The Associative Effects and Design Implications of Urban Built Environment on the Physical and Mental Recovery of Older Adults in China: Bibliometric and Meta-Analysis
Abstract
1. Introduction
1.1. Background
1.1.1. Aging and Urbanization in China
1.1.2. Rationale for Meta-Analysis
1.2. Urban Built Environment and Physical-Mental Recovery in Older Adults
1.2.1. Urban Built Environment
1.2.2. Physical-Mental Recovery in Older Adults
1.2.3. Linking Urban Built Environments to Physical-Mental Recovery Among the Older Adults
1.3. Significance
2. Methods
2.1. Meta-Analysis
2.2. Analytical Procedures and Implementation
2.3. Specific Process
2.3.1. Literature Search
2.3.2. Bibliometric Analysis
2.3.3. Literature Selection
2.3.4. Data Extraction and Literature Coding
2.3.5. Selection and Quantification of Effect Size
3. Results
3.1. Results of Bibliometric Analysis
3.2. Characteristics of Included Studies
3.3. Quality Assessment and Sample Size Evaluation
3.4. Homogeneity Tests
3.5. Environmental Factors
3.6. Correlation Analysis Results
3.6.1. The Association of Objective and Perceived Environmental Attributes with Physical Recovery (Activity Frequency) in Older Adults
3.6.2. The Association of Objective and Perceived Environmental Attributes with Mental Recovery (Social Interaction) in Older Adults
4. Discussion
4.1. Built Environment Correlates of Physical Health Outcomes
4.1.1. Objective
4.1.2. Perceived
4.2. Built Environment Correlates of Mental Health Outcomes
4.2.1. Objective
4.2.2. Perceived
4.3. Interaction
4.3.1. Interaction Between Perceived and the Objective Environment
4.3.2. Interaction Between Physical and Mental Health
4.4. Strategic Implications
4.4.1. Facilitating Physical Recovery
4.4.2. Fostering Mental Well-Being
4.5. Generalizability and Research Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviation
MA | Meta-analysis |
Appendix A
Study ID | Time | Geographical Region | Sample Size | Sample Size Score | Quality Score | Health Dimension Classification of Built Environment. | Analytical Methods | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Physical | Mental | Object | Data Sources | Perceived | |||||||
1 | 2023 | Nanjing | 569 | 1.25 | A | YES | NO | YES | GIS | YES | Q |
2 | 2021 | Dalian | 597 | 1.25 | B | YES | NO | YES | Remote Sensing, OSM, Field Survey | YES | Q |
3 | 2024 | Dalian | 275 | 0.5 | A | YES | YES | YES | Street View Imagery, POI | YES | Q |
4 | 2020 | Nanjing | 501 | 1.25 | B | YES | NO | YES | GIS | NO | -- |
5 | 2024 | Beijing | 2774 | 1.75 | A | YES | YES | YES | Field Survey | YES | Q |
6 | 2023 | Chongqing | 2698 | 1.75 | A | YES | NO | YES | POI, Road Network Data, Street View Imagery | NO | -- |
7 | 2024 | Chengdu | 14,618 | 1.75 | A | YES | NO | YES | OSM, Remote Sensing, POI, Street View Imagery | NO | -- |
8 | 2022 | Hefei | 702 | 1.25 | A | YES | NO | YES | Map, Remote Sensing | YES | Q |
9 | 2015 | Nanjing | 969 | 1.25 | B | YES | NO | YES | -- | NO | -- |
10 | 2022 | Dalian | 204 | 0.5 | B | YES | NO | YES | Map, Street View Imagery, Land Use Data | NO | -- |
11 | 2020 | Guangzhou | 996 | 1.25 | A | YES | YES | YES | Remote Sensing, Street View Imagery | YES | Q |
12 | 2017 | Nanjing | 611 | 1.25 | B | YES | NO | YES | -- | YES | Q |
13 | 2020 | Nanjing | 385 | 1 | B | YES | NO | YES | Road Network Data, POI, Remote Sensing Imagery | YES | Q |
14 | 2020 | Dalian | 204 | 0.5 | B | YES | NO | YES | Map, Street View Imagery | YES | Q |
15 | 2022 | Xiamen | 93,861 | 1.75 | A | YES | NO | YES | OSM, POI | NO | -- |
16 | 2022 | Chongqing | 325 | 1 | B | YES | NO | YES | Field Survey, GIS | NO | -- |
17 | 2021 | Nanjing | 499 | 1 | B | YES | NO | YES | GIS | NO | -- |
18 | 2021 | Hangzhou, Ningbo, Nanjing, Suzhou, Shanghai | 2350 | 1.5 | A | YES | NO | NO | -- | YES | Q |
19 | 2024 | Fuzhou | 302 | 1 | B | YES | NO | YES | POI, Land Use Data, OSM | YES | Q |
20 | 2021 | Shanghai | 912 | 1.25 | A | YES | NO | YES | GIS, Map, Field Survey | YES | Q |
21 | 2020 | Wuhan | 1161 | 1.5 | A | YES | NO | YES | Field Survey, Street View Imagery | YES | Q |
22 | 2020 | Wuhan | 1161 | 1.5 | A | YES | NO | YES | GIS, Map | YES | Q |
23 | 2020 | Hangzhou & Wenzhou | 308 & 304 | 1 | B | YES | NO | NO | -- | YES | Q |
