Geological Disaster Susceptibility and Risk Assessment in Complex Mountainous Terrain: A Case Study from Southern Ningxia, China
Abstract
1. Introduction
2. Study Area, Data, and Methodology
2.1. Study Area
2.2. Data Sources
2.3. Research Methods
2.3.1. Selection of Risk Evaluation Factor Indicators
2.3.2. Introduction to the Disaster Evaluation Model
Principles of the Information Quantity Method
Fundamentals of Random Forest (RF)
XGBoost Classification Algorithm
Information Quantity Method Coupling with the Machine Learning Model
2.3.3. Introduction to Evaluation Analysis Methods
Correlation and Sample Set Selection
Optimal Model Analysis and Selection
Evaluation Indicators and Methods
3. Results
3.1. Geohazard Susceptibility Assessment
3.1.1. Quantitative Evaluation Factor Analysis
3.1.2. Susceptibility Evaluation Results
3.2. Geohazard Hazard Assessment
3.3. Geological Hazard Vulnerability Assessment
3.3.1. Selection and Quantification of Evaluation Indicators
3.3.2. Evaluation Indicators and Methods
3.3.3. Partition Diagram of Vulnerability Evaluation
3.4. Risk Assessment of Geological Hazards
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
District or County | Township | Road Density Normalization | Population Density Normalization | GDP Density Normalization | Arable Land Density Normalization |
---|---|---|---|---|---|
Haiyuan County | Gaoya Township | 0.070 | 0.027 | 0.022 | 0.637 |
Xian Town | 0.024 | 0.007 | 0.006 | 0.487 | |
Jiatang Township | 0.039 | 0.010 | 0.008 | 0.688 | |
Zhengqi Township | 0.016 | 0.004 | 0.004 | 0.609 | |
Hongyang Township | 0.023 | 0.003 | 0.002 | 0.349 | |
Sheep Farm | 0.010 | 0.001 | 0.001 | 0.403 | |
Qiyin Town | 0.024 | 0.014 | 0.012 | 0.483 | |
Sanhe Town | 0.061 | 0.028 | 0.023 | 0.524 | |
Jiucai Township | 0.017 | 0.003 | 0.002 | 0.665 | |
Guanzhuang Township | 0.014 | 0.005 | 0.004 | 0.889 | |
Guanqiao Township | 0.011 | 0.005 | 0.004 | 0.027 | |
Shidian Township | 0.026 | 0.006 | 0.005 | 0.644 | |
Caowa Township | 0.015 | 0.003 | 0.002 | 0.601 | |
Lijun Township | 0.031 | 0.004 | 0.003 | 0.285 | |
Liwang Town | 0.020 | 0.013 | 0.011 | 0.561 | |
Shutai Township | 0.008 | 0.005 | 0.004 | 0.629 | |
Haicheng Town | 0.070 | 0.018 | 0.015 | 0.792 | |
Gancheng Township | 0.011 | 0.002 | 0.002 | 0.444 | |
Conservation Forest General Field | 0.036 | 0.001 | 0.001 | 0.039 | |
Old Town Management Office | 0.341 | 0.399 | 0.329 | 0.643 | |
Industrial Logistics Park | 0.388 | 0.001 | 0.001 | 0.494 | |
Jingyuan County | Xingsheng Township | 0.046 | 0.014 | 0.011 | 0.216 |
Dawan Township | 0.050 | 0.009 | 0.007 | 0.403 | |
Xinmin Township | 0.051 | 0.009 | 0.007 | 0.291 | |
Xiangshui Town | 0.081 | 0.029 | 0.023 | 0.204 | |
Huanghua Township | 0.058 | 0.007 | 0.005 | 0.293 | |
Liupanshan Town | 0.051 | 0.004 | 0.003 | 0.280 | |
Jingheyuan Town | 0.078 | 0.012 | 0.009 | 0.277 | |
Longde County | Chengguan Town | 0.122 | 0.107 | 0.108 | 0.391 |
Fengling Township | 0.048 | 0.009 | 0.010 | 0.732 | |
Haoshui Township | 0.070 | 0.006 | 0.006 | 0.543 | |
Shanhe Township | 0.041 | 0.001 | 0.001 | 0.001 | |
Zhangcheng Township | 0.016 | 0.013 | 0.013 | 0.943 | |
Yanghe Township | 0.039 | 0.023 | 0.023 | 0.873 | |
Shatang Town | 0.098 | 0.015 | 0.015 | 0.730 | |
Guanzhuang Township | 0.044 | 0.013 | 0.013 | 0.426 | |
Chenjin Township | 0.074 | 0.007 | 0.007 | 0.466 | |
Dian’an Township | 0.041 | 0.004 | 0.004 | 0.597 | |
Wenbao Township | 0.076 | 0.017 | 0.017 | 0.841 | |
Shenlin Township | 0.115 | 0.013 | 0.013 | 0.945 | |
Liancai Town | 0.093 | 0.021 | 0.021 | 0.952 | |
Liupanshan Street | 1.000 | 0.835 | 0.590 | 0.009 | |
Pengyang County | Xinji Township | 0.029 | 0.013 | 0.019 | 0.788 |
