Spatio-Temporal Evolution and Driving Forces of Habitat Quality in China’s Arid and Semi-Arid Regions: An Interpretable Machine Learning Perspective for Ecological Management
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methodology
2.3.1. Habitat Quality (HQ)
2.3.2. Landscape Pattern Indices (LSPIs)
2.3.3. PLUS Model
2.3.4. XGBoost Model
2.3.5. SHAP
2.3.6. GTWR Model
3. Results
3.1. Changes in Land Use and Landscape Patterns in ASAR of China
3.1.1. Spatial and Temporal Evolution of LUCC 1990–2020
3.1.2. Spatial and Temporal Evolution of Landscape Patterns, 1990–2020
3.2. Spatial and Temporal Evolution of Historical HQ
3.3. LUCC and HQ Under Future Development Scenarios
3.3.1. Spatial and Temporal Distribution of LUCC Under Future Development Scenarios
3.3.2. Spatial and Temporal Distribution of HQ Under Future Scenarios
3.4. Analysis of the Results of XGBoost-SHAP
3.4.1. Ranking of the Contribution of Different Drivers Based on SHAP
3.4.2. Interaction Between Different Driving Factors
3.5. Results of GTWR Analysis
4. Discussion
4.1. Impact of Land-Use Change on HQ
4.2. Analysis of Spatial and Temporal Heterogeneity of HQ and Its Drivers in ASAR
4.3. Policy Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Costanza, R.; Mageau, M. What Is a Healthy Ecosystem? Aquat. Ecol. 1999, 33, 105–115. [Google Scholar] [CrossRef]
- Daily, G.C.; Matson, P.A. Ecosystem Services: From Theory to Implementation. Proc. Natl. Acad. Sci. USA 2008, 105, 9455–9456. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Qi, H.; Zhang, J.; Shao, J.; Zhou, J.; Zhang, M. Characterization of the Spatial and Temporal Evolution of the Land Use and the Quality of the Habitat in the Region along the Construction Line of the Railway. Ecol. Indic. 2025, 173, 113368. [Google Scholar] [CrossRef]
- Wu, S.; Chen, J.; Jiang, S.; Zhang, R.; Li, Z.; Wang, L.; Li, K. Invasion Risk of Typical Invasive Alien Plants in Mountainous Areas and Their Interrelationship with Habitat Quality: A Case Study of Badong County in Central China. J. Environ. Manag. 2025, 380, 125083. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Yu, L.; Newbold, T.; Chen, X. Trends in Habitat Quality and Habitat Degradation in Terrestrial Protected Areas. Conserv. Biol. 2025, 39, e14348. [Google Scholar] [CrossRef]
- Xia, J.; Ning, L.; Wang, Q.; Chen, J.; Wan, L.; Hong, S. Vulnerability of and Risk to Water Resources in Arid and Semi-Arid Regions of West China under a Scenario of Climate Change. Clim. Change 2017, 144, 549–563. [Google Scholar] [CrossRef]
- Cui, L.; Shi, J. Evaluation and Comparison of Growing Season Metrics in Arid and Semi-Arid Areas of Northern China under Climate Change. Ecol. Indic. 2021, 121, 107055. [Google Scholar] [CrossRef]
- Li, Y.; Liu, W.; Feng, Q.; Zhu, M.; Yang, L.; Zhang, J. Quantitative Assessment for the Spatio-temporal Changes of Ecosystem Services, Tradeoff–Synergy Relationships and Drivers in the Semi-Arid Regions of China. Remote Sens. 2022, 14, 239. [Google Scholar] [CrossRef]
- Pan, N.; Du, Q.; Guan, Q.; Tan, Z.; Sun, Y.; Wang, Q. Ecological Security Assessment and Pattern Construction in Arid and Semi-Arid Areas: A Case Study of the Hexi Region, NW China. Eco-Log. Indic. 2022, 138, 108797. [Google Scholar] [CrossRef]