24 | 2012 | Hong Kong | 484 | 1 | A | YES | NO | NO | -- | YES | Q |
25 | 2022 | Xiamen | 11,732 | 1.75 | A | YES | NO | YES | GIS, OSM | NO | -- |
26 | 2021 | Hong Kong | 462 | 4 | B | YES | YES | NO | -- | YES | Q |
27 | 2021 | Zhongshan | 4329 | 1.75 | B | YES | NO | YES | GIS | NO | -- |
28 | 2012 | Hong Kong | 484 | 1 | A | YES | NO | YES | Field Survey | YES | Q |
29 | 2019 | Beijing | 1231 | 1.5 | A | YES | YES | NO | -- | YES | Q, Random Forest Model Prediction |
30 | 2019 | Shanghai | 7962 | 1.75 | B | YES | NO | YES | Land Use Data | NO | -- |
31 | 2021 | Beijing | 2061 | 1.5 | A | YES | NO | YES | GIS | YES | Q |
32 | 2022 | Hong Kong | 1083 | 1.5 | A | YES | YES | YES | GIS, OSM, Google Street View Imagery | NO | -- |
33 | 2021 | Yiwu | 252 | 0.5 | B | YES | NO | NO | -- | YES | Q |
34 | 2017 | Hong Kong | 340 | 1 | A | YES | YES | NO | -- | YES | Q |
35 | 2021 | Guangzhou | 882 | 1.25 | A | YES | NO | YES | POI, GIS | NO | -- |
36 | 2021 | Jinhua | 240 | 0.5 | A | YES | NO | NO | -- | YES | Q |
37 | 2022 | Tianjin | 627 | 1.25 | A | NO | YES | YES | Remote Sensing, Field Survey | NO | -- |
38 | 2021 | Shanghai | 614 | 1.25 | A | NO | YES | NO | -- | YES | Q |
39 | 2022 | Nanjing | 359 | 1 | B | NO | YES | YES | Map, Remote Sensing, Street View Imagery | YES | Q |
40 | 2022 | Harbin | 226 | 0.5 | A | NO | YES | NO | -- | YES | Q |
41 | 2022 | Chongqing | 556 | 1.25 | A | NO | YES | YES | Google Maps, Road Network Data | YES | Q |
42 | 2021 | China | 8792 | 1.75 | A | NO | YES | NO | -- | YES | Q |
43 | 2019 | Guangzhou | 963 | 1.25 | A | NO | YES | YES | Road Network Data, POI, Remote Sensing | NO | -- |
44 | 2020 | Guangzhou | 403 | 1 | A | NO | YES | NO | -- | YES | Q |
45 | 2019 | Beijing | 1231 | 1.5 | B | NO | YES | YES | Street View Imagery | NO | -- |
46 | 2018 | Nanjing | 967 | 1.25 | A | YES | NO | NO | -- | YES | Q |
47 | 2023 | Hong Kong | 12,620 | 1.75 | B | YES | NO | YES | GIS, OSM, Google Street View Imagery | NO | -- |
48 | 2021 | Nanjing | 417 | 1 | A | YES | NO | NO | -- | YES | Q |
49 | 2021 | China | 2240 | 1.75 | B | NO | YES | YES | -- | NO | -- |
50 | 2018 | Hong Kong | 909 | 1.25 | A | NO | YES | YES | GIS, Field Survey | NO | -- |
51 | 2021 | Beijing | 757 | 1.25 | A | NO | YES | YES | Remote Sensing, Map, OSM, Field Survey | NO | -- |
52 | 2021 | Dalian | 364 | 1 | B | NO | YES | NO | -- | NO | -- |
Appendix B
Appendix B.1
Object | Perceived | ||||||||
---|---|---|---|---|---|---|---|---|---|
ID | Indicators | Total | Article Number | Included | ID | Indicators | Total | Article Number | Included |
A1 | Population Density | 11 | 6(Ø), 7(P), 9(P), 12(Ø), 19(N), 21(P), 25(Ø), 27(P), 22(Ø), 46(Ø), 47(P) | YES | B1 | Cleanliness | 3 | 1, 24, 13 | NO |
A2 | Park green space ratio | 2 | 16, 27 | NO | B2 | Attractiveness | 2 | 12, 28 | NO |
A3 | Distance to commercial center | 3 | 1, 4, 17 | NO | B3 | Walking and cycling infrastructure | 3 | 33, 23, 24 | NO |
A4 | Road length per capita | 3 | 1, 4, 17 | NO | B4 | Perceived residential density | 4 | 23, 33, 24 | NO |
A5 | Building density | 3 | 1, 4, 19 | NO | B5 | Traffic | 5 | 13(Ø), 24(P), 28(Ø), 23(P), 33(Ø) | YES |
A6 | Bus stop density | 2 | 13, 20 | NO | B6 | Street Connectivity | 5 | 13(Ø), 18(Ø), 24(Ø), 33(P), 23(Ø) | YES |
A7 | Sky view factor (SVF) | 2 | 7, 36 | NO | B7 | Accessibility to recreational facilities | 2 | 24 | NO |
A8 | Land Use Mix | 10 | 6(P), 7(N), 8(P), 10(Ø), 16(P), 22(Ø), 27(P), 46(P), 47(P), 48(Ø) | YES | B8 | Public Security | 9 | 8(Ø), 12(P), 18(P), 19(P), 24(Ø), 33(Ø), 23(P), 46(P), 48(Ø) | YES |
A9 | Number of transit stations | 3 | 1, 4, 17 | NO | B9 | Aesthetics | 10 | 8(Ø), 10(P), 12(P), 13(Ø), 18(P), 19(P), 28(Ø), 33(P), 23(P), 46(P) | YES |
A10 | Intersection Density | 7 | 6(Ø), 8(N), 15(Ø), 16(P), 25(P), 22(Ø), 47(P) | YES | B10 | Road Quality | 6 | 13(Ø), 24(P), 28(Ø), 31(P), 33(Ø), 23(P) | YES |
A11 | Bus route density | 2 | 25, 20 | NO | B11 | Accessibility to transit stations | 2 | 1, 19 | NO |
A12 | Landscape quality | 2 | 46, 48 | NO | B12 | Crowdedness | 1 | 24 | NO |
A13 | Neighborhood safety | 2 | 46, 48 | NO | B13 | Noise | 1 | 28 | NO |
A14 | Distance to fitness facilities | 3 | 1, 4, 17 | NO | B14 | Air Pollution | 1 | 28 | NO |
