Mapping the Research Landscape of Soil Erosion in Protected Areas: A Systematic Bibliometric Analysis
Abstract
1. Introduction
- (1)
- examine temporal growth patterns and subject area distribution of publications,
- (2)
- identify major thematic areas and emerging research trends,
- (3)
- determine the most influential publications and their intellectual foundations,
- (4)
- analyze leading publication outlets and the scope of research, and
- (5)
- assess the geographical distribution of studies and patterns of collaboration.
2. Literature Review
3. Methodology
3.1. Data Collection
- (1)
- Search terms: (“soil erosion” OR “soil loss”) AND (“park” OR “protected area”) were searched within the Title, Abstract, and Keywords fields. This criterion ensures that the selected publications explicitly address soil erosion in the context of protected areas.
- (2)
- Source type: The search was limited to journal sources. This criterion ensures the inclusion of studies published in reputable, peer-reviewed outlets.
- (3)
- Document type: Only articles were included, excluding conference papers, reviews, and other formats. This restriction ensures the dataset consists of original research contributions.
3.2. Data Analysis
- (1)
- Co-occurrence analysis explores major research themes and trends based on the frequency with which keywords appear together.
- (2)
- Co-citation analysis explores the intellectual foundation by detecting documents that are cited together by other works.
- (3)
- Bibliographic coupling analysis explores relationships between journals that cite the same source, characterizing the scopes of dissemination outlets.
- (4)
- Co-authorship analysis explores collaborative relationships among countries.
4. Results
4.1. Research Output and Subject Areas
4.2. Keywords
4.3. Documents
4.4. Journals
4.5. Countries
5. Discussion
5.1. Development and Composition of the Field
5.2. Research Themes and Trends
5.3. Seminal Documents and Intellectual Foundation
5.4. Geography of Soil Erosion Research in Protected Areas
5.5. Research Gaps and Future Directions
5.6. Practical Implications
5.7. Limitations and Recommendations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Higgitt, D. Soil erosion and soil problems. Prog. Phys. Geogr. 1993, 17, 461–472. [Google Scholar] [CrossRef]
- Lal, R. Soil degradation by erosion. Land Degrad. Dev. 2001, 12, 519–539. [Google Scholar] [CrossRef]
- Pimentel, D.; Burgess, M. Soil erosion threatens food production. Agriculture 2013, 3, 443–463. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [PubMed]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Hategekimana, Y.; Allam, M.; Meng, Q.; Nie, Y.; Mohamed, E. Quantification of soil losses along the coastal protected areas in Kenya. Land 2020, 9, 137. [Google Scholar] [CrossRef]
- Marion, J.L.; Wimpey, J. Assessing the influence of sustainable trail design and maintenance on soil loss. J. Environ. Manag. 2017, 189, 46–57. [Google Scholar] [CrossRef]
- Adame, M.F.; Hermoso, V.; Perhans, K.; Lovelock, C.E.; Herrera-Silveira, J.A. Selecting cost-effective areas for restoration of ecosystem services. Conserv. Biol. 2014, 29, 493–502. [Google Scholar] [CrossRef]
- Monz, C.A.; Cole, D.N.; Leung, Y.-F.; Marion, J.L. Sustaining visitor use in protected areas: Future opportunities in recreation ecology research based on the USA experience. Environ. Manag. 2010, 45, 551–562. [Google Scholar] [CrossRef]
- Chapungu, L.; Nhamo, G.; Dube, K.; Chikodzi, D. Soil erosion in the savanna biome national parks of South Africa. Phys. Chem. Earth 2023, 130, 103376. [Google Scholar] [CrossRef]
- Millward, A.A.; Mersey, J.E. Conservation strategies for effective land management of protected areas using an erosion prediction information system (EPIS). J. Environ. Manag. 2001, 61, 329–343. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Fang, H. Impacts of climate change on water erosion: A review. Earth Sci. Rev. 2016, 163, 94–117. [Google Scholar] [CrossRef]
- Luce, C.H.; Black, T.A. Sediment production from forest roads in western Oregon. Water Resour. Res. 1999, 35, 2561–2570. [Google Scholar] [CrossRef]
