in the Mekong Delta. Climate 2023, 11, 13. [Google Scholar] [CrossRef]
- François, M.; Moreau, R.; Sylvander, B. Question 3. How can organic farming contribute to environmental conservation? In Agriculture Biologique En Martinique; François, M., Moreau, R., Sylvander, B., Eds.; IRD Éditions: Marseille, France, 2005; pp. 250–260. [Google Scholar]
- Crippa, M.; Guizzardi, D.; Pagani, F.; Banja, M.; Muntean, M.; Schaaf, E.; Becker, W.; Monforti-Ferrario, F.; Quadrelli, R.; Risquez Martin, A.; et al. GHG Emissions of All World Countries; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar]
- Qian, H.; Zhu, X.; Huang, S.; Linquist, B.; Kuzyakov, Y.; Wassmann, R.; Minamikawa, K.; Martinez-Eixarch, M.; Yan, X.; Zhou, F.; et al. Greenhouse gas emissions and mitigation in rice agriculture. Nat. Rev. Earth Environ. 2023, 4, 716–732. [Google Scholar] [CrossRef]
- Sapkota, T.B.; Shankar, V.; Rai, M.; Jat, M.L.; Stirling, C.M.; Singh, L.K.; Jat, H.S.; Grewal, M.S. Reducing global warming potential through sustainable intensification of basmati rice-wheat systems in India. Sustainability 2017, 9, 1044. [Google Scholar] [CrossRef]
- Bacenetti, J.; Fusi, A.; Negri, M.; Bocchi, S.; Fiala, M. Organic production systems: Sustainability assessment of rice in Italy. Agric. Ecosyst. Environ. 2016, 225, 33–44. [Google Scholar] [CrossRef]
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Yodkhum, S.; Gheewala, S.H.; Sampattagul, S. Life cycle GHG evaluation of organic rice production in northern Thailand. J. Environ. Manag. 2017, 196, 217–223. [Google Scholar] [CrossRef]
- Tran, M.; Lam, O.; Long, G. Unlocking SDG Interlinkages Through Integrated Governance for SDG6 in Vietnam’s Mekong Delta. Research Brief; Living Deltas Research Hub: 2023. Available online: https://livingdeltas.org/resources/unlocking-sdg-interlinkages?rq=unlocking%20sdg (accessed on 18 November 2024).
- Setboonsarng, S.; Acharya, B.N. What Motivates Farmers to Adopt Organic Agriculture? A Case of Rainfed Organic Rice in Thailand. In Organic Agriculture and Post-2015 Development Goals; Setboonsarng, S., Markandya, A., Eds.; Asian Development Bank: Mandaluyong City, Philippines, 2015; pp. 133–154. [Google Scholar]
- Devi, L.Y.; Irham, S.; Anatasari, E.; Nurhayati, A.; Wahyu Widada, A. Key drivers of organic rice productivity in Sleman and Magelang Regencies. IOP Conf. Ser. Earth Environ. Sci. 2021, 746, 012005. [Google Scholar] [CrossRef]
- Hossain, S.T.; Sugimoto, H.; Ueno, H.; Huque, S.M.R. Adoption of organic rice for sustainable development in Bangladesh. J. Org. Syst. 2007, 2, 27–37. [Google Scholar]
- Liu, J.; Liu, H.; Liu, R.; Amin, M.G.M.; Zhai, L.; Lu, H.; Wang, H.; Zhang, X.; Zhang, Y.; Zhao, Y.; et al. Water Quality in Irrigated Paddy Systems. In Irrigation in Agroecosystems; Ondrašek, G., Ed.; IntechOpen: London, UK, 2018; p. 77339. [Google Scholar]
- Trinh, H.T.; Marcussen, H.; Hansen, H.C.B.; Le, G.T.; Duong, H.T.; Ta, N.T.; Nguyen, T.Q.; Hansen, S.; Strobel, B.W. Screening of inorganic and organic contaminants in floodwater in paddy fields of Hue and Thanh Hoa in Vietnam. Environ. Sci. Pollut. Res. 2017, 24, 7348–7358. [Google Scholar] [CrossRef] [PubMed]
- Anyusheva, M.; Lamers, M.; La, N.; Nguyen, V.V.; Streck, T. Fate of Pesticides in Combined Paddy Rice—Fish Pond Farming Systems in Northern Vietnam. J. Environ. Qual. 2012, 41, 515–525. [Google Scholar] [CrossRef]