Wangwa Town | 0.017 | 0.007 | 0.010 | 0.830 | |
Baiyang Town | 0.069 | 0.038 | 0.054 | 0.781 | |
Honghe Township | 0.032 | 0.010 | 0.015 | 0.767 | |
Luowa Township | 0.009 | 0.003 | 0.005 | 0.386 | |
Fengzhuang Township | 0.023 | 0.002 | 0.003 | 0.759 | |
Gucheng Town | 0.042 | 0.009 | 0.012 | 0.545 | |
Chengyang Township | 0.050 | 0.008 | 0.012 | 0.714 | |
Mengyuan Township | 0.019 | 0.005 | 0.006 | 0.793 | |
Xiaocha Township | 0.019 | 0.002 | 0.003 | 0.674 | |
Jiaocha Township | 0.001 | 0.003 | 0.004 | 0.523 | |
Caomiao Township | 0.047 | 0.006 | 0.008 | 0.877 | |
Tongxin County | Xiamaguan Town | 0.073 | 0.009 | 0.010 | 0.474 |
Zhangjiayuan Township | 0.006 | 0.001 | 0.001 | 0.412 | |
Tianlaozhuang Township | 0.007 | 0.001 | 0.001 | 0.372 | |
Magaozhuang Township | 0.001 | 0.002 | 0.002 | 0.411 | |
Hexi Town | 0.031 | 0.014 | 0.015 | 0.295 | |
Wangtuan Town | 0.000 | 0.011 | 0.012 | 0.530 | |
Weizhou Town | 0.030 | 0.006 | 0.006 | 0.362 | |
Yuwang Town | 0.010 | 0.005 | 0.005 | 0.434 | |
Dingtang Town | 0.060 | 0.038 | 0.042 | 0.496 | |
Xinglong Township | 0.026 | 0.010 | 0.011 | 0.182 | |
Yuhai Town | 0.139 | 0.155 | 0.168 | 0.689 | |
Xiji County | Xinglong Town | 0.029 | 0.027 | 0.020 | 0.885 |
Jiqiang Town | 0.099 | 0.069 | 0.053 | 0.740 | |
Jiangtai Township | 0.035 | 0.025 | 0.019 | 0.909 | |
Majian Township | 0.081 | 0.008 | 0.006 | 0.637 | |
Malian Township | 0.004 | 0.020 | 0.015 | 1.000 | |
Huoshizhai Township | 0.013 | 0.007 | 0.005 | 0.230 | |
Xitan Township | 0.062 | 0.011 | 0.008 | 0.964 | |
Zhenhu Township | 0.109 | 0.010 | 0.008 | 0.714 | |
Wangmin Township | 0.056 | 0.009 | 0.007 | 0.746 | |
Tianping Township | 0.050 | 0.005 | 0.004 | 0.718 | |
Baiya Township | 0.005 | 0.005 | 0.003 | 0.619 | |
Xiaohe Township | 0.001 | 0.012 | 0.009 | 0.954 | |
Hongyao Township | 0.017 | 0.005 | 0.004 | 0.485 | |
Shizhi Township | 0.025 | 0.022 | 0.016 | 0.911 | |
Piancheng Township | 0.021 | 0.011 | 0.008 | 0.899 | |
Xingping Township | 0.074 | 0.012 | 0.009 | 0.580 | |
Pingfeng Town | 0.074 | 0.009 | 0.007 | 0.815 | |
Xinying Township | 0.015 | 0.008 | 0.006 | 0.010 | |
Shagou Township | 0.013 | 0.007 | 0.005 | 0.450 | |
Yuanzhou District | Huangduobao Town | 0.021 | 0.019 | 0.019 | 0.381 |
Xinqu Street | 0.532 | 1.000 | 1.000 | 0.249 | |
Beiyuan Street | 0.417 | 0.504 | 0.504 | 0.322 | |
Sanying Town | 0.030 | 0.029 | 0.029 | 0.472 | |
Zhonghe Township | 0.090 | 0.015 | 0.015 | 0.592 | |
Touying Town | 0.036 | 0.018 | 0.018 | 0.669 | |
Guanting Town | 0.038 | 0.004 | 0.004 | 0.679 | |
Zhaike Township | 0.002 | 0.003 | 0.003 | 0.513 | |
Kaicheng Town | 0.074 | 0.010 | 0.010 | 0.571 | |
Zhangyi Town | 0.022 | 0.011 | 0.010 | 0.552 | |
Pengbao Town | 0.080 | 0.015 | 0.015 | 0.750 | |
Hechuan Township | 0.011 | 0.004 | 0.004 | 0.729 | |
Tanshan Township | 0.021 | 0.002 | 0.002 | 0.575 | |
Nanguan Street | 0.421 | 0.259 | 0.259 | 0.388 |
References
- Hill, E.M.; McCaughey, J.W.; Switzer, A.D.; Lallemant, D.; Wang, Y.; Sathiakumar, S. Human amplification of secondary earthquake hazards through environmental modifications. Nat. Rev. Earth Environ. 2024, 5, 463–476. [Google Scholar] [CrossRef]
- Chamberlain, E.L.; Goodbred, S.L.; Steckler, M.S.; Wallinga, J.; Reimann, T.; Akhter, S.H.; Bain, R.; Muktadir, G.; Al Nahian, A.; Rahman, F.M.A.; et al. Cascading hazards of a major Bengal basin earthquake and abrupt avulsion of the Ganges River. Nat. Commun. 2024, 15, 4975. [Google Scholar] [CrossRef]
- Moein, M.J.; Langenbruch, C.; Schultz, R.; Grigoli, F.; Ellsworth, W.L.; Wang, R.; Rinaldi, A.P.; Shapiro, S. The physical mechanisms of induced earthquakes. Nat. Rev. Earth Environ. 2023, 4, 847–863. [Google Scholar] [CrossRef]