- Diaz, R.J.; Solan, M.; Valente, R.M. A Review of Approaches for Classifying Benthic Habitats and Evaluating Habitat Quality. J. Environ. Manag. 2004, 73, 165–181. [Google Scholar] [CrossRef]
- Ding, Q.; Chen, Y.; Bu, L.; Ye, Y. Multi-Scenario Analysis of Habitat Quality in the Yellow River Delta by Coupling FLUS with InVEST Model. Int. J. Environ. Res. Public Health 2021, 18, 2389. [Google Scholar] [CrossRef]
- Wang, B.; Cheng, W. Effects of Land Use/Cover on Regional Habitat Quality under Different Geomorphic Types Based on InVEST Model. Remote Sens. 2022, 14, 1279. [Google Scholar] [CrossRef]
- Berta Aneseyee, A.; Noszczyk, T.; Soromessa, T.; Elias, E. The InVEST Habitat Quality Model Associated with Land Use/Cover Changes: A Qualitative Case Study of the Winike Watershed in the Omo-Gibe Basin, Southwest Ethiopia. Remote Sens. 2020, 12, 1103. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Q.; Liu, N.; Sun, Y.; Guo, H.; Song, X. The Impact of LUCC on the Spatial Pattern of Ecological Network during Urbanization: A Case Study of Jinan City. Ecol. Dicators 2023, 155, 111004. [Google Scholar] [CrossRef]
- Zhao, Y.; Kasimu, A.; Gao, P.; Liang, H. Spatiotemporal Changes in The Urban Landscape Pattern and Driving Forces of LUCC Characteristics in The Urban Agglomeration on The Northern Slope of The Tianshan Mountains from 1995 to 2018. Land 2022, 11, 1745. [Google Scholar] [CrossRef]
- Deng, L.; Zhang, Q.; Cheng, Y.; Cao, Q.; Wang, Z.; Wu, Q.; Qiao, J. Underlying the Influencing Factors behind the Heterogeneous Change of Urban Landscape Patterns since 1990: A Multiple Dimension Analysis. Ecol. Indic. 2022, 140, 108967. [Google Scholar] [CrossRef]
- Steinhardt, U.; Volk, M. Meso-Scale Landscape Analysis Based on Landscape Balance Investigations: Problems and Hierarchical Approaches for Their Resolution. Ecol. Model. 2003, 168, 251–265. [Google Scholar] [CrossRef]
- Teng, S.N.; Svenning, J.-C.; Santana, J.; Reino, L.; Abades, S.; Xu, C. Linking Landscape Ecology and Macroecology by Scaling Biodiversity in Space and Time. Curr. Landsc. Ecol. Rep. 2020, 5, 25–34. [Google Scholar] [CrossRef]
- Wu, J.; Luo, J.; Zhang, H.; Qin, S.; Yu, M. Projections of Land Use Change and Habitat Quality Assessment by Coupling Climate Change and Development Patterns. Sci. Total Environ. 2022, 847, 157491. [Google Scholar] [CrossRef]
- Chen, S.; Liu, X. Spatio-Temporal Variations of Habitat Quality and Its Driving Factors in the Yangtze River Delta Region of China. Glob. Ecol. Conserv. 2024, 52, e02978. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, Z.; Liu, B.; Zhang, X.; Zhang, W.; Chen, L. Spatiotemporal Variations and Driving Factors of Habitat Quality in the Loess Hilly Area of the Yellow River Basin: A Case Study of Lanzhou City, China. J. Arid. Land 2022, 14, 637–652. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Lin, Y.; Ma, X.; Guo, S.; Ouyang, Q.; Sun, C. Habitat Quality Assessment and Driving Factors Analysis of Guangdong Province, China. Sustainability 2023, 15, 11615. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N. Prabhat Deep Learning and Process Understanding for Data-Driven Earth System Science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Cai, A.; Chang, N.; Zhang, W.; Liang, G.; Zhang, X.; Hou, E.; Jiang, L.; Chen, X.; Xu, M.; Luo, Y. The Spatial Patterns of Litter Turnover Time in Chinese Terrestrial Ecosystems. Eur. J. Soil Sci. 2020, 71, 856–867. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Zhang, J. New Machine Learning Algorithm: Random Forest. In Information Computing and Applications; Liu, B., Ma, M., Chang, J., Eds.; Springer: Berlin, Heidelberg, 2012; pp. 246–252. [Google Scholar]