- Nepal, S.K. Trail impacts in Sagarmatha (Mt. Everest) National Park, Nepal: A logistic regression analysis. Environ. Manag. 2003, 32, 312–321. [Google Scholar] [CrossRef]
- Kuhwald, M.; Busche, F.; Saggau, P.; Duttmann, R. Is soil loss due to crop harvesting the most disregarded soil erosion process? A review of harvest erosion. Soil Tillage Res. 2022, 215, 105213. [Google Scholar] [CrossRef]
- Peng, Q.; Liu, B.; Hu, Y.; Wang, A.; Guo, Q.; Yin, B.; Cao, Q.; He, L. The role of conventional tillage in agricultural soil erosion. Agric. Ecosyst. Environ. 2023, 348, 108407. [Google Scholar] [CrossRef]
- Rangel, L.; de Souza, J.M.; do Vale, V.S. Soil erosion and land degradation on trail systems in mountainous areas: Two case studies from South-East Brazil. Soil Syst. 2019, 3, 56. [Google Scholar] [CrossRef]
- Olive, N.D.; Marion, J.L. The influence of use-related, environmental, and managerial factors on soil loss from recreational trails. J. Environ. Manag. 2009, 90, 1483–1493. [Google Scholar] [CrossRef]
- Meadema, F.; Marion, J.L.; Arredondo, J.; Wimpey, J. The influence of layout on Appalachian Trail soil loss, widening, and muddiness: Implications for sustainable trail design and management. J. Environ. Manag. 2020, 257, 109986. [Google Scholar] [CrossRef]
- Ng, S.L. Is surfacing a good choice for trail management? Evidence from four high-use hiking trails in Hong Kong. J. Soil Water Conserv. 2022, 77, 600–608. [Google Scholar] [CrossRef]
- Newsome, D.; Smith, A.; Moore, S.A. Horse riding in protected areas: A critical review and implications for research and management. Curr. Issues Tour. 2008, 11, 144–166. [Google Scholar] [CrossRef]
- Pickering, C.M.; Hill, W.; Newsome, D.; Leung, Y.F. Comparing hiking, mountain biking and horse riding impacts on vegetation and soils in Australia and the United States of America. J. Environ. Manag. 2010, 91, 551–562. [Google Scholar] [CrossRef]
- Abdullah, M.; Feagin, R.; Musawi, L. The use of spatial empirical models to estimate soil erosion in arid ecosystems. Environ. Monit. Assess. 2017, 189, 78. [Google Scholar] [CrossRef]
- Ballantyne, M.; Gudes, O.; Pickering, C.M. Recreational trails are an important cause of fragmentation in endangered urban forests: A spatial analysis. Landsc. Urban Plan. 2014, 130, 112–124. [Google Scholar] [CrossRef]
- Moore, R.L.; Leung, Y.-F.; Matisoff, C.; Dorwart, C.; Parker, A. Understanding users’ perceptions of trail resource impacts and how they affect experiences: An integrated approach. Landsc. Urban Plan. 2012, 107, 343–350. [Google Scholar] [CrossRef]
- Cole, D.N. Assessing and Monitoring Backcountry Trail Conditions; Research Paper INT-303; USDA Forest Service: Ogden, UT, USA, 1983. [Google Scholar]
- Marion, J.L.; Leung, Y.F. Trail resource impacts and an examination of alternative assessment techniques. J. Park Recreat. Adm. 2001, 19, 17–37. [Google Scholar]
- Marion, J.L.; Leung, Y.F.; Eagleston, H.; Burroughs, K. Monitoring trail conditions: New methodological considerations. J. Park Recreat. Adm. 2006, 24, 21–37. [Google Scholar]
- Tomczyk, A.M.; Ewertowski, M.W.; Creany, N.; Ancin-Murguzur, F.J.; Javier, F.; Monz, C. The application of unmanned aerial vehicle (UAV) surveys and GIS to the analysis and monitoring of recreational trail conditions. Int. J. Appl. Earth Obs. Geoinf. 2023, 123, 103474. [Google Scholar] [CrossRef]
- Wade, C.R.; Bolding, M.C.; Aust, W.M.; Lakel, W.A., III; Schilling, E.B. Comparing sediment trap data with the USLE-Forest, RUSLE2, and WEPP-road erosion models for evaluation of bladed skid trail BMPs. Trans. ASABE 2013, 55, 403–414. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Ewertowski, M. Quantifying short-term surface changes on recreational trails: The use of topographic surveys and ‘digital elevation models of differences’ (DODs). Geomorphology 2013, 183, 58–72. [Google Scholar] [CrossRef]
- Simão, M.V.R.C.; Farías-Torbidoni, E.L. Management of degraded trails in protected natural areas worldwide: A systematic review of scientific literature. Land Degrad. Dev. 2025, 36, 3279–3293. [Google Scholar] [CrossRef]
- Ballantyne, M.; Pickering, C.M. The impacts of trail infrastructure on vegetation and soils: Current literature and future directions. J. Environ. Manag. 2015, 164, 53–64. [Google Scholar] [CrossRef]