- Feng, S.; Shao, X.; Guo, Y. Geological disaster characteristics and treatment design analysis in Longde County, Ningxia. Eng. Technol. Res. 2023, 8, 193–195. (In Chinese) [Google Scholar]
- Shang, H. Study on the Formation Mechanism of Geological Disasters in the Southern Mountainous Area of Ningxia. Master’s Thesis, Chang’an University, Xi’an, China, 2010. (In Chinese). [Google Scholar]
- Su, C. Risk Assessment of Environmental Geological Disasters in the Southern Mountainous Area of Ningxia in the Middle and Upper Reaches of the Yellow River. Master’s Thesis, Chang’an University, Xi’an, China, 2023. (In Chinese). [Google Scholar]
- Kong, F.; Sun, S. Better understanding the catastrophe risk in interconnection and comprehensive disaster risk defense capability, with special reference to China. Sustainability 2021, 13, 1793. [Google Scholar] [CrossRef]
- Liu, R.H.; Zhou, Y.Y.; Guo, L.; Zhai, X.Y.; Tian, J.Y.; Zhang, X.L.; Li, R. Research progress on flash flood early warning in the United States. China Flood Drought Prev. 2020, 30, 141–148. (In Chinese) [Google Scholar]
- Miura, T.; Nagai, S. Landslide detection with himawari-8 geostationary satellite data: A case study of a torrential rain event in Kyushu, Japan. Remote Sens. 2020, 12, 1734. [Google Scholar] [CrossRef]
- Qiu, H.; Ma, S.; Cui, Y.; Yang, D.; Pei, Y.; Liu, Z. Rethinking the role of landslides. J. Northwest Univ. (Nat. Sci. Ed.) 2020, 3, 377–385. (In Chinese) [Google Scholar]
- Sim, K.B.; Lee, M.L.; Wong, S.Y. A review of landslide acceptable risk and tolerable risk. Geoenviron. Disasters 2022, 9, 3. [Google Scholar] [CrossRef]
- Wang, Y.; Nie, L.; Zhang, M.; Wang, H.; Xu, Y.; Zuo, T. Assessment of debris flow risk factors based on meta-analysis—Cases study of northwest and southwest China. Sustainability 2020, 12, 6841. [Google Scholar] [CrossRef]
- He, J.; Liu, Q.; Xu, D.; Liu, Q.; Mao, Y.; Wang, C.; Wang, X. Landslide susceptibility assessment in Guangyuan City based on a clustering-information volume coupling model. Surv. Spat. Geogr. Inf. 2020, 12, 25–31. [Google Scholar]
- Wang, Y.; Nie, L.; Zhang, M.; Wang, H.; Xu, Y.; Zuo, T. Assessment of relative importance of debris flow disaster risk affecting factors based on meta-analysis–Cases study of northwest and southwest China. Nat. Hazards Earth Syst. Sci. Discuss. 2020, 2020, 1–22. [Google Scholar]
- He, N.; Qu, X.; Yang, Z.; Xu, L.; Gurkalo, F. Disaster mechanism and evolution characteristics of landslide–debris-flow geohazard chain due to strong earthquake—A case study of Niumian gully. Water 2023, 15, 1218. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.N.; Gan, B.R.; Wang, X.K.; Yang, X.G.; Li, H.B.; Long, X.Y.; Zhou, J.W. Formation-evolutionary mechanism analysis and impacts of human activities on the 20 August 2019 clustered debris flows event in Wenchuan County, southwestern China. Front. Earth Sci. 2021, 9, 616113. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, L.; Lacasse, S.; Nadim, F. Evolution of mass movements near epicentre of Wenchuan earthquake, the first eight years. Sci. Rep. 2016, 6, 36154. [Google Scholar] [CrossRef]
- Luo, L.; Pei, X.; Cui, S.; Huang, R.; Zhu, L.; He, Z. Study on the selection of factor combinations for landslide susceptibility assessment in the Jiuzhaigou earthquake area. Chin. J. Rock Mech. Eng. 2021, 11, 2306–2319. (In Chinese) [Google Scholar]
- Zulkafli, S.A.; Abd Majid, N. Urban Resilience in the Face of Natural Hazards: Leveraging Machine Learning to Assess Landslide Risk in Kuala Lumpur, Malaysia. Int. J. Acad. Res. Bus. Soc. Sci. 2024, 14, 252–267. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zhou, W.; Fang, J. Landslide susceptibility assessment based on the information value model and data standardization. J. Geo-Inf. Sci. 2018, 5, 674–683. (In Chinese) [Google Scholar]