- Woo, S.; Kim, W.; Jung, C.; Lee, J.; Kim, Y.; Kim, S. Spatial Analysis of Aquatic Ecological Health under Future Climate Change Using Extreme Gradient Boosting Tree (XGBoost) and SWAT. Water 2024, 16, 2085. [Google Scholar] [CrossRef]
- Zhou, B.; Chen, G.; Yu, H.; Zhao, J.; Yin, Y. Revealing the Nonlinear Impact of Human Activities and Climate Change on Ecosystem Services in the Karst Region of Southeastern Yunnan Using the XGBoost–SHAP Model. Forests 2024, 15, 1420. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A Future Land Use Simulation Model (FLUS) for Simulating Multiple Land Use Scenarios by Coupling Human and Natural Effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Dai, L.; Li, S.; Lewis, B.J.; Wu, J.; Yu, D.; Zhou, W.; Zhou, L.; Wu, S. The Influence of Land Use Change on the Spatial–Temporal Variability of Habitat Quality between 1990 and 2010 in Northeast China. J. For. Res. 2019, 30, 2227–2236. [Google Scholar] [CrossRef]
- Xiong, Z.; Yao, S.; Liu, H.; Yu, L. Multi-Scenario Forecasting of Land Use and Ecosystem Service Values in Coastal Regions: A Case Study of the Chaoshan Area, China. ISPRS Int. J. Geo-Inf. 2025, 14, 160. [Google Scholar] [CrossRef]
- Feng, S.; Zhao, W.; Yan, J.; Xia, F.; Pereira, P. Land Degradation Neutrality Assessment and Factors Influencing It in China’s Arid and Semiarid Regions. Sci. Total Environ. 2024, 925, 171735. [Google Scholar] [CrossRef]
- Wang, Q.; Guan, Q.; Sun, Y.; Du, Q.; Xiao, X.; Luo, H.; Zhang, J.; Mi, J. Simulation of Future Land Use/Cover Change (LUCC) in Typical Watersheds of Arid Regions under Multiple Scenarios. J. Environ. Manag. 2023, 335, 117543. [Google Scholar] [CrossRef]
- Liu, K.; Wu, B.; Gao, F.; Chen, Y.; He, B.; Waheed, A.; Aili, A.; Xu, Z.; Han, F.; Xu, H. Dynamic Simulation and Key Influencing Factors of Carbon Storage in the Water-Depleted Zones of an Arid Inland River Basin: Insights from the Tarim River Mainstream. Ecol. Inform. 2025, 90, 103286. [Google Scholar] [CrossRef]
- Gomes, E.; Inácio, M.; Bogdzevič, K.; Kalinauskas, M.; Karnauskaitė, D.; Pereira, P. Future Scenarios Impact on Land Use Change and Habitat Quality in Lithuania. Environ. Res. 2021, 197, 111101. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.; Jiang, H.; Ma, S.; He, C.; Sheng, L.; Wen, Y. Revealing the Impacts of Different Urban Development on Habitat Quality: A Case Study of the Changchun–Jilin Region of China. J. Clean. Prod. 2025, 511, 145661. [Google Scholar] [CrossRef]
- Yang, D.; Liu, W.; Tang, L.; Chen, L.; Li, X.; Xu, X. Estimation of Water Provision Service for Monsoon Catchments of South China: Applicability of the InVEST Model. Landsc. Urban Plan. 2019, 182, 133–143. [Google Scholar] [CrossRef]