A15 | Greening Rate | 8 | 3(Ø), 6(P), 7(P), 11(Ø), 20(P), 21(P), 27(P), 47(P) | YES | B15 | Perceived intersection density | 1 | 13 | NO |
A16 | Normalized Difference Vegetation Index (NDVI) | 2 | 7, 11 | NO | B16 | Community living comfort | 1 | 19 | NO |
A17 | Educational facility density | 2 | 16, 20 | NO | B17 | Accessibility of senior centers | 1 | 28 | NO |
A18 | Healthcare facility density | 2 | 13, 16 | NO | B18 | Entertainment venues | 2 | 1, 8 | NO |
A19 | School density | 2 | 20, 13 | NO | B19 | Accessibility of parks | 1 | 28 | NO |
A20 | Traffic safety | 2 | 46, 48 | NO | |||||
A21 | Destination Accessibility | 6 | 12(P), 19(N), 31(Ø), 46(P), 47(Ø), 48(Ø) | YES |
Appendix B.2
Object | Perceived | ||||||||
---|---|---|---|---|---|---|---|---|---|
ID | Indicators | Total | Article Number | Included | ID | Indicators | Total | Article Number | Included |
C1 | Population Density | 3 | 5, 35, 49 | NO | D1 | Socio-cultural Environment | 1 | 38 | NO |
C2 | Road Quality | 2 | 5, 49 | NO | D2 | Recreational Convenience | 1 | 41 | NO |
C3 | Safety Facilities | 2 | 5, 49 | NO | D3 | Appropriate Scale | 1 | 39 | NO |
C4 | Distance to Nearest Park | 1 | 11 | NO | D4 | walkability | 4 | 38(P), 39(P), 41(P), 52(P) | YES |
C5 | Number of Parks and Squares | 1 | 35 | NO | D5 | Walking Facilities | 1 | 52 | NO |
C6 | Number of Recreational Facilities | 1 | 41 | NO | D6 | Perceived safety | 4 | 38(P), 39(Ø), 41(P), 52(Ø) | YES |
C7 | Road Network Density | 1 | 41 | NO | D7 | Ease of Access | 1 | 39 | NO |
C8 | Public Transport Stop Density | 1 | 41 | NO | |||||
C9 | Travel Safety | 1 | 52 | NO | |||||
C10 | Spatial Scale | 1 | 39 | NO | |||||
C11 | NDVI | 4 | 3(Ø), 11(Ø), 39(N), 53(Ø) | YES | |||||
C12 | Pedestrian Path Density | 1 | 39 | NO | |||||
C13 | Spatial Distribution Density | 1 | 39 | NO | |||||
C14 | Number of Bus/Subway Stations | 1 | 39 | NO | |||||
C15 | Distance to Nearest Water Body | 1 | 11 | NO | |||||
C16 | Land Use Mix | 1 | 35 | NO | |||||
C17 | Paving Rate | 1 | 3 | NO |
Appendix C
Appendix C.1
Object | Perceived | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ID (Indicators) | Study ID | Weightj | zj | Weightj × zj | Weightj2 | ID (Indicators) | Study ID | Weightj | zj | Weightj × zj | Weightj2 |
A1 | 6 | 6.75 | −1.96 | −13.230 | 45.563 | B5 | 13 | 2.50 | 0 | 0.000 | 6.250 |
7 | 6.75 | 1.645 | 11.104 | 45.563 | 28 | 6.00 | 0 | 0.000 | 36.000 | ||
9 | 5.25 | 1.96 | 10.290 | 27.563 | 23 | 2.50 | 1.96 | 4.900 | 6.250 | ||
12 | 5.25 | 0 | 0.000 | 27.563 | 33 | 4.50 | 0 | 0.000 | 20.250 | ||
19 | 5.00 | −1.96 | −9.800 | 25.000 | 24 | 6.00 | 1.96 | 11.760 | 36.000 | ||
21 | 6.50 | 2.575 | 16.738 | 42.250 | B6 | 13 | 5.00 | 0 | 0.000 | 25.000 | |
22 | 6.50 | 0 | 0.000 | 42.250 | 18 | 6.50 | 0 | 0.000 | 42.250 | ||
25 | 6.75 | 0 | 0.000 | 45.563 | 23 | 5.00 | 0 | 0.000 | 25.000 | ||
27 | 5.75 | 2.575 | 14.806 | 33.063 | 24 | 6.00 | 0 | 0.000 | 36.000 | ||
46 | 7.25 | 0 | 0.000 | 52.563 | 33 | 4.50 | 1.96 | 8.820 | 20.250 | ||
47 | 5.25 | 1.96 | 10.290 | 27.563 | B8 | 8 | 6.25 | 0 | 0.000 | 39.063 | |
A8 | 6 | 6.75 | 1.96 | 13.230 | 45.563 | 12 | 5.25 | 1.96 | 10.290 | 27.563 | |
7 | 6.75 | −1.96 | −13.230 | 45.563 | 18 | 6.50 | 1.96 | 12.740 | 42.250 | ||
8 | 6.25 | 1.96 | 12.250 | 39.063 | 19 | 5.00 | 1.645 | 8.225 | 25.000 | ||
10 | 4.50 | 0 | 0.000 | 20.250 | 23 | 5.00 | 1.96 | 9.800 | 25.000 | ||
16 | 5.00 | 1.96 | 9.800 | 25.000 | 24 | 6.00 | 0 | 0.000 | 36.000 | ||
22 | 6.50 | 0 | 0.000 | 42.250 | 33 | 4.50 | 0 | 0.000 | 20.250 | ||
27 | 5.75 | 1.96 | 11.270 | 33.063 | 46 | 7.25 | 1.645 | 11.926 | 52.563 | ||
46 | 7.25 | 1.645 | 11.926 | 52.563 | 48 | 6.00 | 0 | 0.000 | 36.000 | ||
47 | 5.25 | 1.645 | 8.636 | 27.563 | B9 | 8 | 6.25 | 0 | 0.000 | 39.063 | |
48 | 6.00 | 0 | 0.000 | 36.000 | 10 | 4.50 | 1.96 | 8.820 | 20.250 | ||
A10 | 6 | 6.75 | 0 | 0.000 | 45.563 | 12 | 2.63 | 1.96 | 5.145 | 6.891 | |
8 | 6.25 | −1.96 | −12.250 | 39.063 | 13 | 5.00 | 0 | 0.000 | 25.000 | ||
15 | 6.75 | 0 | 0.000 | 45.563 | 18 | 6.50 | 1.96 | 12.740 | 42.250 | ||
16 | 5.00 | 1.96 | 9.800 | 25.000 | 19 | 5.00 | 0 | 0.000 | 25.000 | ||
22 | 6.50 | 0 | 0.000 | 42.250 | 28 | 6.00 | 0 | 0.000 | 36.000 | ||