- Bai, Z.C.; Lv, S.; Cao, K.; Wang, Y.P. Early identification and post-disaster monitoring of the Xinmo village landslide in Sichuan based on satellite-based/ground-based InSAR analysis. Prog. Geophys. 2020, 35, 1637–1643, (In Chinese Abstract). [Google Scholar]
- Ren, K.W.; Yao, X.; Zhao, X.M.; Zhou, Z.K.; Li, L.J. Landslide instability and failure prediction based on time-series InSAR, GPS, and image offset measurement data. J. Rock Mech. Eng. 2020, 39, 3421–3431. (In Chinese) [Google Scholar]
- Chen, Y.; Gao, P. Application of 3D laser scanning technology in landslide disaster monitoring. China High-Tech Enterp. 2024, 2, 138–139+142. (In Chinese) [Google Scholar]
- Mayr, A.; Bremer, M.; Rutzinger, M. 3D point errors and change detection accuracy of unmanned aerial vehicle laser scanning data. ISPRS Ann. Photogramm. Remote. Sens. Spat. Inf. Sci. 2020, 2, 765–772. [Google Scholar] [CrossRef]
- Chen, H.; Feng, X.; Liu, Y.; Zhao, H.; Liu, Y.; Guo, L.; Zhang, J. Research on predicting surface displacement of landslides based on CNN-BiLSTM-Attention in the Three Gorges reservoir area. Sediment. Geol. Tethyan Geol. 2024, 44, 572–581. [Google Scholar]
- Wu, J. Research on Landslide Geological Disaster Prediction Methods Based on Deep Learning. Master’s Thesis, University of Electronic Science and Technology of China, Chengdu, China, 2022. (In Chinese). [Google Scholar]
- Wu, Y.; Niu, R.; Wang, Y.; Chen, T. A fast deploying monitoring and real-time early warning system for the Baige Landslide in Tibet, China. Sensors 2020, 20, 6619. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ge, X.; Yang, L.; Li, W.; Peng, L. An Improved Multi-Source Data-Driven Landslide Prediction Method Based on Spatio-Temporal Knowledge Graph. Remote Sens. 2023, 15, 2126. [Google Scholar] [CrossRef]
- Wen, Z.; Hao, Y. Turning crisis into opportunity: The improvement of the emergency management system and development challenges—A review of the 10th anniversary of the Wenchuan earthquake. Theor. J. 2018, 4, 62–69. (In Chinese) [Google Scholar]
- Zhang, S. Current status and reflections on the flood and drought prevention emergency plan system construction in Liaoning Province. China Flood Drought Manag. 2022, 4, 63–65. (In Chinese) [Google Scholar]
- Wang, Y. Emergency response principles of Typhoon disaster. Open J. Soc. Sci. 2017, 5, 100–104. [Google Scholar] [CrossRef]
- Xu, Q.; Li, W.; Dong, X.; Xiao, X.; Fan, X.; Pei, X. Preliminary study on the characteristics and causative mechanisms of the landslide in Xinmo Village, Diexi Town, Mao County, Sichuan. Chin. J. Rock Mech. Eng. 2017, 36, 2612–2628. (In Chinese) [Google Scholar]
- Zhang, L. Early identification of loess landslide hazards based on time-series InSAR: A case study of the southwestern region of Bailuyuan. Northwest Geol. 2023, 56, 250–257. (In Chinese) [Google Scholar]
- Deng, L.Z.; Yuan, H.Y.; Zhang, M.Z.; Chen, J.G. Research progress on landslide deformation monitoring and early warning technologies. J. Tsinghua Univ. (Sci. Technol.) 2023, 63, 849–864. (In Chinese) [Google Scholar]
- Xu, Q. Understanding the landslide monitoring and early warning: Considerations of practical issues. J. Eng. Geol. 2020, 28, 360–374, (In Chinese Abstract). [Google Scholar]
- Rigatti, S.J. Random forest. J. Insur. Med. 2017, 47, 31–39. [Google Scholar] [CrossRef]
