Temporal and Spatial Changes in Soil Quality at Shooting Ranges: A Case Study in Croatia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Soil Sampling
2.3. Soil Analysis
2.4. Quality Assurance and Quality Control
2.5. Statistical Analysis
3. Results
3.1. Soil Characteristics
3.1.1. pHKCl of Studied Soils
3.1.2. Elemental Analysis of Soils
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fayiga, A.O.; Saha, U. The effect of bullet removal and vegetation on mobility of Pb in shooting range soils. Chemosphere 2016, 160, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Fayiga, A.O.; Saha, U.K. Soil pollution at outdoor shooting ranges: Health effects, bioavailability and best management practices. Environ. Pollut. 2016, 216, 135–145. [Google Scholar] [CrossRef]
- Sanderson, P.; Qi, F.; Seshadri, B.; Wijayawardena, A.; Naidu, R. Contamination, Fate and Management of Metals in Shooting Range Soils—A Review. Curr. Pollut. Rep. 2018, 4, 175–187. [Google Scholar] [CrossRef]
- Sorvari, J.; Antikainen, R.; Pyy, O. Environmental contamination at Finnish shooting ranges-the scope of the problem and management options. Sci. Total Environ. 2006, 366, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, P.; Naidu, R.; Bolan, N.; Bowman, M. Critical Review on Chemical Stabilization of Metal Contaminants in Shooting Range Soils. J. Hazard. Toxic Radioact. Waste 2012, 16, 258–272. [Google Scholar] [CrossRef]
- Dinake, P.; Kelebemang, R.; Sehube, N.; Kamwi, O.; Laetsang, M. Quantitative assessment of environmental risk from lead pollution of shooting range soils. Chem. Speciat. Bioavailab. 2018, 30, 76–85. [Google Scholar] [CrossRef]
- Sehube, N.; Kelebemang, R.; Totolo, O.; Laetsang, M.; Kamwi, O.; Dinake, P. Lead pollution of shooting range soils. S. Afr. J. Chem. 2017, 70, 21–28. [Google Scholar] [CrossRef]
- Darling, C.T.R.; Thomas, V.G. The distribution of outdoor shooting ranges in Ontario and the potential for lead pollution of soil and water. Sci. Total Environ. 2003, 313, 235–243. [Google Scholar] [CrossRef]
- Hardison, D.W.; Ma, L.Q.; Luongo, T.; Harris, W.G. Lead contamination in shooting range soils from abrasion of lead bullets and subsequent weathering. Sci. Total Environ. 2004, 328, 175–183. [Google Scholar] [CrossRef]
- Murray, K.; Bazzi, A.; Carter, C.; Ehlert, A.; Harris, A.; Kopec, M.; Richardson, J.; Sokol, H. Distribution and mobility of lead in soils at an outdoor shooting range. Soil Sediment Contam. 1997, 6, 79–93. [Google Scholar] [CrossRef]
- Clausen, J.L.; Bostick, B.; Korte, N. Migration of lead in surface water, pore water, and groundwater with a focus on firing ranges. Crit. Rev. Environ. Sci. Technol. 2011, 41, 1397–1448. [Google Scholar] [CrossRef]
- Laporte-Saumure, M.; Martel, R.; Mercier, G. Characterization and metal availability of copper, lead, antimony and zinc contamination at four Canadian small arms firing ranges. Environ. Technol. 2011, 32, 767–781. [Google Scholar] [CrossRef]
- Semlali, R.M.; Dessogne, J.B.; Monna, F.; Bolte, J.; Azimi, S.; Navarro, N.; Denaix, L.; Loubet, M.; Chateau, C.; Van Oort, F. Modeling Lead Input and Output in Soils Using Lead Isotopic Geochemistry. Environ. Sci. Technol. 2004, 38, 1513–1521. [Google Scholar] [CrossRef]