25 | 6.75 | 1.96 | 13.230 | 45.563 | 33 | 4.50 | 1.96 | 8.820 | 20.250 | ||
47 | 5.25 | 1.96 | 10.290 | 27.563 | 23 | 2.50 | 1.96 | 4.900 | 6.250 | ||
A15 | 3 | 5.50 | 0 | 0.000 | 30.250 | 46 | 7.25 | 1.645 | 11.926 | 52.563 | |
6 | 6.75 | 1.96 | 13.230 | 45.563 | B10 | 13 | 2.50 | 0 | 0.000 | 6.250 | |
7 | 6.75 | 1.96 | 13.230 | 45.563 | 24 | 6.00 | 1.96 | 11.760 | 36.000 | ||
11 | 7.25 | 0 | 0.000 | 52.563 | 28 | 6.00 | 0 | 0.000 | 36.000 | ||
20 | 6.25 | 0 | 0.000 | 39.063 | 31 | 6.50 | 1.96 | 12.740 | 42.250 | ||
21 | 6.50 | 1.96 | 12.740 | 42.250 | 33 | 4.50 | 0 | 0.000 | 20.250 | ||
27 | 2.75 | 1.96 | 5.390 | 7.563 | 23 | 5.00 | 1.96 | 9.800 | 25.000 | ||
47 | 5.25 | 1.96 | 10.290 | 27.563 | |||||||
A21 | 12 | 2.63 | 1.96 | 5.145 | 6.891 | ||||||
19 | 5.00 | −1.645 | −8.225 | 25.000 | |||||||
31 | 6.50 | 0 | 0.000 | 42.250 | |||||||
46 | 7.25 | 1.96 | 14.210 | 52.563 |
Appendix C.2
Object | Perceived | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ID (Indicators) | Study ID | Weightj | zj | Weightj × zj | Weightj2 | ID (Indicators) | Study ID | Weightj | zj | Weightj × zj | Weightj2 |
C11 | 3 | 5.50 | 0 | 0.000 | 30.250 | D4 | 38 | 6.25 | 1.96 | 12.250 | 39.063 |
11 | 7.25 | 0 | 0.000 | 52.563 | 39 | 2.50 | 1.96 | 4.900 | 6.250 | ||
39 | 5.00 | −1.96 | −9.800 | 25.000 | 41 | 6.25 | 1.645 | 10.281 | 39.063 | ||
53 | 5.25 | 0 | 0.000 | 27.563 | 52 | 4.00 | 1.96 | 7.840 | 16.000 | ||
D6 | 38 | 6.25 | 2.575 | 16.094 | 39.063 | ||||||
39 | 5.00 | 0 | 0.000 | 25.000 | |||||||
41 | 6.25 | 1.645 | 10.281 | 39.063 | |||||||
52 | 5.00 | 0 | 0.000 | 25.000 | |||||||
C11 | 3 | 5.50 | 0 | 0.000 | 30.250 | D4 | 38 | 6.25 | 1.96 | 12.250 | 39.063 |
11 | 7.25 | 0 | 0.000 | 52.563 | 39 | 2.50 | 1.96 | 4.900 | 6.250 | ||
39 | 5.00 | −1.96 | −9.800 | 25.000 | 41 | 6.25 | 1.645 | 10.281 | 39.063 | ||
53 | 5.25 | 0 | 0.000 | 27.563 | 52 | 4.00 | 1.96 | 7.840 | 16.000 | ||
D6 | 38 | 6.25 | 2.575 | 16.094 | 39.063 | ||||||
39 | 5.00 | 0 | 0.000 | 25.000 |
References
- Jing, H.; Xinbiao, G. Research progress on the health effects of traffic-related air pollution. China Environ. Sci. 2014, 34, 1592–1598. [Google Scholar]
- Eckert, S.; Kohler, S. Urbanization and health in developing countries: A systematic review. World Health Popul. 2014, 15, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Stephens, C. The urban-environment, poverty and health in developing-countries. Health Policy Plan 1995, 10, 109–121. [Google Scholar] [CrossRef]
- Handy, S.L.; Boarnet, M.G.; Ewing, R.; Killingsworth, R.E. How the built environment affects physical activity: Views from urban planning. Am. J. Prev. Med. 2002, 23, 64–73. [Google Scholar] [CrossRef]
- Mouratidis, K. Rethinking how built environments influence subjective well-being: A new conceptual framework. J. Urban Int. Res. Placemaking Urban Sustain. 2018, 11, 24–40. [Google Scholar] [CrossRef]
- Moufid, O.; Praharaj, S.; Jarar Oulidi, H.; Momayiz, K. A digital twin platform for the cocreation of urban regeneration projects. A Case Study in Morocco. Habitat. Int. 2025, 161, 103427. [Google Scholar] [CrossRef]
- Mouratidis, K. Urban planning and quality of life: A review of pathways linking the built environment to subjective well-being. Cities 2021, 115, 103229. [Google Scholar] [CrossRef]
- Liu, D.; Jia, L.; Wang, S. A study on universal design of housing with home-based care for the aged. J. Archit. Eng. 2015, 6, 1–8. [Google Scholar]
- Sallis, J.F.; Floyd, M.F.; Rodríguez, D.A.; Saelens, B.E. Role of built environments in physical activity, obesity, and cardiovascular disease. Circulation 2012, 125, 729–737. [Google Scholar] [CrossRef]
- Moore, T.H.M.; Kesten, J.M.; Lopez-Lopez, J.A.; Ijaz, S.; McAleenan, A.; Richards, A.; Gray, S.; Savovic, J.; Audrey, S. The effects of changes to the built environment on the mental health and well-being of adults: Systematic review. Health Place. 2018, 53, 237–257. [Google Scholar] [CrossRef]
- Cudjoe, T.K.M.; Roth, D.L.; Szanton, S.L.; Wolff, J.L.; Boyd, C.M.; Thorpe, R.J., Jr. The epidemiology of social isolation: National health and aging trends study. J. Gerontol. Ser. B-Psychol. Sci. Soc. Sci. 2020, 75, 107–113. [Google Scholar] [CrossRef]