- Che, V.B.; Kervyn, M.; Suh, C.E.; Fontijn, K.; Ernst, G.G.J.; del Marmol, M.-A.; Trefois, P.; Jacobs, P. Landslide susceptibility assessment in Limbe (SW Cameroon): A field calibrated seed cell and information value method. Catena 2012, 92, 83–98. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, C.; Huang, B.; Ren, X.; Liu, C.; Hu, B.; Chen, Z. Landslide displacement prediction based on multi-source data fusion and sensitivity states. Eng. Geol. 2020, 271, 105608. [Google Scholar] [CrossRef]
- Wang, G. Research on Prevention and Control of Soil and Water Loss from Construction Projects in Ningxia Southern Region. Master’s Thesis, Beijing Forestry University, Beijing, China, 2013. (In Chinese with English Abstract). [Google Scholar]
- Zhou, S.; Huang, A.; Wu, J.; Wang, Y.; Lu, S.; Xing, Z. Meteorological disaster risk assessment based on combination weighting-TOPSIS method: A case study of Changzhou City. Ind. Saf. Environ. Prot. 2022, 48, 6–10, (In Chinese with English Abstract). [Google Scholar]
- Wang, L.; Chang, M.; Xing, Y. Risk assessment of landslide geological hazards based on information method model and GIS. J. Geol. Hazards Environ. Preserv. 2021, 32, 14–20, (In Chinese with English Abstract). [Google Scholar]
- Yang, G. Application of GIS information quantity method in geological disaster zoning evaluation. West. Min. Eng. 2020, 32, 7–10. (In Chinese) [Google Scholar]
- Zhen, M.; Guangchao, T.; Xuan, J. Application of information quantity method based on GIS in evaluation of geological disasters susceptibility in Jiuwanxi Basin. Resour. Environ. Eng. 2021, 35, 667–673+680, (In Chinese with English Abstract). [Google Scholar]
- Xinbang, G. Study on Risk Assessment of Landslide in Yunnan Province. Ph.D. Thesis, China University of Mining & Technology, Beijing, China, 2018. (In Chinese with English Abstract). [Google Scholar]
- Wang, Z.; Luo, P.; Zha, X.; Xu, C.; Kang, S.; Zhou, M.; Nover, D.; Wang, Y. Overview assessment of risk evaluation and treatment technologies for heavy metal pollution of water and soil. J. Clean. Prod. 2022, 379, 134043. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Cui, W.; Zhu, Y.; Wang, H. Geological disaster susceptibility in Helong City based on Logistic Regression and Random Forest. J. Jilin Univ. (Earth Sci. Ed.) 2022, 52, 1957–1970, (In Chinese with English Abstract). [Google Scholar]
- Deng, N.; Shi, H.; Wen, Q.; Li, Y.; Cao, X. Collapse susceptibility evaluation of random forest model supported by information value model. Sci. Technol. Eng. 2021, 21, 2210–2217, (In Chinese with English Abstract). [Google Scholar]
- Zhao, X.; Xu, Z.; Liu, F.; Yang, H.; Zhang, T. Landslide susceptibility evaluation model based on XGBoost. Sci. Technol. Eng. 2022, 22, 10347–10354, (In Chinese with English Abstract). [Google Scholar]
- Cao, W.; Deng, P.; Xu, Z.; Zhang, W.; Ren, Y.; Nan, T. Landslide disaster vulnerability mapping study in Henan Province: Comparison of different machine learning models. Bull. Geol. Sci. Technol. 2025, 44, 101–111, (In Chinese with English Abstract). [Google Scholar]
- Zhou, X.; Huang, F.; Wu, W.; Zhou, C.; Zeng, S.; Pan, L. Regional landslide susceptibility prediction based on negative sample selected by coupling information value method. Adv. Eng. Sci. 2022, 54, 25–35, (In Chinese with English Abstract). [Google Scholar]
- Long, H.; Qian, S.; Jun, H. Landslide sensitivity assessment and error correction based on InSAR and random forest method. Bull. Surv. Mapp. 2022, 10, 13–20. (In Chinese) [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Mo, D.; Ye, Z.; Jiang, F. Hillslope geo-hazard susceptibility assessment in Pingguo City based on coupling of CF information value and MLPC classifier model. Carsologica Sin. 2023, 42, 370–381, (In Chinese with English Abstract). [Google Scholar]