- Bannon, D.I.; Drexler, J.W.; Fent, G.M.; Casteel, S.W.; Hunter, P.J.; Brattin, W.J.; Major, M.A. Evaluation of small arms range soils for metal contamination and lead bioavailability. Environ. Sci. Technol. 2009, 43, 9071–9076. [Google Scholar] [CrossRef]
- Baer, K.N.; Hutton, D.G.; Boeri, R.L.; Ward, T.J.; Stahl, R.G. Toxicity evaluation of trap and skeet shooting targets to aquatic test species. Ecotoxicology 1995, 4, 385–392. [Google Scholar] [CrossRef]
- Cao, X.; Ma, L.Q.; Chen, M.; Hardison, D.W.; Harris, W.G. Lead transformation and distribution in the soils of shooting ranges in Florida, USA. Sci. Total Environ. 2003, 307, 179–189. [Google Scholar] [CrossRef]
- Okkenhaug, G.; Amstätter, K.; Lassen Bue, H.; Cornelissen, G.; Breedveld, G.D.; Henriksen, T.; Mulder, J. Antimony (Sb) contaminated shooting range soil: Sb mobility and immobilization by soil amendments. Environ. Sci. Technol. 2013, 47, 6431–6439. [Google Scholar] [CrossRef] [PubMed]
- McTee, M.R.; Mummey, D.L.; Ramsey, P.W.; Hinman, N.W. Extreme soil acidity from biodegradable trap and skeet targets increases severity of pollution at shooting ranges. Sci. Total Environ. 2016, 539, 546–550. [Google Scholar] [CrossRef]
- Bellrose, F.C. Lead Poisoning as a Mortality Factor in Waterfowl Populations. Ill. Nat. Hist. Surv. Bull. 1959, 27, 235–288. [Google Scholar] [CrossRef]
- Eisler, R. Lead hazards to fish, wildlife, and invertebrates: A synoptic review. Contaminant Hazard Reviews, Report No. 14, U.S. Fish and Wildlife Service, U.S. Department of the Interior, Patuxent Wildlife Research Center, Laurel, Maryland, USA. Biol. Rep. 1988, 85, 134. [Google Scholar]
- Pain, D.J.; Mateo, R.; Green, R.E. Effects of lead from ammunition on birds and other wildlife: A review and update. Ambio 2019, 48, 935–953. [Google Scholar] [CrossRef]
- Haig, S.M.; D’Elia, J.; Eagles-Smith, C.; Fair, J.M.; Gervais, J.; Herring, G.; Rivers, J.W.; Schulz, J.H. The persistent problem of lead poisoning in birds from ammunition and fishing tackle. Condor 2014, 116, 408–428. [Google Scholar] [CrossRef]
- Migliorini, M.; Pigino, G.; Bianchi, N.; Bernini, F.; Leonzio, C. The effects of heavy metal contamination on the soil arthropod community of a shooting range. Environ. Pollut. 2004, 129, 331–340. [Google Scholar] [CrossRef]
- Rodríguez-Seijo, A.; Cachada, A.; Gavina, A.; Duarte, A.C.; Vega, F.A.; Andrade, M.L.; Pereira, R. Lead and PAHs contamination of an old shooting range: A case study with a holistic approach. Sci. Total Environ. 2017, 575, 367–377. [Google Scholar] [CrossRef]
- Johnsen, I.V.; Aaneby, J. Accumulation of copper and lead in ruminants grazing on a contaminated shooting range in Nordland County, Norway. Environ. Sci. Pollut. Res. 2024, 31, 11026–11036. [Google Scholar] [CrossRef] [PubMed]
- Rooney, C.P.; Mclaren, R.G.; Cresswell, R.J. Distribution and phytoavailability of lead in a soil contaminated with lead shot. Water. Air. Soil Pollut. 1999, 116, 535–548. [Google Scholar] [CrossRef]
- EC-ECHA-REACH (Registration, Evaluation, A. and R. of C.). EU Regulation EC No. 1907/2006 (REACH). Off. J. Eur. Union 2006, 1–849. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R1907 (accessed on 29 December 2024).
- EC-ECHA-REACH Amed. as Regards Lead in Gunshot in or Around Wetlands. EU Regulation EC No. 2021/57 Annex to Regulation No. 1907/2006 (REACH). Off. J. Eur. Union 2021, 1–7. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32021R0057 (accessed on 29 December 2024).
