Estimation and Prediction of Water Conservation Capacity Based on PLUS–InVEST Model: A Case Study of Baicheng City, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Preparation
2.3. Methods
2.3.1. PLUS Model
- (1)
- Model input
- (2)
- Scenario and Parameters
- (3)
- Accuracy verification
2.3.2. InVEST Model
- (1)
- The InVEST water yield model
- (2)
- Calculation of water conservation
2.3.3. Spatial Relevance Evaluation Based on Grid
3. Results
3.1. Spatial-Temporal Changes in Land Use in Baicheng City from 2000 to 2020
3.2. Multi-Scenario Simulation of LUCC
3.3. Spatial and Temporal Variation Pattern of Water Yield
3.4. Spatial and Temporal Variation Pattern of Water Conservation
3.5. Spatial Correlation of Water Conservation
4. Discussion
4.1. Spatial-Temporal Pattern and Influencing Factors of Water Conservation Service Function in Baicheng City
4.2. Land Use Change and Water Conservation Prediction Under Different Scenarios
4.3. Suggestions for Improving the Water Conservation Function
4.4. Limitations of This Study
5. Conclusions
- (1)
- From 2000 to 2020, the average annual water conservation capacity of Baicheng City was 7.08 mm, which was greatly affected by climatic factors. The highest water conservation capacity occurred in 2020, and the lowest in 2001. Water conservation levels were high in the northwest and northeast of Baicheng City, and low in the central and southwest regions. Areas with high vegetation cover, such as wetlands and grasslands, exhibited higher water conservation capacity.
- (2)
- Land use in Baicheng City in 2030 was simulated under three scenarios. Under NDS and CPS, croplands increased substantially. There was a slight increase in croplands under EPS, and a greater increase in forestlands and water areas.
- (3)
- The multi-scenario simulation results revealed the potential changes in water conservation under different land use policies. The EPS achieved a relative balance between cropland and ecological land, making it the most suitable option for Baicheng City’s current development planning.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Ecol. Econ. 1998, 25, 3–15, reprinted in Nature 1997, 387, 253. [Google Scholar] [CrossRef]
- Wu, C.; Gao, P.; Xu, R.; Mu, X.; Sun, W. Influence of landscape pattern changes on water conservation capacity: A case study in an arid/semiarid region of China. Ecol. Indic. 2024, 163, 112082. [Google Scholar] [CrossRef]
- Hu, W.; Li, G.; Gao, Z.; Jia, G.; Wang, Z.; Li, Y. Assessment of the impact of the Poplar Ecological Retreat Project on water conservation in the Dongting Lake wetland region using the InVEST model. Sci. Total Environ. 2020, 733, 139423. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef]
- Li, P.; Qian, H. Water resources research to support a sustainable China. Int. J. Water Resour. Dev. 2018, 34, 327–336. [Google Scholar] [CrossRef]
- Wu, J.H.; Sun, Z.C. Evaluation of Shallow Groundwater Contamination and Associated Human Health Risk in an Alluvial Plain Impacted by Agricultural and Industrial Activities, Mid-west China. Expo. Health 2016, 8, 311–329. [Google Scholar] [CrossRef]
- Li, P.; Tian, R.; Xue, C.; Wu, J. Progress, opportunities, and key fields for groundwater quality research under the impacts of human activities in China with a special focus on western China. Environ. Sci. Pollut. Res. 2017, 24, 13224–13234. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.; Wang, D.; Du, S. Source Identification and Degradation Pathway of Multiple Persistent Organic Pollutants in Groundwater at an Abandoned Chemical Site in Hebei, China. Expo Health 2017, 9, 135–141. [Google Scholar] [CrossRef]
- Yang, L.E.; Chan, F.K.S.; Scheffran, J. Climate change, water management and stakeholder analysis in the Dongjiang River basin in South China. Int. J. Water Resour. Dev. 2018, 34, 166–191. [Google Scholar] [CrossRef]