- Luo, P.; Luo, M.; Li, F.; Qi, X.; Huo, A.; Wang, Z.; He, B.; Takara, K.; Nover, D.; Wang, Y. Urban flood numerical simulation: Research, methods and future perspectives. Environ. Model. Softw. 2022, 156, 105478. [Google Scholar] [CrossRef]
- Liu, A.; Yan, H.; Zhang, R.; Liu, G.; Zhang, R. Risk assessment of storm water flooding based on fuzzy comprehensive evaluation method: A case study of Xinxiang City in Henan Province. Surv. Mapp. 2022, 45, 5. (In Chinese) [Google Scholar]
- Goumrasa, A.; Guendouz, M.; Guettouche, M.S.; Belaroui, A. Flood hazard susceptibility assessment in Chiffa wadi watershed and along the first section of Algeria North–South highway using GIS and AHP method. Appl. Geomat. 2021, 13, 565–585. [Google Scholar] [CrossRef]
- Mehmood, Q.; Qing, W.; Chen, J.; Yan, J.; Ammar, M.; Rahman, G.; Nasrullah. Susceptibility assessment of single gully debris flow based on AHP and extension method. Civ. Eng. J. 2021, 7. [Google Scholar] [CrossRef]
- Panchal, S.; Shrivastava, A.K. Landslide hazard assessment using analytic hierarchy process (AHP): A case study of National Highway 5 in India. Ain Shams Eng. J. 2022, 13, 101626. [Google Scholar] [CrossRef]
- Souissi, D.; Zouhri, L.; Hammami, S.; Msaddek, M.H.; Zghibi, A.; Dlala, M. GIS-based MCDM–AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto Int. 2020, 35, 991–1017. [Google Scholar] [CrossRef]
- Liu, X.; Wang, D. Bidding evaluation behavior analysis of grouped multi-attribute reverse auction based on qualitative simulation. Dongbei Daxue Xuebao/J. Northeast. Univ. 2012, 33, 314–317+322. [Google Scholar]
- Capobianco, V.; Uzielli, M.; Kalsnes, B.; Choi, J.C.; Strout, J.M.; Von Der Tann, L.; Steinholt, I.H.; Solheim, A.; Nadim, F.; Lacasse, S. Recent innovations in the LaRiMiT risk mitigation tool: Implementing a novel methodology for expert scoring and extending the database to include nature-based solutions. Landslides 2022, 19, 1563–1583. [Google Scholar] [CrossRef]
- Ma, Z.; Mei, G. Deep learning for geological hazards analysis: Data, models, applications, and opportunities. Earth Sci. Rev. 2021, 223, 103858. [Google Scholar] [CrossRef]
- Zhang, T.Y.; Mao, Z.A.; Wang, T. GIS-based evaluation of landslide susceptibility using a novel hybrid computational intelligence model on different mapping units. J. Mt. Sci. 2020, 17, 2929–2941. [Google Scholar] [CrossRef]
- Wang, C.; Lin, Q.; Wang, L.; Jiang, T.; Su, B.; Wang, Y.; Mondal, S.K.; Huang, J.; Wang, Y. The influences of the spatial extent selection for non-landslide samples on statistical-based landslide susceptibility modelling: A case study of Anhui Province in China. Nat. Hazards 2022, 112, 1967–1988. [Google Scholar] [CrossRef]
- Chen, X.; Liu, S.; Liu, R.W.; Wu, H.; Han, B.; Zhao, J. Quantifying Arctic oil spilling event risk by integrating an analytic network process and a fuzzy comprehensive evaluation model. Ocean. Coast. Manag. 2022, 228, 106326. [Google Scholar] [CrossRef]
- He, S.; Song, D.; Mitri, H. Integrated rockburst early warning model based on fuzzy comprehensive evaluation method. Int. J. Rock Mech. Min. Sci. 2021, 142, 104767. [Google Scholar] [CrossRef]
- Akram, M.; Luqman, A.; Alcantud, J.C.R. An integrated ELECTRE-I approach for risk evaluation with hesitant Pythagorean fuzzy information. Expert Syst. Appl. 2022, 200, 116945. [Google Scholar] [CrossRef]
- Lin, S.S.; Shen, S.L.; Zhou, A.; Xu, Y.S. Risk assessment and management of excavation system based on fuzzy set theory and machine learning methods. Autom. Constr. 2021, 122, 103490. [Google Scholar] [CrossRef]