- Leung, Y.F.; Marion, J.L. Recreation impacts and management in wilderness: A state-of-knowledge review. In Proceedings of the Wilderness Science in a Time of Change Conference, Missoula, MT, USA, 23–27 May 1999; USDA Forest Service: Ogden, UT, USA, 2000; Volume 5, pp. 23–48. [Google Scholar]
- Xu, Y.; Lyu, J.; Liu, H.; Xue, Y. A bibliometric and visualized analysis of the global literature on black soil conservation from 1983–2022 based on CiteSpace and VOSviewer. Agronomy 2022, 12, 2432. [Google Scholar] [CrossRef]
- Bezak, N.; Mikoš, M.; Borrelli, P.; Alewell, C.; Alvarez, P.; Anache, J.A.A.; Baartman, J.; Ballabio, C.; Biddoccu, M.; Cerdà, A.; et al. Soil erosion modelling: A bibliometric analysis. Environ. Res. 2021, 197, 111087. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Zhang, Y.; Wu, Z.; Lv, T. A bibliometric analysis on land degradation: Current status, development, and future directions. Land 2020, 9, 28. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Ng, S.-L.; Wong, F.-M. Recent developments in research on food waste and the circular economy. Biomass 2024, 4, 472–489. [Google Scholar] [CrossRef]
- Baas, J.; Schotten, M.; Plume, A.; Côté, G.; Karimi, R. Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quant. Sci. Stud. 2020, 1, 377–386. [Google Scholar] [CrossRef]
- Hockings, M.; Stolton, S.; Dudley, N. Evaluating Effectiveness: A Framework for Assessing Management Effectiveness of Protected Areas; IUCN: Gland, Switzerland, 2006. [Google Scholar]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Boardman, J.; Poesen, J. Soil Erosion in Europe; John Wiley & Sons: Chichester, UK, 2006. [Google Scholar]
- Marion, J.L. A review and synthesis of recreation ecology research supporting carrying capacity and visitor use management decision-making. J. For. 2016, 114, 339–351. [Google Scholar] [CrossRef]
- Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES). The Assessment Report on Land Degradation and Restoration; IPBES: Bonn, Germany, 2018. [Google Scholar]
- Zemke, J.J. Runoff and soil erosion assessment on forest roads using a small scale rainfall simulator. Hydrology 2016, 3, 25. [Google Scholar] [CrossRef]
- Shakesby, R.A. Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth Sci. Rev. 2011, 105, 71–100. [Google Scholar] [CrossRef]
- Aguirre-Salado, C.A.; Miranda-Aragón, L.; Pompa-García, M.; Reyes-Hernández, H.; Soubervielle-Montalvo, C.; Flores-Cano, J.A.; Méndez-Cortés, H. Improving identification of areas for ecological restoration for conservation by integrating USLE and MCDA in a GIS-environment: A pilot study in a priority region Northern Mexico. ISPRS Int. J. Geo-Inf. 2017, 6, 262. [Google Scholar] [CrossRef]
- Ganasri, B.P.; Ramesh, H. Assessment of soil erosion by RUSLE model using remote sensing and GIS: A case study of Nethravathi Basin. Geosci. Front. 2016, 7, 953–961. [Google Scholar] [CrossRef]
- Tesfaw, A.T.; Pfaff, A.; Kroner, R.E.G.; Mascia, M.B. Land-use and land-cover change shape the sustainability and impacts of protected areas. Proc. Natl. Acad. Sci. USA 2017, 115, 2084–2089. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; USDA Agriculture Handbook No. 537; U.S. Department of Agriculture: Washington, DC, USA, 1978. [Google Scholar]
- García-Ruiz, J.M.; Beguería, S.; Nadal-Romero, E.; González-Hidalgo, J.C.; Lana-Renault, N.; Sanjuán, Y. A meta-analysis of soil erosion rates across the world. Geomorphology 2015, 239, 160–173. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; Van der Putten, W.H.; et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef]
- Fu, Q.; Li, B.; Hou, Y.; Bi, X.; Zhang, X. Effects of land use and climate change on ecosystem services in Central Asia’s arid regions: A case study in Altay Prefecture, China. Sci. Total Environ. 2017, 607–608, 633–646. [Google Scholar] [CrossRef]
- Ochoa, P.A.; Fries, A.; Mejía, D.; Burneo, J.I.; Ruíz-Sinoga, J.D.; Cerdà, A. Effects of climate, land cover and topography on soil erosion risk in a semiarid basin of the Andes. Catena 2016, 140, 31–42. [Google Scholar] [CrossRef]
- Dunjó, G.; Pardini, G.; Gispert, M. Land use change effects on abandoned terraced soils in a Mediterranean catchment, NE Spain. Catena 2003, 52, 23–37. [Google Scholar] [CrossRef]