- Li, B.; Qin, L.J.; Wang, J.Q.; Dang, Y.C.; He, H.S. Multi-source data-based spatial variations of blue and green water footprints for rice production in Jilin Province, China. Environ. Sci. Pollut. Res. 2021, 28, 38106–38116. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, J.; Dai, C.; Zhang, G.; Wu, Y. Sustainable development of groundwater resources under the large-scale conversion of dry land into rice fields. Agric. Water Manag. 2024, 298, 108851. [Google Scholar] [CrossRef]
- Jiang, B.; Wong, C.P.; Chen, Y.Y.; Cui, L.J.; Ouyang, Z.Y. Advancing Wetland Policies Using Ecosystem Services—China’s Way Out. Wetlands 2015, 35, 983–995. [Google Scholar] [CrossRef]
- Awotwi, A.; Anornu, G.K.; Quaye-Ballard, J.A.; Annor, T.; Forkuo, E.K.; Harris, E.; Agyekum, J.; Terlabie, J.L. Water balance responses to land-use/land-cover changes in the Pra River Basin of Ghana, 1986–2025. Catena 2019, 182, 104129. [Google Scholar] [CrossRef]
- Awotwi, A.; Yeboah, F.; Kumi, M. Assessing the impact of land cover changes on water balance components of White Volta Basin in West Africa. Water Environ. J. 2015, 29, 259–267. [Google Scholar] [CrossRef]
- Zhu, K.; Cheng, Y.F.; Zhou, Q.; Kápolnai, Z.; Dávid, L.D. The contributions of climate and land use/cover changes to water yield services considering geographic scale. Heliyon 2023, 9, e20115. [Google Scholar] [CrossRef]
- Augustynczik, A.L.D.; Yousefpour, R. Assessing the synergistic value of ecosystem services in European beech forests. Ecosyst. Serv. 2021, 49, 101264. [Google Scholar] [CrossRef]
- Abdulkareem, J.H.; Pradhan, B.; Sulaiman, W.N.A.; Jamil, N.R. Prediction of spatial soil loss impacted by long-term land-use/land-cover change in a tropical watershed. Geosci. Front. 2019, 10, 389–403. [Google Scholar] [CrossRef]
- Liu, W.; Wang, L.; Zhou, J.; Li, Y.; Sun, F.; Fu, G.; Li, X.; Sang, Y.-F. A worldwide evaluation of basin-scale evapotranspiration estimates against the water balance method. J. Hydrol. 2016, 538, 82–95. [Google Scholar] [CrossRef]
- Daneshi, A.; Brouwer, R.; Najafinejad, A.; Panahi, M.; Zarandian, A.; Maghsood, F.F. Modelling the impacts of climate and land use change on water security in a semi-arid forested watershed using InVEST. J. Hydrol. 2021, 593, 125621. [Google Scholar] [CrossRef]
- Capriolo, A.; Boschetto, R.G.; Mascolo, R.A.; Balbi, S.; Villa, F. Biophysical and economic assessment of four ecosystem services for natural capital accounting in Italy. Ecosyst. Serv. 2020, 46, 101207. [Google Scholar] [CrossRef]
- Sun, G.; McNulty, S.G.; Amatya, D.M.; Skaggs, R.W.; Swift, L.W.; Shepard, J.P.; Riekerk, H. A comparison of the watershed hydrology of coastal forested wetlands and the mountainous uplands in the Southern US. J. Hydrol. 2002, 263, 92–104. [Google Scholar] [CrossRef]
- Redhead, J.W.; Stratford, C.; Sharps, K.; Jones, L.; Ziv, G.; Clarke, D.; Oliver, T.H.; Bullock, J.M. Empirical validation of the InVEST water yield ecosystem service model at a national scale. Sci. Total Environ. 2016, 569, 1418–1426. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.J.; Wu, H.Q.; Fan, X.; Jia, H.t.; Dong, T.; He, P.; Baqa, M.F.; Jiang, P. Trade-offs and synergies of multiple ecosystem services for different land use scenarios in the Yili River Valley, China. Sustainability 2021, 13, 1577. [Google Scholar] [CrossRef]
- Moreira, M.; Fonseca, C.; Vergílio, M.; Calado, H.; Gil, A. Spatial assessment assessment of habitat conservation status in a Macaronesian island based on the InVEST model: A case study of Pico Island (Azores, Portugal). Land Use Policy 2018, 78, 637–649. [Google Scholar] [CrossRef]
- Xu, X.; Kong, W.; Wang, L.; Wang, T.; Luo, P.; Cui, J. A novel and dynamic land use/cover change research framework based on an improved PLUS model and a fuzzy multiobjective programming model. Ecol. Inform. 2024, 80, 102460. [Google Scholar] [CrossRef]
- Peng, K.; Jiang, W.; Deng, Y.; Liu, Y.; Wu, Z.; Chen, Z. Simulating wetland changes under different scenarios based on integrating the random forest and CLUE-S models: A case study of Wuhan Urban Agglomeration. Ecol. Indic. 2020, 117, 106671. [Google Scholar] [CrossRef]