- Fisher, I.J.; Pain, D.J.; Thomas, V.G. A review of lead poisoning from ammunition sources in terrestrial birds. Biol. Conserv. 2006, 131, 421–432. [Google Scholar] [CrossRef]
- Laidlaw, M.A.S.; Filippelli, G.; Mielke, H.; Gulson, B.; Ball, A.S. Lead exposure at firing ranges—A review. Environ. Health A Glob. Access Sci. Source 2017, 16, 1–15. [Google Scholar] [CrossRef]
- Zaninović, K.; Gajić-Čapka, M.; Perčec Tadić, M.; Vučetić, M.; Milković, J.; Bajić, A.; Cindrić, K.; Cvitan, L.; Katušin, Z.; Kaučić, D.; et al. Klimatski Atlas Hrvatske/Climate Atlas of Croatia 1961–1990, 1971–2000; Meteorological and Hydrological Service of Croatia: Zagreb, Croatia, 2008; ISBN 978-953-7526-01-6. [Google Scholar]
- ISO 18400; Soil Quality—Sampling. International Standard: Geneva, Switzerland, 2017.
- ISO 11464; Soil Quality—Pretreatment of Samples for Physico-Chemical Analysis. International Standard: Geneva, Switzerland, 2006.
- ISO 13196; Soil Quality—Screening Soils for Selected Elements by Energy-Dispersive X-Ray Fluorescence Spectrometry Using a Handheld or Portable Instrument. International Standard: Geneva, Switzerland, 2013.
- Pravilnik o zaštiti poljoprivrednog zemljišta od onečišćenja, Ministarstvo poljoprivrede RH. Off. Gaz. OG 71 2019, 1507, 1–54. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2019_07_71_1507.html (accessed on 29 December 2024). (In Croatian).
- Halamić, J.; Miko, S.; Peh, Z.; Galović, L.; Šorša, A. Geochemical Atlas of the Republic of the Republic of Croatia; Croatian Geological Survey: Zagreb, Croatia, 2009; ISBN 978-953-6907-18-2. [Google Scholar]
- Netherlands Soil Remediation Circular, Dutch Ministry of Housing, S.P. and E. NSRC 2013, 2013, 1–76. Available online: https://enviroeng.eu/wp-content/uploads/2022/01/LISTA-HOLANDESA-2013.pdf (accessed on 29 December 2024).
- Bundes Bodenschutz und Altlastenverordnung, D.B. für J. In BBodSchV; Germany, 1999; p. 33. Available online: https://www.gesetze-im-internet.de/bbodschv_2023/BBodSchV.pdf (accessed on 29 December 2024).
- R Core Team R: A Language and Environment for Statistical Computing 2021. Available online: https://www.r-project.org/ (accessed on 29 December 2024).
- Lenth, R.V. Emmeans: Estimated Marginal Means, aka Least-Squares Means, R package version 4.3.0; 2023; Available online: https://cran.r-project.org/web/packages/emmeans/ (accessed on 29 December 2024).
- WRB-FAO. IUSS Working Group WRB—World Reference Base for Soil Resources 2014 Update 2015. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; Food and Agriculture Organization of UN: Rome, Italy, 2015. [Google Scholar]
- Croatian Agency for Agriculture and Food, T. Guidelines; CAAF: Balkans, Croatia, 2020; p. 12.