- Jordan, G.; Van Rompaey, A.; Szilassi, P.; Csillag, G.; Mannaerts, C.; Woldai, T. Historical land use changes and their impact on sediment fluxes in the Balaton basin (Hungary). Agric. Ecosyst. Environ. 2005, 108, 119–133. [Google Scholar] [CrossRef]
- Mati, B.M.; Mutie, S.; Gadain, H.; Home, P.; Mtalo, F. Impacts of land-use/cover changes on the hydrology of the transboundary Mara River, Kenya/Tanzania. Lakes Reserv. Sci. Policy Manag. Sustain. Use 2008, 13, 169–177. [Google Scholar] [CrossRef]
- Szilassi, P.; Jordan, G.; van Rompaey, A.; Csillag, G. Impacts of historical land use changes on erosion and agricultural soil properties in the Kali Basin at Lake Balaton, Hungary. Catena 2006, 68, 96–108. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, E. Spatial-temporal changes in ecosystem services and the trade-off relationship in mountain regions: A case study of Hengduan Mountain region in Southwest China. J. Clean. Prod. 2020, 264, 121573. [Google Scholar] [CrossRef]
- Moreno, G.; Aviron, S.; Berg, S.; Crous-Duran, J.; Franca, A.; de Jalón, S.G.; Hartel, T.; Mirck, J.; Pantera, A.; Palma, J.H.N. Agroforestry systems of high nature and cultural value in Europe: Provision of commercial goods and other ecosystem services. Agrofor. Syst. 2018, 92, 877–891. [Google Scholar] [CrossRef]
- Zhou, G.Y.; Morris, J.D.; Yan, J.H.; Yu, Z.Y.; Peng, S.L. Hydrological impacts of reafforestation with eucalypts and indigenous species: A case study in southern China. For. Ecol. Manag. 2002, 167, 209–222. [Google Scholar] [CrossRef]
- Barger, N.N.; Herrick, J.E.; Van Zee, J.; Belnap, J. Impacts of biological soil crust disturbance and composition on C and N loss from water erosion. Biogeochemistry 2006, 77, 247–263. [Google Scholar] [CrossRef]
- McClanahan, T.R.; Obura, D. Sedimentation effects on shallow coral communities in Kenya. J. Exp. Mar. Biol. Ecol. 1997, 209, 103–122. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Su, X.; Qi, L.; Liu, M. Evaluation of the comprehensive carrying capacity of interprovincial water resources in China and the spatial effect. J. Hydrol. 2019, 575, 794–809. [Google Scholar] [CrossRef]
- Allen, J.L.; Sorbel, B. Assessing the differenced normalized burn ratio’s ability to map burn severity in the boreal forest and tundra ecosystems of Alaska’s national parks. Int. J. Wildland Fire 2008, 17, 463–475. [Google Scholar] [CrossRef]
- Maikhuri, R.K.; Nautiyal, S.; Rao, K.S.; Chandrasekhar, K.; Gavali, R.; Saxena, K.G. Analysis and resolution of protected area–people conflicts in Nanda Devi Biosphere Reserve, India. Environ. Conserv. 2000, 27, 43–53. [Google Scholar] [CrossRef]
- Medley, K.E.; Okey, B.W.; Barrett, G.W.; Lucas, M.F.; Renwick, W.H. Landscape change with agricultural intensification in a rural watershed, southwestern Ohio, U.S.A. Landsc. Ecol. 1995, 10, 161–176. [Google Scholar] [CrossRef]
- Vanwalleghem, T.; Stockmann, U.; Minasny, B.; McBratney, A.B. A quantitative model for integrating landscape evolution and soil formation. J. Geophys. Res. Earth Surf. 2013, 118, 331–347. [Google Scholar] [CrossRef]
- Hammitt, W.E.; Cole, D.N. Wildland Recreation: Ecology and Management; Wiley-Blackwell: New York, NY, USA, 1998. [Google Scholar]
- Hammitt, W.E.; Cole, D.N.; Monz, C.A. Wildland Recreation: Ecology and Management, 3rd ed.; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Leung, Y.-F.; Marion, J.L. The influence of sampling interval on the accuracy of trail impact assessment. Landsc. Urban Plan. 1999, 43, 167–179. [Google Scholar] [CrossRef]
- Liddle, M.J. Recreation Ecology: The Ecological Impact of Outdoor Recreation and Ecotourism; Chapman & Hall: London, UK, 1997. [Google Scholar]
- Fullen, M.A.; Catt, J.A. Soil Management: Problems and Solutions; Routledge: London, UK, 2004. [Google Scholar] [CrossRef]
- Morgan, R.P.C. Soil Erosion and Conservation; Blackwell: Oxford, UK, 2005. [Google Scholar]
- Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Plano de Manejo do Parque Nacional da Serra da Bocaina; IBAMA: Brasília, Brazil, 2002. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016; Available online: https://www.R-project.org (accessed on 15 August 2025).