- Hou, Y.; Lü, Y.; Chen, W.; Fu, B. Temporal Variation and Spatial Scale Dependency of Ecosystem Service Interactions: A Case Study on the Central Loess Plateau of China. Landsc. Ecol. 2017, 32, 1201–1217. [Google Scholar] [CrossRef]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.; Chan, K.M.; Daily, G.C.; Goldstein, J.; Kareiva, P.M.; et al. Modeling Multiple Ecosystem Services, Biodiversity Conservation, Commodity Production, and Tradeoffs at Landscape Scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Sharma, R.; Nehren, U.; Rahman, S.A.; Meyer, M.; Rimal, B.; Aria Seta, G.; Baral, H. Modeling Land Use and Land Cover Changes and Their Effects on Biodiversity in Central Kalimantan, Indonesia. Land 2018, 7, 57. [Google Scholar] [CrossRef]
- Su, J.; Zhang, R.; Wu, M.; Yang, R.; Liu, Z.; Xu, X. Correlation between Spatial-Temporal Changes in Landscape Patterns and Habitat Quality in the Yongding River Floodplain, China. Land 2023, 12, 807. [Google Scholar] [CrossRef]
- Xiang, Q.; Kan, A.; Yu, X.; Liu, F.; Huang, H.; Li, W.; Gao, R. Assessment of Topographic Effect on Habitat Quality in Mountainous Area Using InVEST Model. Land 2023, 12, 186. [Google Scholar] [CrossRef]
- Schooley, R.L.; Branch, L.C. Habitat Quality of Source Patches and Connectivity in Fragmented Landscapes. Biodivers. Conserv. 2011, 20, 1611–1623. [Google Scholar] [CrossRef]
- Zhu, Y.; Yan, L.; Wang, Y.; Zhang, J.; Liang, L.; Xu, Z.; Guo, J.; Yang, R. Landscape Pattern Change and Its Correlation with Influencing Factors in Semiarid Areas, Northwestern China. Chemosphere 2022, 307, 135837. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, X.; Hu, J.; Hu, B.; Yuan, J.; Xing, Y.; Zhou, D. Landscape Dynamics Driven by Socioeconomic Factors of the Coastal Cities along the Yellow Sea and Bohai Sea over the Last 40 Years. Ecol. Indic. 2025, 179, 114156. [Google Scholar] [CrossRef]
- Zhang, F.; Yushanjiang, A.; Wang, D. Ecological Risk Assessment Due to Land Use/Cover Changes (LUCC) in Jinghe County, Xinjiang, China from 1990 to 2014 Based on Landscape Patterns and Spatial Statistics. Environ. Earth Sci. 2018, 77, 491. [Google Scholar] [CrossRef]
- Pu, J.; Shen, A.; Liu, C.; Wen, B. Impacts of Ecological Land Fragmentation on Habitat Quality in the Taihu Lake Basin in Jiangsu Province, China. Ecol. Indic. 2024, 158, 111611. [Google Scholar] [CrossRef]
- Wang, S.Q.; Zheng, X.Q.; Zang, X.B. Accuracy Assessments of Land Use Change Simulation Based on Markov-Cellular Automata Model. Procedia Environ. Sci. 2012, 13, 1238–1245. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the Drivers of Sustainable Land Expansion Using a Patch-Generating Land Use Simulation (PLUS) Model: A Case Study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, P.; Gao, S.; Yasir, M.; Islam, Q.U. Combining LSTM and PLUS Models to Predict Future Urban Land Use and Land Cover Change: A Case in Dongying City, China. Remote Sens. 2023, 15, 2370. [Google Scholar] [CrossRef]
- Duan, Y.; Halike, A.; Luo, J.; Yao, K.; Yao, L.; Tang, H.; Tuheti, B. Multi-Scale Supply and Demand Relationships of Ecosystem Services Under Multiple Scenarios and Ecological Zoning to Promote Sustainable Urban Ecological Development in Arid Regions of China. Sustainability 2024, 16, 9641. [Google Scholar] [CrossRef]
- Song, J.; He, X.; Zhang, F.; Ma, X.; Jim, C.Y.; Johnson, B.A.; Chan, N.W. Analyzing and Pre-dicting LUCC and Carbon Storage Changes in Xinjiang’s Arid Ecosystems Under the Carbon Neutrality Goal. Remote Sens. 2024, 16, 4439. [Google Scholar] [CrossRef]