- Fu, X.; Wang, X.; Yang, Y.J. Deriving suitability factors for CA-Markov land use simulation model based on local historical data. J. Environ. Manag. 2018, 206, 10–19. [Google Scholar] [CrossRef]
- Liu, G.; Jin, Q.; Li, J.; Li, L.; He, C.; Huang, Y.; Yao, Y. Policy factors impact analysis based on remote sensing data and the CLUE-S model in the Lijiang River Basin, China. Catena 2017, 158, 286–297. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Li, X.; Fu, J.; Jiang, D.; Lin, G.; Cao, C. Land use optimization in Ningbo City with a coupled GA and PLUS model. J. Clean. Prod. 2022, 375, 134004. [Google Scholar] [CrossRef]
- Chen, G.; Li, X.; Liu, X.; Chen, Y.; Liang, X.; Leng, J.; Xu, X.; Liao, W.; Qiu, Y.a.; Wu, Q.; et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 2020, 11, 537. [Google Scholar] [CrossRef]
- Bian, J.M.; Tang, J.; Zhang, L.S.; Ma, H.Y.; Zhao, J. Arsenic distribution and geological factors in the western Jilin province, China. J. Geochem. Explor. 2012, 112, 347–356. [Google Scholar] [CrossRef]
- Li, T.; Bian, J.; Ruan, D.; Xu, L.; Zhang, S. Groundwater health risk assessment and its temporal and spatial evolution based on trapezoidal fuzzy number-Monte Carlo stochastic simulation: A case study in western Jilin province. Ecotoxicol. Environ. Saf. 2024, 282, 116736. [Google Scholar] [CrossRef]
- Zhu, Y.; Yu, Q.; Luo, Q.; Zhang, H.; Zhao, J.; Ju, Z.; Du, Y.; Yang, Y. Impacts of climate change on suitability zonation for potato cultivation in Jilin Province, Northeast China. Sci. Rep. 2021, 11, 13103. [Google Scholar] [CrossRef]
- Chai, Y.; Guo, J.; Chai, S.; Cai, J.; Xue, L.; Zhang, Q. Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng-Songyuan area, Jilin Province, Northeast China. Chemosphere 2015, 134, 67–75. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Wang, B.; Sun, Y.; Cui, G.; Liang, Z. Analysis of spatial-temporal variation of the saline-sodic soil in the west of Jilin Province from 1989 to 2019 and influencing factors. Catena 2022, 217, 106492. [Google Scholar] [CrossRef]
- Yu, Y.; Sun, X.; Wang, J.; Zhang, J. Using InVEST to evaluate water yield services in Shangri-La, Northwestern Yunnan, China. PeerJ 2022, 10, e12804. [Google Scholar] [CrossRef] [PubMed]
- Duolaiti, X.; Kasimu, A.; Reheman, R.; Aizizi, Y.; Wei, B. Assessment of Water Yield and Water Purification Services in the Arid Zone of Northwest China: The Case of the Ebinur Lake Basin. Land 2023, 12, 533. [Google Scholar] [CrossRef]
- Li, M.; Liang, D.; Xia, J.; Song, J.; Cheng, D.; Wu, J.; Cao, Y.; Sun, H.; Li, Q. Evaluation of water conservation function of Danjiang River Basin in Qinling Mountains, China based on InVEST model. J. Environ. Manag. 2021, 286, 112212. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Huang, X.; Liu, J.; Peng, S.; Huang, B. The impact of multi-scenario land use change on the water conservation in central Yunnan urban agglomeration, China. Ecol. Indic. 2023, 147, 109922. [Google Scholar] [CrossRef]
- Nie, W.; Bin Xu, B.; Yang, F.; Shi, Y.; Liu, B.; Wu, R.; Lin, W.; Pei, H.; Bao, Z. Simulating future land use by coupling ecological security patterns and multiple scenarios. Sci. Total Environ. 2023, 859, 160262. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Wang, Y.; Liu, Z. Evaluating potential impacts of land use changes on water supply-demand under multiple development scenarios in dryland region. J. Hydrol. 2022, 610, 127811. [Google Scholar] [CrossRef]
- Ji, W.; Wang, Z.; Zhang, H.; Zhang, B.; Yang, F.; Yu, Z.; Li, H.; He, M.; Lv, H.; Feng, Z. Carbon storage change, driving mechanism, and scenario prediction in Beijing-Tianjin-Hebei region for regional carbon neutral target: From history to future. Sci. Total Environ. 2025, 993, 180028. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Li, R.; Liu, M.; Cao, Y.; Yang, J.; Wei, Y. Analysis of Carbon Storage Changes in the Chengdu-Chongqing Region Based on the PLUS-InVEST-MGWR Model. Land 2025, 14, 1651. [Google Scholar] [CrossRef]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Medica 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.; Chi, W.; Jin, B.; Zhang, X.; Wang, Y. A New Perspective on Functional Zoning by Integrating Coupling Coordination Analysis of Ecological Environment and Urbanization Level: A Case Study of Inner Mongolia. Land 2025, 14, 1692. [Google Scholar] [CrossRef]