- He, M.; Cliquet, A. Challenges for protected areas management in China. Sustainability 2020, 12, 5879. [Google Scholar] [CrossRef]
- Bodoque, J.M.; Ballesteros-Cánovas, J.A.; Rubiales, J.M.; Perucha, M.Á.; Nadal-Romero, E.; Stoffel, M. Quantifying soil erosion from hiking trail in a protected natural area in the Spanish Pyrenees. Land Degrad. Dev. 2017, 28, 2255–2267. [Google Scholar] [CrossRef]
- Buckley, R.; Robinson, J.; Carmody, J.; King, N. Monitoring for management of conservation and recreation in Australian protected areas. Biodivers. Conserv. 2008, 17, 3589–3606. [Google Scholar] [CrossRef]
- Marion, J.L.; Leung, Y.F. Indicators and protocols for monitoring impacts of formal and informal trails in protected areas. J. Tour. Leis. Stud. 2011, 23, 145–161. [Google Scholar]
- Radloff, A. Mapping Research Collaboration Among APEC Economies; Australian Council for Educational Research (ACER): Melbourne, Australia, 2017; Available online: https://rd.acer.org/article/mapping-research-collaboration-among-apec-economies (accessed on 15 August 2025).
- Chakrabarti, K.; Mondal, D. India’s research collaboration trend with the selected African countries: An exploratory study. J. Scientometr. Res. 2021, 10, 412–422. [Google Scholar] [CrossRef]
- Pricope, N.G.; Daldegan, G.A.; Zvoleff, A.; Mwenda, K.M.; Noon, M.; Lopez-Carr, D. Operationalizing an integrative socio-ecological framework in support of global monitoring of land degradation. Land Degrad. Dev. 2022, 34, 109–124. [Google Scholar] [CrossRef]
Rank (nth) | Subject Area 1 | Number of Articles 2 |
---|---|---|
1 | Environmental Science | 317 |
2 | Agricultural and Biological Sciences | 219 |
3 | Earth and Planetary Sciences | 156 |
4 | Social Sciences | 106 |
5 | Engineering | 30 |
6 | Energy | 24 |
7 | Biochemistry, Genetics and Molecular Biology | 16 |
8 | Computer Science | 15 |
9 | Multidisciplinary | 11 |
Rank (nth) | Keyword 1 | Occurrences |
---|---|---|
1 | soil erosion | 260 |
2 | soils | 108 |
3 | erosion | 78 |
4 | protected area | 72 |
5 | environmental protection | 55 |
6 to 7 | national park; soil conservation | 50 |
8 | GIS | 48 |
9 to 10 | biodiversity; China | 47 |
11 | land use | 46 |
12 | runoff | 43 |
13 to 14 | climate change; forestry | 37 |
15 | vegetation | 36 |
16 | ecosystem service | 35 |
17 to 19 | conservation; environmental monitoring; United States | 34 |
20 | land use change | 33 |
21 | remote sensing | 31 |
Rank (nth) | Document 1 | Title | Year | Journal | Citations |
---|---|---|---|---|---|
1 | Fu et al. [54] | Effects of land use and climate change on ecosystem services in Central Asia’s arid regions: A case study in Altay Prefecture, China | 2017 | Science of the Total Environment | 251 |
2 | Ochoa et al. [55] | Effects of climate, land cover and topography on soil erosion risk in a semiarid basin of the Andes | 2016 | Catena | 194 |
3 | Dunjó et al. [56] | Land use change effects on abandoned terraced soils in a Mediterranean catchment, NE Spain | 2003 | Catena | 183 |
4 | Wang & Dai [60] | Spatial-temporal changes in ecosystem services and the trade-off relationship in mountain regions: A case study of Hengduan Mountain region in Southwest China | 2020 | Journal of Cleaner Production | 178 |
5 | Moreno et al. [61] | Agroforestry systems of high nature and cultural value in Europe: provision of commercial goods and other ecosystem services | 2018 | Agroforestry Systems | 149 |
6 | Zhou et al. [62] | Hydrological impacts of reafforestation with eucalypts and indigenous species: A case study in southern China | 2002 | Forest Ecology and Management | 143 |