- Choi, E.; Han, K.-M.; Chang, J.; Lee, Y.J.; Choi, K.W.; Han, C.; Ham, B.-J. Social participation and depressive symptoms in community-dwelling older adults: Emotional social support as a mediator. J. Psychiatr. Res. 2021, 137, 589–596. [Google Scholar] [CrossRef]
- Hoehner, C.M.; Ramirez, L.K.B.; Elliott, M.B.; Handy, S.L.; Brownson, R.C. Perceived and objective environmental measures and physical activity among urban adults. Am. J. Prev. Med. 2005, 28, 105–116. [Google Scholar] [CrossRef]
- Nyunt, M.S.; Shuvo, F.K.; Eng, J.Y.; Yap, K.B.; Scherer, S.; Hee, L.M.; Chan, S.P.; Ng, T.P. Objective and subjective measures of neighborhood environment (ne): Relationships with transportation physical activity among older persons. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 108. [Google Scholar] [CrossRef]
- Stellefson, M.; Chaney, B.; Barry, A.E.; Chavarria, E.; Tennant, B.; Walsh-Childers, K.; Sriram, P.; Zagora, J. Web 2.0 chronic disease self-management for older adults: A systematic review. J. Med. Internet Res. 2013, 15, e2439. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, J. A study on therapeutic environment design for the elderly with dementia in care facilities. J. Archit. Eng. 2018, 67–73. [Google Scholar]
- Coyle, C.E.; Dugan, E. Social isolation, loneliness and health among older adults. J. Aging Health 2012, 24, 1346–1363. [Google Scholar] [CrossRef]
- Hernandez, R.; Bassett, S.M.; Boughton, S.W.; Schuette, S.A.; Shiu, E.W.; Moskowitz, J.T. Psychological well-being and physical health: Associations, mechanisms, and future directions. Emot. Rev. 2018, 10, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Hanson, S.; Jones, A. Is there evidence that walking groups have health benefits? A systematic review and meta-analysis. Br. J. Sports Med. 2015, 49, 710–715. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Liu, Y.; Lu, S.; Chan, O.F.; Chui, C.H.K.; Lum, T.Y.S. Objective and perceived built environment, sense of community, and mental wellbeing in older adults in hong kong: A multilevel structural equation study. Landsc. Urban. Plan. 2021, 209, 104058. [Google Scholar] [CrossRef]
- Chen, S.; Biljecki, F. Automatic assessment of public open spaces using street view imagery. Cities 2023, 137, 104329. [Google Scholar] [CrossRef]
- Capaldi, C.A.; Dopko, R.L.; Zelenski, J.M. The relationship between nature connectedness and happiness: A meta-analysis. Front. Psychol. 2014, 5, 92737. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Been, J.V.; Lugtenberg, M.J.; Smets, E.; van Schayck, C.P.; Kramer, B.W.; Mommers, M.; Sheikh, A. Preterm birth and childhood wheezing disorders: A systematic review and meta-analysis. PLoS Med. 2014, 11, e1001596. [Google Scholar] [CrossRef]
- Salameh, J.-P.; Bossuyt, P.M.; McGrath, T.A.; Thombs, B.D.; Hyde, C.J.; Macaskill, P.; Deeks, J.J.; Leeflang, M.; Korevaar, D.A.; Whiting, P.; et al. Preferred reporting items for systematic review and meta-analysis of diagnostic test accuracy studies (prisma-dta): Explanation, elaboration, and checklist. BMJ Br. Med. J. 2020, 370, m2632. [Google Scholar]
- Rebar, A.L.; Stanton, R.; Geard, D.; Short, C.; Duncan, M.J.; Vandelanotte, C. A meta-meta-analysis of the effect of physical activity on depression and anxiety in non-clinical adult populations. Health Psychol. Rev. 2015, 9, 366–378. [Google Scholar] [CrossRef]
- Talic, S.; Shah, S.; Wild, H.; Gasevic, D.; Maharaj, A.; Ademi, Z.; Li, X.; Xu, W.; Mesa-Eguiagaray, I.; Rostron, J.; et al. Effectiveness of public health measures in reducing the incidence of COVID-19, SARS-CoV-2 transmission, and COVID-19 mortality: Systematic review and meta-analysis. BMJ Br. Med. J. 2021, 375, e068302. [Google Scholar]
- Chen, Z.; Zhai, X.; Ye, S.; Zhang, Y.; Yu, J. A meta-analysis of restorative nature landscapes and mental health benefits on urban residents and its planning implication. Urban Plan. Int. 2016, 31, 16–26+43. [Google Scholar] [CrossRef]
- Xu, Z.; Marini, S.; Mauro, M.; Maietta Latessa, P.; Grigoletto, A.; Toselli, S. Associations between urban green space quality and mental wellbeing: Systematic review. Land 2025, 14, 381. [Google Scholar] [CrossRef]