- Hu, W.; Li, G.; Li, Z. Spatial and temporal evolution characteristics of the water conservation function and its driving factors in regional lake wetlands—Two types of homogeneous lakes as examples. Ecol. Indic. 2021, 130, 108069. [Google Scholar] [CrossRef]
- Sterling, S.M.; Ducharne, A.; Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Change 2013, 3, 385–390. [Google Scholar] [CrossRef]
- Jiao, W.; Wang, L.; Smith, W.K.; Chang, Q.; Wang, H.; D’Odorico, P. Observed increasing water constraint on vegetation growth over the last three decades. Nat. Commun. 2021, 12, 3777. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, H.; Ren, C.; Sun, D.; Yang, J. Optimization allocation of irrigation water resources based on crop water requirement under considering effective precipitation and uncertainty. Agric. Water Manage. 2020, 239, 106264. [Google Scholar] [CrossRef]
- Moses, O.; Hambira, W.L. Effects of climate change on evapotranspiration over the Okavango Delta water resources. Phys. Chem. Earth 2018, 105, 98–103. [Google Scholar] [CrossRef]
- Tan, X.; Gan, T.Y. Contribution of human and climate change impacts to changes in streamflow of Canada. Sci. Rep. 2015, 5, 17767. [Google Scholar] [CrossRef]
- Shen, X.; Liu, Y.; Liu, B.; Zhang, J.; Wang, L.; Lu, X.; Jiang, M. Effect of shrub encroachment on land surface temperature in semi-arid areas of temperate regions of the Northern Hemisphere. Agric. For. Meteorol. 2022, 320, 108943. [Google Scholar] [CrossRef]
- Jia, G.; Hu, W.; Zhang, B.; Li, G.; Shen, S.; Gao, Z.; Li, Y. Assessing impacts of the Ecological Retreat project on water conservation in the Yellow River Basin. Sci. Total Environ. 2022, 828, 154483. [Google Scholar] [CrossRef]
- Liu, Y.; Jing, Y.; Han, S. Multi-scenario simulation of land use/land cover change and water yield evaluation coupled with the GMOP-PLUS-InVEST model: A case study of the Nansi Lake Basin in China. Ecol. Indic. 2023, 155, 110926. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, C.; Li, L.; Yun, W.; Ma, J.; Gao, L. Delimitating the Ecological Spaces for Water Conservation Services in Jilin Province of China. Land 2021, 10, 1029. [Google Scholar] [CrossRef]
- Gutiérrez Rodríguez, L.; Hogarth, N.J.; Zhou, W.; Xie, C.; Zhang, K.; Putzel, L. China’s conversion of cropland to forest program: A systematic review of the environmental and socioeconomic effects. Environ. Evid. 2016, 5, 21. [Google Scholar] [CrossRef]
- Liu, J.; Liu, B.; Wu, L.; Miao, H.; Liu, J.; Jiang, K.; Ding, H.; Gao, W.; Liu, T. Prediction of land use for the next 30 years using the PLUS model’s multi-scenario simulation in Guizhou Province, China. Sci. Rep. 2024, 14, 13143. [Google Scholar] [CrossRef]
- Pan, T.; Zuo, L.; Zhang, Z.; Zhao, X.; Sun, F.; Zhu, Z.; Liu, Y. Impact of Land Use Change on Water Conservation: A Case Study of Zhangjiakou in Yongding River. Sustainability 2021, 13, 22. [Google Scholar] [CrossRef]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Su, C.; Fu, B. Evolution of ecosystem services in the Chinese Loess Plateau under climatic and land use changes. Glob. Planet. Change 2013, 101, 119–128. [Google Scholar] [CrossRef]
- Li, C.; Fu, B.; Wang, S.; Stringer, L.C.; Wang, Y.; Li, Z.; Liu, Y.; Zhou, W. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2021, 2, 858–873. [Google Scholar] [CrossRef]
- Cao, S.X.; Chen, L.; Shankman, D.; Wang, C.M.; Wang, X.B.; Zhang, H. Excessive reliance on afforestation in China’s arid and semi-arid regions: Lessons in ecological restoration. Earth-Sci. Rev. 2011, 104, 240–245. [Google Scholar] [CrossRef]