- Kruk, M. SHAP-NET, a Network Based on Shapley Values as a New Tool to Improve the Ex-plainability of the XGBoost-SHAP Model for the Problem of Water Quality. Environ. Model. Softw. 2025, 188, 106403. [Google Scholar] [CrossRef]
- Sun, D.; Wu, X.; Wen, H.; Ma, X.; Zhang, F.; Ji, Q.; Zhang, J. Ecological Security Pattern Based on XGBoost-MCR Model: A Case Study of the Three Gorges Reservoir Region. J. Clean. Prod. 2024, 470, 143252. [Google Scholar] [CrossRef]
- Wen, H.; Liu, B.; Di, M.; Li, J.; Zhou, X. A SHAP-Enhanced XGBoost Model for Interpretable Prediction of Coseismic Landslides. Adv. Space Res. 2024, 74, 3826–3854. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, J.; Li, F.; Chen, Q.; Ye, T.; Zhang, Y.; Yang, X. Fine-Scale Population Mapping on Tibetan Plateau Using the Ensemble Machine Learning Methods and Multisource Data. Ecol. Indic. 2024, 166, 112307. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, Q.; Tao, J.; Zhang, Y.; Lin, J.; Bai, X. Use of Interpretable Machine Learning for Understanding Ecosystem Service Trade-Offs and Their Driving Mechanisms in Karst Peak-Cluster Depression Basin, China. Ecol. Indic. 2024, 166, 112474. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, J.; Li, Y. Exploring the Spatial and Temporal Driving Mechanisms of Landscape Patterns on Habitat Quality in a City Undergoing Rapid Urbanization Based on GTWR and MGWR: The Case of Nanjing, China. Ecol. Indic. 2022, 143, 109333. [Google Scholar] [CrossRef]
- He, J.; Huang, J.; Li, C. The Evaluation for the Impact of Land Use Change on Habitat Quality: A Joint Contribution of Cellular Automata Scenario Simulation and Habitat Quality Assessment Model. Ecol. Model. 2017, 366, 58–67. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, L. Simulating Land-Use Change and Its Effect on Biodiversity Conservation in a Watershed in Northwest China. Ecosyst. Health Sustain. 2017, 3, 1335933. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, X.; Yang, H.; Zhong, T. Environmental Effects of Land-Use/Cover Change Caused by Urbanization and Policies in Southwest China Karst Area–A Case Study of Guiyang. Habitat Int. 2014, 44, 339–348. [Google Scholar] [CrossRef]
- Jiang, P.; Cheng, L.; Li, M.; Zhao, R.; Duan, Y. Impacts of LUCC on Soil Properties in the Ri-parian Zones of Desert Oasis with Remote Sensing Data: A Case Study of the Middle Heihe River Basin, China. Sci. Total Environ. 2015, 506, 259–271. [Google Scholar] [CrossRef]
- Li, Q.; Sun, Y.; Yuan, W.; Lyu, S.; Wan, F. Streamflow Responses to Climate Change and LUCC in a Semi-Arid Watershed of Chinese Loess Plateau. J. Arid. Land 2017, 9, 609–621. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, J.; Sheng, H.; Chen, G.; Li, X.; Yang, Z. The Impact of Land Use/Cover Change on Storage and Quality of Soil Organic Carbon in Midsubtropical Mountainous Area of Southern China. J. Geogr. Sci. 2009, 19, 49–57. [Google Scholar] [CrossRef]
- Yang, Q.; Huang, X.; Li, J. Assessing the Relationship between Surface Urban Heat Islands and Landscape Patterns across Climatic Zones in China. Sci. Rep. 2017, 7, 9337. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Liu, Z.; Tian, J.; Ma, Q. Urban Expansion Dynamics and Natural Habitat Loss in China: A Multiscale Landscape Perspective. Glob. Change Biol. 2014, 20, 2886–2902. [Google Scholar] [CrossRef]