- Arcaya, M.C.; Tucker-Seeley, R.D.; Kim, R.; Schnake-Mahl, A.; So, M.; Subramanian, S.V. Research on neighborhood effects on health in the united states: A systematic review of study characteristics. Soc. Sci. Med. 2016, 168, 16–29. [Google Scholar] [CrossRef]
- Boogaard, H.; Patton, A.; Atkinson, R.; Brook, J.; Chang, H.; Crouse, D.; Fussell, J.; Hoek, G.; Hoffmann, B.; Kappeler, R. Long-term exposure to traffic-related air pollution and selected health outcomes: A systematic review and meta-analysis. Environ. Int. 2022, 164, 107262. [Google Scholar] [CrossRef]
- Maier, D.; Waldherr, A.; Miltner, P.; Wiedemann, G.; Niekler, A.; Keinert, A.; Pfetsch, B.; Heyer, G.; Reber, U.; Haeussler, T.; et al. Applying lda topic modeling in communication research: Toward a valid and reliable methodology. Commun. Methods Meas. 2018, 12, 93–118. [Google Scholar] [CrossRef]
- Ewing, R.; Cervero, R. Travel and the built environment: A meta-analysis. J. Am. Plan. Assoc. 2010, 76, 265–294. [Google Scholar] [CrossRef]
- Sallis, J.; Bauman, A.; Pratt, M. Environmental and policy interventions to promote physical activity. Am. J. Prev. Med. 1998, 15, 379–397. [Google Scholar] [CrossRef]
- Leng, H.; Zou, C.; Yuan, Q. Perceived neighborhood environment in winter and health of elderly residents in the winter city: The mediating effect of physical activity. Shanghai Urban Plan. Rev. 2022, 1, 148–155. [Google Scholar]
- Chen, Y.; He, N. Analysis of walkable environment and influential factors in rail transit station areas: Case study of 12 neighborhoods in Shanghai. Urban Plan. Forum 2012, 6, 96–104. [Google Scholar]
- Chun, Y.; Bindong, S.; Xiajie, Y. Exploring the association of population density with urban livability. Geogr. Sci. 2024, 44, 179–191. [Google Scholar]
- Linchuan, Y.; Qing, Z. Spatially heterogeneous effects of built environment on travel behavior of older adults. J. Southwest Jiaotong Univ. 2023, 58, 696–703. [Google Scholar]
- Jianxi, F.; Zhenshan, Y. Factors influencing travel behavior of urban elderly people in nanjing. Prog. Geogr. 2015, 34, 1598–1608. [Google Scholar]
- Jiaxiong, X.; Xiaoli, C.; Keliang, L.; Jian, C. The impact of spatial heterogeneity in community built environment on the elderly’s active travel. J. Beijing Jiaotong Univ. 2023, 47, 103–111. [Google Scholar]
- Frank, L.D.; Schmid, T.L.; Sallis, J.F.; Chapman, J.; Saelens, B.E. Linking objectively measured physical activity with objectively measured urban form: Findings from smartraq. Am. J. Prev. Med. 2005, 28, 117–125. [Google Scholar] [CrossRef]
- Saelens, B.E.; Handy, S.L. Built environment correlates of walking: A review. Med. Sci. Sports Exerc. 2008, 40 (Suppl. S7), S550. [Google Scholar] [CrossRef]
- Koohsari, M.J.; Sugiyama, T.; Mavoa, S.; Villanueva, K.; Badland, H.; Giles-Corti, B.; Owen, N. Street network measures and adults’ walking for transport: Application of space syntax. Health Place 2016, 38, 89–95. [Google Scholar] [CrossRef]
- Jin, J.; Qi, K.; Bai, L.; Shen, X. The investigation and analysis of the fitness to the aged of micro-space in old town based on the livable target —With the example of nanjing xinjiekou subdistrict. Chin. Landsc. Archit. 2015, 31, 91–95. [Google Scholar]
- Van Cauwenberg, J.; Van Holle, V.; Simons, D.; Deridder, R.; Clarys, P.; Goubert, L.; Nasar, J.; Salmon, J.; De Bourdeaudhuij, I.; Deforche, B. Environmental factors influencing older adults’ walking for transportation: A study using walk-along interviews. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 85. [Google Scholar] [CrossRef]
- Dannenberg, A.L.; Cramer, T.W.; Gibson, C.J. Assessing the walkability of the workplace: A new audit tool. Am. J. Health Promot. 2005, 20, 39–44. [Google Scholar] [CrossRef]
- Cerin, E.; Nathan, A.; van Cauwenberg, J.; Barnett, D.W.; Barnett, A.; Council on Environment and Physical Activity. The neighbourhood physical environment and active travel in older adults: A systematic review and meta-analysis. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 15. [Google Scholar] [CrossRef]
- Huang, L.; Liu, S.; Zheng, B.; Wei, D. Measuring walkability of the built environment in communities for an aging society. S. Archit. 2024, 107–114. [Google Scholar]