- Cao, S.; Zhang, J.; Chen, L.; Zhao, T. Ecosystem water imbalances created during ecological restoration by afforestation in China, and lessons for other developing countries. J. Environ. Manag. 2016, 183, 843–849. [Google Scholar] [CrossRef]











| Data Type | The Name of Data | Year | The Source of the Data |
|---|---|---|---|
| Basic data | Land use data | 2000, 2010, 2020 | Resource and Environment Science Data Platform of Chinese Academy of Sciences (http://www.resdc.cn/, accessed on 10 January 2025) |
| Natural conditions | Daily temperature | 2000–2020 | National Meteorological Information Center of China (http://data.cma.cn/, accessed on 11 January 2025) |
| Daily precipitation | 2000–2020 | National Meteorological Information Center of China (http://data.cma.cn/, accessed on 11 January 2025) | |
| Potential evapotranspiration | 2000–2020 | National Meteorological Information Center of China (http://data.cma.cn/, accessed on 11 January 2025) | |
| Soil type | - | China Soil Data Set (1:1 million) | |
| Plant available water content | - | One global AWC raster is provided by ISRIC, (https://data.isric.org:443/geonetwork/srv/eng/catalog.search, accessed on 10 January 2025). | |
| Elevation | - | Geospatial data cloud (https://www.gscloud.cn, accessed on 10 January 2025) | |
| Accessibility factor | Distance from main water, distance from main first-class road, distance from main second-class road, distance from main third-class road | 2010, 2020 | Resource and Environment Science Data Platform of Chinese Academy of Sciences (http://www.resdc.cn/, accessed on 15 January 2025) |
| Socio-economic data | Population density, gross domestic product (GDP) | 2010, 2020 | Resource and Environment Science Data Platform of Chinese Academy of Sciences (http://www.resdc.cn/, accessed on 15 January 2025) |
| Lucode | LULC_Desc | LULC_Veg | Kc | Root_Depth (mm) |
|---|---|---|---|---|
| 1 | Cropland | 1 | 0.65 | 350 |
| 2 | Forestland | 1 | 0.95 | 3000 |
| 3 | Grassland | 1 | 0.65 | 500 |
| 4 | Water | 0 | 1 | 1 |
| 5 | Construction land | 0 | 0.3 | 1 |
| 6 | Unused land | 0 | 0.3 | 1 |
| 7 | Wetland | 1 | 0.65 | 400 |
| NDS | CPS | EPS | |||||||||||||||||||
| A | B | C | D | E | F | G | A | B | C | D | E | F | G | A | B | C | D | E | F | G | |
| A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| B | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| C | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
| D | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
| E | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| F | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| G | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
| Different Land Simulation Scenarios | Land Use | |||||
|---|---|---|---|---|---|---|
| Cropland | Forestland | Grassland | Wetland | Construction Land | Unused Land | |
| Average | 1080.80 | 158.51 | 318.06 | 172.80 | 23.02 | 73.86 |
| NDS | 1105.09 | 163.34 | 308.43 | 163.90 | 23.96 | 70.89 |
| CPS | 1088.89 | 175.35 | 310.53 | 171.14 | 23.17 | 70.70 |
| EPS | 1120.24 | 160.13 | 305.53 | 163.17 | 23.19 | 70.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, R.; Wu, Y.; Li, X. Estimation and Prediction of Water Conservation Capacity Based on PLUS–InVEST Model: A Case Study of Baicheng City, China. Land 2025, 14, 1993. https://doi.org/10.3390/land14101993
Duan R, Wu Y, Li X. Estimation and Prediction of Water Conservation Capacity Based on PLUS–InVEST Model: A Case Study of Baicheng City, China. Land. 2025; 14(10):1993. https://doi.org/10.3390/land14101993
Chicago/Turabian StyleDuan, Rumeng, Yanfeng Wu, and Xiaoyu Li. 2025. "Estimation and Prediction of Water Conservation Capacity Based on PLUS–InVEST Model: A Case Study of Baicheng City, China" Land 14, no. 10: 1993. https://doi.org/10.3390/land14101993
APA StyleDuan, R., Wu, Y., & Li, X. (2025). Estimation and Prediction of Water Conservation Capacity Based on PLUS–InVEST Model: A Case Study of Baicheng City, China. Land, 14(10), 1993. https://doi.org/10.3390/land14101993