- Hodgson, J.A.; Moilanen, A.; Wintle, B.A.; Thomas, C.D. Habitat Area, Quality and Connectivity: Striking the Balance for Efficient Conservation. J. Appl. Ecol. 2011, 48, 148–152. [Google Scholar] [CrossRef]
- Ke, X.; van Vliet, J.; Zhou, T.; Verburg, P.H.; Zheng, W.; Liu, X. Direct and Indirect Loss of Natural Habitat Due to Built-up Area Expansion: A Model-Based Analysis for the City of Wuhan, China. Land Use Policy 2018, 74, 231–239. [Google Scholar] [CrossRef]
- Kirschbaum, M.U.F.; Saggar, S.; Tate, K.R.; Giltrap, D.L.; Ausseil, A.-G.E.; Greenhalgh, S.; Whitehead, D. Comprehensive Evaluation of the Climate-Change Implications of Shifting Land Use between Forest and Grassland: New Zealand as a Case Study. Agric. Ecosyst. Environ. 2012, 150, 123–138. [Google Scholar] [CrossRef]
- Gosselin, F.; Callois, J.-M. Relationships between Human Activity and Biodiversity in Europe at the National Scale: Spatial Density of Human Activity as a Core Driver of Biodiversity Erosion. Ecol. Indic. 2018, 90, 356–365. [Google Scholar] [CrossRef]
- Weber, D.; Schaepman-Strub, G.; Ecker, K. Predicting Habitat Quality of Protected Dry Grass-lands Using Landsat NDVI Phenology. Ecol. Indic. 2018, 91, 447–460. [Google Scholar] [CrossRef]
- Zhang, J.; Mengting, L.; Hui, Y.; Xiyun, C.; Chong, F. Critical Thresholds in Ecological Resto-ration to Achieve Optimal Ecosystem Services: An Analysis Based on Forest Ecosystem Restora-tion Projects in China. Land Use Policy 2018, 76, 675–678. [Google Scholar] [CrossRef]
- Cui, L.; Zheng, S.; Jin, Y.; Shen, Z.; Dong, X.; Xu, M. Understanding the Nonlinear Trade-off Relationship to Optimize Urban-Rural Ecosystem Services: A Case Study in Arid and Semi-Arid Region, China. Habitat Int. 2025, 166, 103567. [Google Scholar] [CrossRef]
- Li, J.; Zhao, W.; Ma, X.; Luo, G.; Pereira, P. Ecosystem Service Tradeoff and Synergy Mecha-nisms in the Central Asian Terminal Lake Basin Based on Bayesian Networks. Ecosyst. Serv. 2025, 75, 101768. [Google Scholar] [CrossRef]
- Zhang, Z.; Pan, H.; Liu, Y.; Sheng, S. Ecosystem Services’ Response to Land Use Intensity: A Case Study of the Hilly and Gully Region in China’s Loess Plateau. Land 2024, 13, 2039. [Google Scholar] [CrossRef]
- Yu, H.; Liang, Z.; Zhang, R.; Jia, M.; Li, S.; Li, X.; Li, H. Spatiotemporal Dynamics of Habitat Quality in Semi-Arid Regions: A Case Study of the West Songnen Plain, China. Remote Sens. 2025, 17, 1663. [Google Scholar] [CrossRef]
- Ma, T.; Cheng, W.; Yao, W. Spatiotemporal Evolution and Multi-Scenario Simulation of the Land-Use Cover Change and Habitat Quality in Arid and Semi-Arid Areas: A Case Study of the Urban Agglomeration along the Yellow River in Ningxia, China. Front. Environ. Sci. 2025, 13, 9302. [Google Scholar] [CrossRef]
- Wang, L.; Liu, W.; Feng, Q.; Yin, Z.; Zhu, R.; Zhu, M.; Zhang, J.; Xue, Y.; Chen, Z.; Li, X. Patterns and Drivers of Water-Land Resources Nexus in Arid Inland River Basins of Northwestern China. Environ. Sustain. Indic. 2025, 26, 100702. [Google Scholar] [CrossRef]
- Wu, C.; Gao, P.; Xu, R.; Mu, X.; Sun, W. Influence of Landscape Pattern Changes on Water Conservation Capacity: A Case Study in an Arid/Semiarid Region of China. Ecol. Indic. 2024, 163, 112082. [Google Scholar] [CrossRef]