7 | Olive & Marion [10] | The influence of use-related, environmental, and managerial factors on soil loss from recreational trails | 2009 | Journal of Environmental Management | 143 |
8 | Barger et al. [63] | Impacts of biological soil crust disturbance and composition on C and N loss from water erosion | 2006 | Biogeochemistry | 142 |
9 | McClanahan & Obura [64] | Sedimentation effects on shallow coral communities in Kenya | 1997 | Journal of Experimental Marine Biology and Ecology | 138 |
10 | Jordan et al. [57] | Historical land use changes and their impact on sediment fluxes in the Balaton basin (Hungary) | 2005 | Agriculture, Ecosystems and Environment | 133 |
11 | Wang et al. [65] | Evaluation of the comprehensive carrying capacity of interprovincial water resources in China and the spatial effect | 2019 | Journal of Hydrology | 131 |
12 | Allen & Sorbel [66] | Assessing the differenced Normalized Burn Ratio’s ability to map burn severity in the boreal forest and tundra ecosystems of Alaska’s national parks | 2008 | International Journal of Wildland Fire | 123 |
13 | Mati et al. [58] | Impacts of land use/cover changes on the hydrology of the transboundary Mara River, Kenya/Tanzania | 2008 | Lakes and Reservoirs: Science, Policy and Management for Sustainable Use | 121 |
14 | Szilassi et al. [59] | Impacts of historical land use changes on erosion and agricultural soil properties in the Kali Basin at Lake Balaton, Hungary | 2006 | Catena | 113 |
15 | Maikhuri et al. [67] | Analysis and resolution of protected area-people conflicts in Nanda Devi Biosphere Reserve, India | 2000 | Environmental Conservation | 111 |
16 | Medley et al. [68] | Landscape change with agricultural intensification in a rural watershed, southwestern Ohio, USA | 1995 | Landscape Ecology | 109 |
17 | Vanwalleghem et al. [69] | A quantitative model for integrating landscape evolution and soil formation | 2013 | Journal of Geophysical Research: Earth Surface | 104 |
Rank (nth) | Journal 1 | Articles |
---|---|---|
1 | Catena | 17 |
2 | Journal of Environmental Management | 15 |
3 | Sustainability (Switzerland) | 14 |
4 | Science of the Total Environment | 13 |
5 to 6 | Forests; Science of Soil and Water Conservation | 9 |
7 to 8 | Environmental Management; Land | 8 |
9 | Water Switzerland | 7 |
10 to 16 | Earth Surface Processes and Landforms; Ecological Engineering; Erosion Control; Journal of Hydrology; Land Degradation and Development; Scientific Reports; Shengtai Xuebao | 6 |
17 to 18 | International Journal of Environmental Research and Public Health; Remote Sensing | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ng, S.-L.; Hong, N.-M. Mapping the Research Landscape of Soil Erosion in Protected Areas: A Systematic Bibliometric Analysis. Land 2025, 14, 1951. https://doi.org/10.3390/land14101951
Ng S-L, Hong N-M. Mapping the Research Landscape of Soil Erosion in Protected Areas: A Systematic Bibliometric Analysis. Land. 2025; 14(10):1951. https://doi.org/10.3390/land14101951
Chicago/Turabian StyleNg, Sai-Leung, and Nien-Ming Hong. 2025. "Mapping the Research Landscape of Soil Erosion in Protected Areas: A Systematic Bibliometric Analysis" Land 14, no. 10: 1951. https://doi.org/10.3390/land14101951
APA StyleNg, S.-L., & Hong, N.-M. (2025). Mapping the Research Landscape of Soil Erosion in Protected Areas: A Systematic Bibliometric Analysis. Land, 14(10), 1951. https://doi.org/10.3390/land14101951