- Chen, W.L.Y. GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models. Catena Interdiscip. J. Soil Sci. Hydrol.-Geomorphol. Focus. Geoecology Landsc. Evol. 2020, 195, 104777. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, T.; Wu, Y.; Li, S.; Li, Z. Research on optimization of an enterprise financial risk early warning method based on the DS-RF model. Int. Rev. Financ. Anal. 2022, 81, 102140. [Google Scholar] [CrossRef]
- Nhu, V.H.; Shirzadi, A.; Shahabi, H.; Chen, W.; Clague, J.J.; Geertsema, M.; Jaafari, A.; Avand, M.; Miraki, S.; Talebpour Asl, D.; et al. Shallow landslide susceptibility mapping by Random Forest base classifier and its ensembles in a semi-arid region of Iran. Forests 2020, 11, 421. [Google Scholar] [CrossRef]
- Band, S.S.; Janizadeh, S.; Pal, S.C.; Saha, A.; Chakrabortty, R.; Melesse, A.M.; Mosavi, A. Flash flood susceptibility modeling using new approaches of hybrid and ensemble tree-based machine learning algorithms. Remote Sens. 2020, 12, 3568. [Google Scholar] [CrossRef]
- Sun, D.; Wen, H.; Wang, D.; Xu, J. A random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithm. Geomorphology 2020, 362, 107201. [Google Scholar] [CrossRef]
- Chen, W.; Li, Y.; Xue, W.; Shahabi, H.; Li, S.; Hong, H.; Wang, X.; Bian, H.; Zhang, S.; Pradhan, B.; et al. Modeling flood susceptibility using data-driven approaches of naïve bayes tree, alternating decision tree, and random forest methods. Sci. Total Environ. 2020, 701, 134979. [Google Scholar] [CrossRef]
- Zhou, L.; Dang, X.; Sun, Q.; Wang, S. Multi-scenario simulation of urban land change in Shanghai by random forest and CA-Markov model. Sustain. Cities Soc. 2020, 55, 102045. [Google Scholar] [CrossRef]
- Zhang, K.; Shalehy, M.H.; Ezaz, G.T.; Chakraborty, A.; Mohib, K.M.; Liu, L. An integrated flood risk assessment approach based on coupled hydrological-hydraulic modeling and bottom-up hazard vulnerability analysis. Environ. Model. Softw. 2022, 148, 105279. [Google Scholar] [CrossRef]
- Feng, B.; Zhang, Y.; Bourke, R. Urbanization impacts on flood risks based on urban growth data and coupled flood models. Nat. Hazards 2021, 106, 613–627. [Google Scholar] [CrossRef]
- Chun, Y.; Wei, Z.; Xin, Y. Coupling coordination evaluation and sustainable development pattern of geo-ecological environment and urbanization in Chongqing municipality, China. Sustain. Cities Soc. 2020, 61, 102271. [Google Scholar] [CrossRef]
- Parsa, A.B.; Movahedi, A.; Taghipour, H.; Derrible, S.; Mohammadian, A.K. Toward safer highways, application of XGBoost and SHAP for real-time accident detection and feature analysis. Accid. Anal. Prev. 2020, 136, 105405. [Google Scholar] [CrossRef]
- Abedi, R.; Costache, R.; Shafizadeh-Moghadam, H.; Pham, Q.B. Flash-flood susceptibility mapping based on XGBoost, random forest and boosted regression trees. Geocarto Int. 2022, 37, 5479–5496. [Google Scholar] [CrossRef]
- Li, Z. Extracting spatial effects from machine learning model using local interpretation method: An example of SHAP and XGBoost. Comput. Environ. Urban Syst. 2022, 96, 101845. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, S.; Bao, H.; Zhao, X. Characteristics and influencing factors of rainfall-induced landslide and debris flow hazards in Shaanxi Province, China. Nat. Hazards Earth Syst. Sci. 2019, 19, 93–105. [Google Scholar] [CrossRef]
- Huang, F.; Chen, J.; Liu, W.; Huang, J.; Hong, H.; Chen, W. Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold. Geomorphology 2022, 408, 108236. [Google Scholar] [CrossRef]
- Huang, F.; Yan, J.; Fan, X.; Yao, C.; Huang, J.; Chen, W.; Hong, H. Uncertainty pattern in landslide susceptibility prediction modelling: Effects of different landslide boundaries and spatial shape expressions. Geosci. Front. 2022, 13, 101317. [Google Scholar] [CrossRef]