- Guo, J.; Shen, B.; Li, H.; Wang, Y.; Tuvshintogtokh, I.; Niu, J.; Potter, M.A.; Li, F.Y. Past Dynamics and Future Prediction of the Impacts of Land Use Cover Change and Climate Change on Landscape Ecological Risk across the Mongolian Plateau. J. Environ. Manag. 2024, 355, 120365. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhang, F.; Zhou, T.; Xu, Y.; Xu, Y.; Jim, C.Y.; Johnson, B.A.; Ma, X. Human Activities Dominated Terrestrial Productivity Increase over the Past 22 Years in Typical Arid and Semiarid Regions of Xinjiang, China. Catena 2025, 250, 108754. [Google Scholar] [CrossRef]
- Bustamante, M.; Robledo-Abad, C.; Harper, R.; Mbow, C.; Ravindranat, N.H.; Sperling, F.; Haberl, H.; de Pinto, S.A.; Smith, P. Co-Benefits, Trade-Offs, Barriers and Policies for Green-house Gas Mitigation in the Agriculture, Forestry and Other Land Use (AFOLU) Sector. Glob. Change Biol. 2014, 20, 3270–3290. [Google Scholar] [CrossRef]
- Kloffel, T.; Young, E.H.; Borchard, N.; Vallotton, J.D.; Nurmi, E.; Shurpali, N.J.; Tenorio, F.U.; Liu, X.; Young, G.H.F.; Unc, A. The Challenges Fraught Opportunity of Agriculture Expansion into Boreal and Arctic Regions. Agric. Syst. 2022, 203, 103507. [Google Scholar] [CrossRef]
Data Name | Spatial Resolution | Sources |
---|---|---|
LUCC Data | 1 km | Chinese Academy of Sciences Resource and Environment Science Data Center (https://www.resdc.cn/, accessed on 15 August 2025) |
GDP | 1 km | Chinese Academy of Sciences Resource and Environment Science Data Center (https://www.resdc.cn/, accessed on 16 August 2025) |
Population density | 1 km | Chinese Academy of Sciences Resource and Environment Science Data Center (https://www.resdc.cn/, accessed on 16 August 2025) |
DEM | 30 m | NASA SRTM1 v3.0 (https://www.earthdata.nasa.gov/, accessed on 15 August 2025) |
Slope | 30 m | - |
Temperature | 30 m | (https://www.geodata.cn/main/, accessed on 15 August 2025) |
Precipitation | 30 m | (https://www.geodata.cn/main/, accessed on 15 August 2025) |
Road Data | - | OpenStreetMap (https://www.openstreetmap.org/, accessed on 15 August 2025) |
NDVI | 1 km | Geographic remote sensing ecological network platform (http://www.gisrs.cn/, accessed on 15 August 2025) |
Evaporation | 1 km | National Tibetan Plateau Science Data Center (https://www.tpdc.ac.cn/, accessed on 15 August 2025) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Huang, J. Spatio-Temporal Evolution and Driving Forces of Habitat Quality in China’s Arid and Semi-Arid Regions: An Interpretable Machine Learning Perspective for Ecological Management. Land 2025, 14, 1937. https://doi.org/10.3390/land14101937
Liu S, Huang J. Spatio-Temporal Evolution and Driving Forces of Habitat Quality in China’s Arid and Semi-Arid Regions: An Interpretable Machine Learning Perspective for Ecological Management. Land. 2025; 14(10):1937. https://doi.org/10.3390/land14101937
Chicago/Turabian StyleLiu, Shihao, and Jinchuan Huang. 2025. "Spatio-Temporal Evolution and Driving Forces of Habitat Quality in China’s Arid and Semi-Arid Regions: An Interpretable Machine Learning Perspective for Ecological Management" Land 14, no. 10: 1937. https://doi.org/10.3390/land14101937
APA StyleLiu, S., & Huang, J. (2025). Spatio-Temporal Evolution and Driving Forces of Habitat Quality in China’s Arid and Semi-Arid Regions: An Interpretable Machine Learning Perspective for Ecological Management. Land, 14(10), 1937. https://doi.org/10.3390/land14101937