- Braun, G.; Braun, M.; Kruse, J.; Amelung, W.; Renaud, F.G.; Khoi, C.M.; Duong, M.V.; Sebesvari, Z. Pesticides and antibiotics in permanent rice, alternating rice-shrimp and permanent shrimp systems of the coastal Mekong Delta, Vietnam. Environ. Int. 2019, 127, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Duong, H.V.; Nguyen, T.C.; Nguyen, X.T.; Nguyen, M.Q.; Nguyen, P.H.; Vo, T.T. Evaluating the Presence of Pesticide Residues in Organic Rice Production in An Giang Province, Vietnam. J. Sustain. Dev. 2022, 15, 49–64. [Google Scholar] [CrossRef]
- Wahyudi, D.; Ardiansyah, A.; Asiah, N.; Madonna, S. Comparative study on agrochemical residue on rice cultivation in Tasikmalaya, Indonesia: Organic versus conventional. Future Food 2020, 8, 1–12. [Google Scholar]
- Larsen, A.E.; Noack, F. Identifying the landscape drivers of agricultural insecticide use leveraging evidence from 100,000 fields. Proc. Natl. Acad. Sci. USA 2017, 114, 5473–5478. [Google Scholar]
- Cheng, C.; Zhang, F.; Shi, J.; Kung, H. What is the relationship between land use and surface water quality? A review and prospects from remote sensing perspective. Environ. Sci. Pollut. Res. 2022, 29, 56887–56907. [Google Scholar] [CrossRef]
- VoPham, T.; Wilson, J.P.; Ruddell, D.; Rashed, T.; Brooks, M.M.; Yuan, J.; Talbott, E.; Chang, C.H.; Weissfeld, J.L. Linking pesticides and human health: A geographic information system (GIS) and Landsat remote sensing method to estimate agricultural pesticide exposure. Appl. Geogr. 2015, 62, 171–181. [Google Scholar] [CrossRef]
- Pinichka, C.; Issarapan, P.; Siriwong, W.; Kongtip, P.; Chotpantarat, S.; Bundhamcharoen, K. Application of Geographic Information Systems and Remote Sensing for Pesticide Exposure and Health Risk Assessment in Thailand. Outbreak Surveill. Investig. Response J. 2019, 12, 75–83. [Google Scholar]
- Braun, G.; Sebesvari, Z.; Braun, M.; Kruse, J.; Amelung, W.; An, N.; Renaud, F. Does sea-dyke construction affect the spatial distribution of pesticides in agricultural soils?—A case study from the Red River Delta, Vietnam. Environ. Pollut. 2018, 243, 890–899. [Google Scholar] [CrossRef]
- Livsey, J.; Da, C.T.; Scaini, A.; Lan, T.H.P.; Long, T.X.; Berg, H.; Manzoni, S. Floods, soil and food—Interactions between water management and rice production within An Giang province, Vietnam. Agric. Ecosyst. Environ. 2021, 320, 107589. [Google Scholar] [CrossRef]
- Hou, L.; Liu, P.; Huang, J.; Deng, X. The influence of risk preferences, knowledge, land consolidation, and landscape diversification on pesticide use. Agric. Econ. 2020, 5, 759–776. [Google Scholar] [CrossRef]
- Piadozo, M.E.S.; Lantican, F.A.; Pabuayon, I.M.; Quicoy, A.R.; Suyat, A.M.; Maghirang, P.K.B. Rice farmers’ concept and awareness of organic agriculture: Implications for sustainability of Philippine organic agriculture program. J. Int. Soc. Southeast Asian Agric. Sci. 2014, 20, 142–156. [Google Scholar]
- Sapkota, B.K.; Subedi, A.P.; Tripathi, K.M.; Dhakal, S.C. Economics of organic vs inorganic rice production: A Case of Chitwan district of Nepal. J. Nepal Agric. Res. Counc. 2021, 7, 109–121. [Google Scholar] [CrossRef]
- Mahdavi, H.; Allahyari, M.S.; Damalas, C.A.; Dunn, E.S. Drivers and barriers for organic rice (Oryza sativa L.) production in northern Iran: Experts’ consensus using the Delphi method. Biol. Agric. Hortic. 2020, 36, 96–106. [Google Scholar] [CrossRef]
- Hasanah, Y.; Hanum, H.; Rusmarilin, H. Organic Rice Cultivation System to Support Food Security. J. St. Transf. 2020, 2, 47–54. [Google Scholar]
- Woranoot, I. Implications of Organic Farming in Development: Experiences from Organic Rice Farms in Northeastern Thailand. Master’s Thesis, Erasmus University, Rotterdam, The Netherlands, 2009. [Google Scholar]