- Česynaitė, J.; Sujetovienė, G. Changes in soil properties and heavy metals concentration in soil of military shooting range in central lithuania. Environ. Res. Eng. Manag. 2018, 74, 53–59. [Google Scholar] [CrossRef]
- Lee, I.S.; Kim, O.K.; Chang, Y.Y.; Bae, B.; Kim, H.H.; Baek, K.H. Heavy metal concentrations and enzyme activities in soil from a contaminated Korean shooting range. J. Biosci. Bioeng. 2002, 94, 406–411. [Google Scholar] [CrossRef]
- Ahmad, M.; Ok, Y.S.; Rajapaksha, A.U.; Lim, J.E.; Kim, B.Y.; Ahn, J.H.; Lee, Y.H.; Al-Wabel, M.I.; Lee, S.E.; Lee, S.S. Lead and copper immobilization in a shooting range soil using soybean stover- and pine needle-derived biochars: Chemical, microbial and spectroscopic assessments. J. Hazard. Mater. 2016, 301, 179–186. [Google Scholar] [CrossRef]
- Selonen, S.; Liiri, M.; Strömmer, R.; Setälä, H. The fate of lead at abandoned and active shooting ranges in a boreal pine forest. Environ. Toxicol. Chem. 2012, 31, 2771–2779. [Google Scholar] [CrossRef]
- Astrup, T.; Boddum, J.K.; Christensen, T.H. Lead distribution and mobility in a soil embankment used as a bullet stop at a shooting range. Soil Sediment Contam. 1999, 8, 653–665. [Google Scholar] [CrossRef]
- Bruell, R.; Nikolaidis, N.P.; Long, R.P. Evaluation of Remedial Alternatives of Lead from Shooting Range Soil. Environ. Eng. Sci. 1999, 16, 403–414. [Google Scholar] [CrossRef]
- VanBon, J.; Boersema, J.J. Sources, effects and management of metallic lead pollution: The contribution of hunting, shooting and angling. In Proceedings of the Contaminated soil ’88, Hamburg, Germany, 11–15 April 1988; Wolf, K., Van Den Brink, W.J., Colon, F.J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988; Volume 1, pp. 269–271. [Google Scholar]
- Cao, X.; Ma, L.Q.; Chen, M.; Hardison, D.W.; Harris, W.G. Weathering of Lead Bullets and Their Environmental Effects at Outdoor Shooting Ranges. J. Environ. Qual. 2003, 32, 526–534. [Google Scholar] [CrossRef]
- Johnson, C.A.; Moench, H.; Wersin, P.; Kugler, P.; Wenger, C. Solubility of antimony and other elements in samples taken from shooting ranges. J. Environ. Qual. 2005, 34, 248–254. [Google Scholar] [CrossRef]
- Islam, M.N.; Nguyen, X.P.; Jung, H.Y.; Park, J.H. Chemical Speciation and Quantitative Evaluation of Heavy Metal Pollution Hazards in Two Army Shooting Range Backstop Soils. Bull. Environ. Contam. Toxicol. 2016, 96, 179–185. [Google Scholar] [CrossRef]
- Ma, L.Q.; Hardison, D.W.; Harris, W.G.; Cao, X.; Zhou, Q. Effects of soil property and soil amendment on weathering of abraded metallic Pb in shooting ranges. Water Air Soil Pollut. 2007, 178, 297–307. [Google Scholar] [CrossRef]
- Yin, X.; Saha, U.K.; Ma, L.Q. Effectiveness of best management practices in reducing Pb-bullet weathering in a shooting range in Florida. J. Hazard. Mater. 2010, 179, 895–900. [Google Scholar] [CrossRef]
- Kicińska, A.; Pomykała, R.; Izquierdo-Diaz, M. Changes in soil pH and mobility of heavy metals in contaminated soils. Eur. J. Soil Sci. 2022, 73, 1–14. [Google Scholar] [CrossRef]
- Kajander, S.; Parri, A. Environmental Protection Environmental Protection the Finnish Environment 4. In 2014 Management of the Environmental Impact of Shooting Ranges; The Finnish Ministry of the Environment: Helsinki, Finland, 2014; ISBN 9789521143519. [Google Scholar]
- ISO 11277; Soil Quality—Determination of Particle Size Distribution in Mineral Soil Material—Method by Sieving and Sedimentation. International Standard: Geneva, Switzerland, 2004.
- Škorić, A. Priručnik za Pedološka Istraživanja; Sveučilište u Zagrebu, Fakultet poljoprivrednih znanosti: Zagreb, Croatia, 1982. (In Croatian) [Google Scholar]
- ISO 10390; Soil Quality—Determination of pH. International Standard: Geneva, Switzerland, 2005.