- Hartig, T.; van den Berg, A.E.; Hagerhall, C.M.; Tomalak, M.; Bauer, N.; Hansmann, R.; Ojala, A.; Syngollitou, E.; Carrus, G.; van Herzele, A.; et al. Health benefits of nature experience: Psychological, social and cultural processes. In Forests, Trees and Human Health; Nilsson, K., Sangster, M., Gallis, C., Hartig, T., de Vries, S., Seeland, K., Schipperijn, J., Eds.; Springer: Dordrecht, Germany, 2011; pp. 127–168. [Google Scholar]
- Gao, M.; Song, K.; Kong, J.; Yuan, Y. Influence mechanism of green space on older adults’ mental health: Taking old residential area of tianjin as an example. J. Settle. West China 2022, 37, 74–80. [Google Scholar]
- Wang, H.; Wang, Y.; Wang, Z.; Wu, Z. Influence of built environment of urban community on outdoor physical activity and health of the elderl. Sports Sci. 2023, 44, 81–89. [Google Scholar]
- Yang, X.; Yuhang, Z.; Xiaoming, K. Exploring the effects of green space of community level on people’s BMI and self-rated health: A case study of Shanghai. Landsc. Archit. 2021, 28, 49–54. [Google Scholar]
- Leyao, J.; Rulin, M.; Shuxia, G.; Jia, H. Association of exposure to residential green space and cardiovascular disease incidence among rural adult residents in Xinjiang: A prospective cohort study. Chin. J. Public Health 2023, 39, 996–1000. [Google Scholar]
- Yue, Y.; Yang, D.; Xu, D. How built environments affect urban older adults’ mental health: Contrasting perspective of observation and perception. Mod. Urban Res. 2022, 31, 6–14. [Google Scholar]
- Van Cauwenberg, J.; Van Holle, V.; De Bourdeaudhuij, I.; Van Dyck, D.; Deforche, B. Neighborhood walkability and health outcomes among older adults: The mediating role of physical activity. Health Place. 2016, 37, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Wang, L.; Liao, P.; Gu, N. Spontaneous participation of the seniors in street-corner small-scale public spaces in old city zones. Archit. J. 2021, 1, 65–69. [Google Scholar]
- Cohen, S.; Evans, G.W.; Stokols, D.; Krantz, D.S. Behavior, Health, and Environmental Stress; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Lawton, M.P. Competence, environmental press, and the adaptation of older people. Aging Environ. Theor. Approaches 1982, 7, 33–59. [Google Scholar]
- Ma, H.; Zhu, K.; Li, J.; Li, B. A study on the improvement of neighborhood pedestrian space for senior people with visual degradation. Planners 2019, 35, 12–17. [Google Scholar]
- Evans, G.W. Environmental Stress; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Ji, L. The effect of physical exercise on mental health. J. Shandong Phys. Educ. Inst. 1998, 14, 37–42. [Google Scholar]
- Vanderlinden, J.; Boen, F.; van Uffelen, J.G.Z. Effects of physical activity programs on sleep outcomes in older adults: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 11. [Google Scholar] [CrossRef]
- Yao, R.; Cai, X.; Jiang, H. The impact of social support and self—Esteem on the resilience and health of elderly people. Psychol. Explor. 2016, 36, 239–244. [Google Scholar]
- Yu, L. Regional characteristics and contradictory differences in China’s urbanization development. Urban Plan. Forum 2007, 15–19. [Google Scholar]
- Zhu, Y.; Fu, R. The humane attentiveness in urban design. Mod. Urban. Res. 2006, 21, 29–33. [Google Scholar]
Classify | Search Keywords | Time | Number | |
---|---|---|---|---|
Main | Combined | |||
Physical health | older/adults elder | physical; built environment; street; community; neighbor; walk | 2000.01 —— 2024.08 | 735 |
Mental health | mental; built environment; street; community; neighbor; landscape; blue -green space; natural space; green space | 818 |
Quality Assessment Items | Sample Size Assessment | ||
---|---|---|---|
Items | Assessment Rules | Sample Size | Assessment Rules |
(1). Study Design Type | Cross-sectional: 0; Longitudinal: 1; Quasi-experimental: 0.5 | ≤100 | 0.25 |
(2). Reported Response Rate | ≥60%: 1; not reported or ≤60%: 0 | 101~300 | 0.5 |
(3). Analyses adjusted for sociodemographic and confounding variables | done: 1 | 301~500 | 1 |
(4). The study adjusts for self-selection bias | done: 1 | 501~1000 | 1.25 |
(5). The study uses valid and reliable health measures | done: 1 | 1001~2500 | 1.5 |
(6). The statistical analysis methods are appropriate and valid | appropriate: 0.5 | >2500 | 1.75 |