- Colombo, S.L.; Chiarella, S.G.; Lefrançois, C.; Fradin, J.; Raffone, A.; Simione, L. Why Knowing about Climate Change Is Not Enough to Change: A Perspective Paper on the Factors Explaining the Environmental Knowledge-Action Gap. Sustainability 2023, 15, 14859. [Google Scholar] [CrossRef]
- Lal, A.E.; Mazhar, S.H.; Jahanara, J. Study of Socio-Economic Condition and Constraints faced by the Rice Growing Farmers in Adoption of Organic and Bio-Fertiliser in Bilaspur District of Chhattisgarh. Int. J. Adv. Agric. Sci. Technol. 2021, 8, 45–47. [Google Scholar]
- Orlando, F.; Alali, S.; Vaglia, V.; Pagliarino, E.; Baig, J.; Bocchi, S. Participatory approach for developing knowledge on organic rice farming: Management strategies and productive performance. Agric. Syst. 2020, 178, 102739. [Google Scholar] [CrossRef]
- Boun My, K.; Nguyen-Van, P.; Kim Cuong Pham, T.; Stenger, A.; Tiet, T.; To-The, N. Drivers of organic farming: Lab-in-the-field evidence of the role of social comparison and information nudge in networks in Vietnam. Ecol. Econ. 2022, 196, 107401. [Google Scholar] [CrossRef]
- Lu, C.-F.; Cheng, C.-Y. Exploring the distribution of organic farming: Findings from certified rice in Taiwan. Ecol. Econ. 2023, 212, 107915. [Google Scholar] [CrossRef]
- Suminah, S.; Sundari, M.T.; Wijianto, A.; Rusdiyana, E. Farmers attitudes to organic rice cultivation at the industrial revolution era. IOP Conf. Ser. Earth Environ. Sci. 2022, 1001, 012031. [Google Scholar]
- Parajuli, S.; Shrestha, J.; Ghimire, S. Organic farming in Nepal: A viable option for food security and agricultural sustainability. Arch. Agric. Environ. Sci. 2020, 5, 223–230. [Google Scholar] [CrossRef]
- Beban, A. Is Organic Agriculture a Viable Strategy in Contexts of Rapid Agrarian Transition? Evidence from Cambodia. J. Agric. Food Syst. Community Dev. 2014, 4, 131–147. [Google Scholar] [CrossRef]
- Rubinos, R.; Jalipa, A.T.; Bayacag, P. Comparative economic study of organic and conventional rice farming in Magsaysay, Davao Del Sur. In Proceedings of the Philippine Statistical Association 10th National Convention on Statistics, Manila, Philippines, 1 October 2007. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Connor, J.; Spangenberg, J.H.; Nguyen, N.H.; Emidi, G.; Kappenberg, A.; Klamann, L.; Kupfer, N.; Ky, H.; Nga, N.T.T.; Khoi, C.M.; et al. Organic Rice Transition in a Changing Environment: Linking Farmers’ Benefits to Adaptation and Mitigation. Land 2025, 14, 2074. https://doi.org/10.3390/land14102074
O’Connor J, Spangenberg JH, Nguyen NH, Emidi G, Kappenberg A, Klamann L, Kupfer N, Ky H, Nga NTT, Khoi CM, et al. Organic Rice Transition in a Changing Environment: Linking Farmers’ Benefits to Adaptation and Mitigation. Land. 2025; 14(10):2074. https://doi.org/10.3390/land14102074
Chicago/Turabian StyleO’Connor, Jack, Joachim H. Spangenberg, Ngan Ha Nguyen, Gioia Emidi, Arne Kappenberg, Linda Klamann, Nick Kupfer, Huynh Ky, Nguyen Thi Thu Nga, Chau Minh Khoi, and et al. 2025. "Organic Rice Transition in a Changing Environment: Linking Farmers’ Benefits to Adaptation and Mitigation" Land 14, no. 10: 2074. https://doi.org/10.3390/land14102074
APA StyleO’Connor, J., Spangenberg, J. H., Nguyen, N. H., Emidi, G., Kappenberg, A., Klamann, L., Kupfer, N., Ky, H., Nga, N. T. T., Khoi, C. M., Giang, C. D. A., Ott, J., Thiele, B., Wu, B., & Weihermüller, L. (2025). Organic Rice Transition in a Changing Environment: Linking Farmers’ Benefits to Adaptation and Mitigation. Land, 14(10), 2074. https://doi.org/10.3390/land14102074