- ISO 14235; Soil Quality—Determination of Organic Carbon by Sulfochromic Oxidation. International Standard: Geneva, Switzerland, 2004.
- ISO 11265; Soil Quality—Determination of the Specific Electrical Conductivity. International Standard: Geneva, Switzerland, 2004.
- ISO 10693; Soil Quality—Determination of Carbonate Content—Volumetric Method. International Standard: Geneva, Switzerland, 2004.
- ISO 13878; Soil Quality—Determination of Total Nitrogen Content by Dry Combustion (“Elemental Analysis”). International Standard: Geneva, Switzerland, 2004.
- ISO 10694; Soil Quality—Determination of Organic and Total Carbon After Dry Combustion (Elementary Analysis). International Standard: Geneva, Switzerland, 2004.
- ISO 15178; Soil Quality—Determination of Total Sulfur by Dry Combustion. International Standard: Geneva, Switzerland, 2005.
Sampling Location/Soil Characteristics | ZG | OS | ZD | NG |
---|---|---|---|---|
Gravel and stones, vol., % >2 mm | - | - | 21 | 0.3 |
Sand, % 63–2000 µm | 18 | 35 | 24 | 3 |
Silt, % 2–63 µm | 74 | 59 | 46 | 40 |
Clay, % <2 µm | 9 | 6 | 30 | 57 |
Texture class | silt loam | silt loam | clay loam | silty clay |
Soil type [41] | fluvisols | fluvisols | leptosols | luvisols (terra rossa) |
pHKCl | 7.1 | 7.5 | 7.3 | 6.3 |
Electroconductivity (EC), µS cm−1 | 154 | 147 | 270 | 89 |
Hydrolytic activity (HA), cmol+ kg−1 | - | - | - | 9.9 |
w(CaCO3), % | 1.1 | 4.0 | 21.7 | 0.3 |
Available P (AP), mgkg−1 | 94 | 144 | 132 | 41 |
Available K (AK), mgkg−1 | 186 | 215 | 310 | 256 |
Total nitrogen (TN), % | 0.371 | 0.174 | 0.344 | 0.237 |
Organic matter (OM), % | 5.2 | 3.0 | 7.7 | 3.4 |
Total carbon (TC), % | 4.5 | 3.1 | 6.4 | 3.0 |
Total inorganic carbon (TIC), % | 0.14 | 0.48 | 2.6 | 0.04 |
Total organic carbon (TOC), % | 4.3 | 2.6 | 3.8 | 3.0 |
Total sulphur (TS), mgkg−1 | 787 | 527 | 880 | 737 |
C/N | 12 | 18 | 19 | 13 |
N/S | 5 | 3 | 4 | 3 |
Element | Pb [mgkg−1] | |||||||
Location/Line Distance | ZG I | ZG II | OS I | OS II | ZD I | ZD II | NG I | NG II |
Control | 24 | 24 | 38 | 38 | 86 | 86 | 40 | 40 |
5 m | 144 | 70 | 88 | 19 | 81 | 32 | 87 | 173 |
25 m | 99 | 53 | 51 | 22 | 93 | 55 | 72 | 340 |
50 m | 151 | 173 | 86 | 47 | 170 | 77 | 46 | 398 |
100 m | 2333 | 2037 | 90 | 62 | 59 | 73 | 827 | 1383 |
240 m | 21 | 20 | 47 | 72 | 64 | 72 | 54 | 61 |
Element | Ni [mgkg−1] | |||||||
Location/Line Distance | ZG I | ZG II | OS I | OS II | ZD I | ZD II | NG I | NG II |
Control | 30 | 30 | 36 | 36 | 71 | 71 | 117 | 117 |
5 m | 54 | 42 | 42 | 51 | 22 | 51 | 103 | 97 |
25 m | 39 | 42 | 41 | 61 | 53 | 99 | 90 | 100 |
50 m | 31 | 32 | 48 | 47 | 66 | 76 | 83 | 76 |