(7). The study area includes diverse environmental exposure levels | covered: 1 |
Characteristic | Number of Articles | |
---|---|---|
Geographical region | First-tier cities | 20 |
New first-tier cities | 22 | |
Second-tier cities | 13 | |
Research design type | Cross-sectional | 52 |
Longitudinal | 0 | |
Quasi-experimental | 0 | |
Discipline | Public Health | 7 |
Architecture | 12 | |
Urban Planning | 11 | |
Transportation | 2 | |
Geographic Information Science | 9 | |
Landscape | 2 | |
Sports Science | 9 | |
Health Classification | Physical | 32 |
Mental | 14 | |
Physical and Mental | 6 | |
Environmental Feature Classification | Objective | 20 |
Perceived | 14 | |
Objective and Perceived | 18 | |
Data Source (objective) | Multi-source Data (street view/POI/remote sensing/OSM/GIS) | 26 |
Field Survey | 8 | |
Data Source (perceived) | Questionnaire | 30 |
Machine Learning Model | 1 | |
Sample size | ≤100 | 0 |
101–300 | 6 | |
301–500 | 12 | |
501–1000 | 17 | |
1001–2500 | 8 | |
>2500 | 9 | |
Quality assessment | 0–2 (low quality) | 0 |
3–4 (moderate quality) | 22 | |
5–7 (high quality) | 30 |
Health | Variable | Number of Studies Reporting (n) | Analysis | Reason |
---|---|---|---|---|
Physical Health | activity frequency | 3 | NO | Insufficient number of studies. |
activity intensity | 27 | YES | Most widely reported indicator with consistent measurement methods. | |
self-rated health | NO | Insufficient number of studies. | ||
Mental Health | self-rated mental health | 4 | NO | Insufficient number of studies. |
depression and anxiety assessment | 7 | NO | The number of environmental indicators available for calculation in these studies is insufficient. | |
social interaction | 9 | YES | Most widely reported indicator with consistent measurement methods. |
Health Dimension | Built Environment | Category | Indicator | P (n) | Ø (n) | N (n) | Total (n) | Z | p-Value | Direction (D) |
---|---|---|---|---|---|---|---|---|---|---|
Physical Health (Activity Frequency) | Object | population density | 5 | 4 | 2 | 11 | 1.9744 | 0.0488 | P | |
Convenience | intersection density | 3 | 3 | 1 | 7 | 1.2809 | 0.2005 | Ø | ||
Accessibility | destination accessibility | 2 | 3 | 1 | 6 | 0.8069 | 0.4179 | Ø | ||
land use mix | 6 | 3 | 1 | 10 | 3.1374 | 0.005 | P | |||
Comfort | greening rate | 6 | 2 | 0 | 8 | 3.2206 | 0.0013 | P | ||
Perceived | Convenience | street connectivity | 1 | 4 | 0 | 5 | 0.7238 | 0.4715 | Ø | |
Comfort | road quality | 3 | 3 | 0 | 6 | 2.6642 | 0.0078 | P | ||
aesthetics | 7 | 3 | 0 | 10 | 3.1655 | 0.0015 | P | |||
Safety | public security | 5 | 4 | 0 | 9 | 3.0402 | 0.0024 | P | ||
traffic | 2 | 3 | 0 | 5 | 1.6278 | 0.1031 | Ø | |||
Mental Health (Social Interaction) | Object | Comfort | NDVI | 0 | 3 | 1 | 4 | −0.8423 | 0.4009 | Ø |
Perceived | Safety | perceived safety | 2 | 2 | 0 | 4 | 2.3301 | 0.0198 | P | |
Comfort | walkability | 4 | 0 | 0 | 4 | 2.93 | 0.0034 | P |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Hou, Y.; Qi, Y.; Jing, W.; Ma, D.; Ying, J.; Feng, W. The Associative Effects and Design Implications of Urban Built Environment on the Physical and Mental Recovery of Older Adults in China: Bibliometric and Meta-Analysis. Land 2025, 14, 1952. https://doi.org/10.3390/land14101952
He J, Hou Y, Qi Y, Jing W, Ma D, Ying J, Feng W. The Associative Effects and Design Implications of Urban Built Environment on the Physical and Mental Recovery of Older Adults in China: Bibliometric and Meta-Analysis. Land. 2025; 14(10):1952. https://doi.org/10.3390/land14101952
Chicago/Turabian StyleHe, Jing, Yixinyu Hou, Yingtao Qi, Wenqiang Jing, Ding Ma, Jing Ying, and Wei Feng. 2025. "The Associative Effects and Design Implications of Urban Built Environment on the Physical and Mental Recovery of Older Adults in China: Bibliometric and Meta-Analysis" Land 14, no. 10: 1952. https://doi.org/10.3390/land14101952
APA StyleHe, J., Hou, Y., Qi, Y., Jing, W., Ma, D., Ying, J., & Feng, W. (2025). The Associative Effects and Design Implications of Urban Built Environment on the Physical and Mental Recovery of Older Adults in China: Bibliometric and Meta-Analysis. Land, 14(10), 1952. https://doi.org/10.3390/land14101952