- Shi, Z.; Wu, B.; Zheng, H.; Peng, M. State of the art on prevention and control measures and impact model for debris flow. Earth Sci. 2022, 47, 4339–4349, (In Chinese with English Abstract). [Google Scholar]
- Hu, S.; Wang, J.; Zhou, C.; Zhang, J. Research on the risk assessment and prevention of collapse disaster in Huangshan scenic area. Geogr. Res. 2013, 32, 1814–1823, (In Chinese with English Abstract). [Google Scholar]
- Sun, D.; Yang, T.; Cao, N.; Qin, L.; Hu, X.; Wei, M.; Meng, M.; Zhang, W. Characteristics and mitigation of coseismic geohazards associated with the Luding Ms 6.8 earthquake. Earth Sci. Front. 2023, 30, 476–493, (In Chinese with English Abstract). [Google Scholar]
- Wang, T.; Jia, H.; Sun, Q.; Tan, X.; Tang, L. Effects of thawing-induced softening on fracture behaviors of frozen rock. J. Rock Mech. Geotech. Eng. 2023, 16, 979–989. [Google Scholar] [CrossRef]
- Jia, H.; Ding, S.; Zi, F.; Dong, Y.; Shen, Y. Evolution in sandstone pore structures with freeze-thaw cycling and interpretation of damage mechanisms in saturated porous rocks. Catena 2020, 195, 104915. [Google Scholar] [CrossRef]
- Qiao, Q. Analysis of risks and benefits of the Gujia wetland ecological restoration project. China Hous. Facil. 2023, 11, 52–54. (In Chinese) [Google Scholar]
- Liu, L.; Wu, R.; Lou, Y.; Luo, P.; Sun, Y.; He, B.; Hu, M.; Herath, S. Exploring the Comprehensive Evaluation of Sustainable Development in Rural Tourism: A Perspective and Method Based on the AVC Theory. Land 2023, 12, 1473. [Google Scholar] [CrossRef]
Evaluation Factors | Population Density | Road Density | Cultivated Land Density | GDP Density |
---|---|---|---|---|
Population Density | 1 | 3 | 4 | 5 |
Road density | 1/3 | 1 | 3 | 5 |
Cultivated land density | 1/4 | 1/3 | 1 | 3 |
GDP Density | 1/5 | 1/5 | 1/3 | 1 |
Index | Subjective Weight Value | Information Entropy | Objective Weight Value | Combined Weight Value |
---|---|---|---|---|
Population Density | 0.527 | 0.648 | 0.398 | 0.497 |
Road density | 0.279 | 0.835 | 0.187 | 0.258 |
Cultivated land density | 0.131 | 0.976 | 0.027 | 0.107 |
GDP density | 0.064 | 0.656 | 0.388 | 0.139 |
Evaluation Indicators | Grade I | Grade II | Grade III | Grade IV |
---|---|---|---|---|
Population density | 0.70 | 0.60 | 0.50 | 0.40 |
Road density | 0.65 | 0.55 | 0.45 | 0.35 |
Cultivated land density | 0.55 | 0.50 | 0.40 | 0.30 |
GDP density | 0.50 | 0.40 | 0.30 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, P.; Zhang, H.; Su, C.; Zhong, J.; Fida, F.; Duan, W.; Mohd Arif Zainol, M.R.R.; Li, Q.; Zhu, W.; Xu, C.-y. Geological Disaster Susceptibility and Risk Assessment in Complex Mountainous Terrain: A Case Study from Southern Ningxia, China. Land 2025, 14, 1961. https://doi.org/10.3390/land14101961
Luo P, Zhang H, Su C, Zhong J, Fida F, Duan W, Mohd Arif Zainol MRR, Li Q, Zhu W, Xu C-y. Geological Disaster Susceptibility and Risk Assessment in Complex Mountainous Terrain: A Case Study from Southern Ningxia, China. Land. 2025; 14(10):1961. https://doi.org/10.3390/land14101961
Chicago/Turabian StyleLuo, Pingping, Hanming Zhang, Chen Su, Jiaxin Zhong, Fatima Fida, Weili Duan, Mohd Remy Rozainy Mohd Arif Zainol, Qiaomin Li, Wei Zhu, and Chong-yu Xu. 2025. "Geological Disaster Susceptibility and Risk Assessment in Complex Mountainous Terrain: A Case Study from Southern Ningxia, China" Land 14, no. 10: 1961. https://doi.org/10.3390/land14101961
APA StyleLuo, P., Zhang, H., Su, C., Zhong, J., Fida, F., Duan, W., Mohd Arif Zainol, M. R. R., Li, Q., Zhu, W., & Xu, C.-y. (2025). Geological Disaster Susceptibility and Risk Assessment in Complex Mountainous Terrain: A Case Study from Southern Ningxia, China. Land, 14(10), 1961. https://doi.org/10.3390/land14101961