100 m | 34 | 33 | 41 | 52 | 70 | 110 | 110 | 88 |
240 m | 44 | 42 | 42 | 56 | 59 | 88 | 85 | 82 |
Cr [mgkg−1] | ||||||||
Location/Line Distance | ZG I | ZG II | OS I | OS II | ZD I | ZD II | NG I | NG II |
Control | 112 | 112 | 111 | 111 | 270 | 270 | 238 | 238 |
5 m | 151 | 135 | 112 | 141 | 113 | 370 | 249 | 231 |
25 m | 125 | 134 | 119 | 148 | 329 | 294 | 243 | 238 |
50 m | 134 | 128 | 132 | 123 | 308 | 266 | 239 | 243 |
100 m | 138 | 137 | 129 | 122 | 307 | 328 | 256 | 244 |
240 m | 130 | 131 | 112 | 146 | 167 | 316 | 251 | 237 |
Element | Sb [mgkg−1] | |||||||
Location/Line Distance | ZG I | ZG II | OS I | OS II | ZD I | ZD II | NG I | NG II |
100 m | 34 | 27 | <LOD | <LOD | <LOD | <LOD | 27 | <LOD |
CF | Pb | Sb | ||||||
---|---|---|---|---|---|---|---|---|
Location/Line Distance | ZG I | ZG II | NG I | NG II | ZG I | ZG II | NG I | NG II |
5 m | 6 | 3 | 2 | 4 | - | - | - | - |
25 m | 4 | 2 | 2 | 9 | - | - | - | - |
50 m | 6 | 7 | 1.2 | 10 | - | - | - | - |
100 m | 97 | 85 | 21 | 35 | 11 | 9 | 6 | - |
240 m | 0.9 | 0.8 | 1.3 | 1.5 | - | - | - | - |
Element | Pb | Sb | Ni | Cr | S |
---|---|---|---|---|---|
Location | 0.0169 | 0.0294 | 0.1194 | 0.7717 | 0.2915 |
Distance | 1.74 × 10−19 | 9.50 × 10−12 | 0.0335 | 0.1728 | 2.21 × 10−14 |
Interaction | 4.22 × 10−20 | 2.75 × 10−14 | 1.83 × 10−8 | 0.1995 | 3.83 × 10−11 |
Location (p < 0.05) | ZG-OS ZG-ZD | ZG-OS ZG-ZD | |||
Interaction (p < 0.05) | NG-OS NG-ZD NG-ZG OS-ZG ZD-ZG | ZG-OS ZG-ZD ZG-NG | ZD-ZG ZD-NG ZD-OS | ZD-ZG OS-ZG NG-ZD NG-OS NG-ZG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zgorelec, Ž.; Šprem, N.; Abramović, R.; Galić, M.; Hrelja, I.; Delač, D.; Safner, T.; Kisić, I. Temporal and Spatial Changes in Soil Quality at Shooting Ranges: A Case Study in Croatia. Land 2025, 14, 78. https://doi.org/10.3390/land14010078
Zgorelec Ž, Šprem N, Abramović R, Galić M, Hrelja I, Delač D, Safner T, Kisić I. Temporal and Spatial Changes in Soil Quality at Shooting Ranges: A Case Study in Croatia. Land. 2025; 14(1):78. https://doi.org/10.3390/land14010078
Chicago/Turabian StyleZgorelec, Željka, Nikica Šprem, Radovan Abramović, Marija Galić, Iva Hrelja, Domina Delač, Toni Safner, and Ivica Kisić. 2025. "Temporal and Spatial Changes in Soil Quality at Shooting Ranges: A Case Study in Croatia" Land 14, no. 1: 78. https://doi.org/10.3390/land14010078
APA StyleZgorelec, Ž., Šprem, N., Abramović, R., Galić, M., Hrelja, I., Delač, D., Safner, T., & Kisić, I. (2025). Temporal and Spatial Changes in Soil Quality at Shooting Ranges: A Case Study in Croatia. Land, 14(1), 78. https://doi.org/10.3390/land14010078