Scenario Simulation of Ecosystem Services Based on Land Use/Land Cover Change in the Bailong River Basin, in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Pre-Processing
2.3. Method
2.3.1. Simulation of Future Land Use
PLUS Model
Model Validation
Multi-Scenario Setting
2.3.2. ESs Assessment
SC
WY
CS
HQ
2.3.3. Trade-Offs/Synergies
2.3.4. Identification of Bundle
3. Results
3.1. LUCC Characteristics in the BRB from 2040 to 2100
3.2. Spatiotemporal Distribution of ESs
3.3. Spatiotemporal Distribution of Trade-Offs/Synergies Between ES Pairs
3.4. Spatial Distribution Characteristics of ES Bundles
4. Discussion
4.1. Analysis of the Impact of Land Use on ES
4.2. Suggestions on the Management of ES in the BRB
4.3. Shortcomings and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fu, B.; Wang, S.; Su, C.; Forsius, M. Linking Ecosystem Processes and Ecosystem Services. Curr. Opin. Environ. Sustain. 2013, 5, 4–10. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty Years of Ecosystem Services: How Far Have We Come and How Far Do We Still Need to Go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Gong, Z.; Liu, W.; Guo, J.; Su, Y.; Gao, Y.; Bu, W.; Ren, J.; Li, C. How to Achieve the Ecological Sustainability Goal of Ecologically Fragile Areas on the Qinghai-Tibet Plateau: A Multi-Scenario Simulation of Lanzhou-Xining Urban Agglomerations. Land 2024, 13, 1730. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Kroeger, T.; Wagner, J.E. Urban Forests and Pollution Mitigation: Analyzing Ecosystem Services and Disservices. Env. Pollut. 2011, 159, 2078–2087. [Google Scholar] [CrossRef] [PubMed]
- Bussmann, R. Destruction and Management of Mount Kenya’s Forests. AMBIO A J. Hum. Environ. 1996, 25, 314–317. [Google Scholar]
- de Araujo Barbosa, C.C.; Atkinson, P.M.; Dearing, J.A. Extravagance in the Commons: Resource Exploitation and the Frontiers of Ecosystem Service Depletion in the Amazon Estuary. Sci. Total Environ. 2016, 550, 6–16. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Azizi, P.; Moghadasi, M. Land Use Change, Urbanization, and Change in Landscape Pattern in a Metropolitan Area. Sci. Total Environ. 2019, 655, 707–719. [Google Scholar] [CrossRef]
- Grimm, N.B.; Groffman, P.; Staudinger, M.; Tallis, H. Climate Change Impacts on Ecosystems and Ecosystem Services in the United States: Process and Prospects for Sustained Assessment. Clim. Chang. 2016, 135, 97–109. [Google Scholar] [CrossRef]
- Fulford, R.S.; Russell, M.; Myers, M.; Malish, M.; Delmaine, A. Models Help Set Ecosystem Service Baselines for Restoration Assessment. J. Environ. Manag. 2022, 317, 115411. [Google Scholar] [CrossRef]
- Mu, L.; Fang, L.; Dou, W.; Wang, C.; Qu, X.; Yu, Y. Urbanization-Induced Spatio-Temporal Variation of Water Resources Utilization in Northwestern China: A Spatial Panel Model Based Approach. Ecol. Indic. 2021, 125, 107457. [Google Scholar] [CrossRef]
- Liu, X.; Sun, T.; Feng, Q. Dynamic Spatial Spillover Effect of Urbanization on Environmental Pollution in China Considering the Inertia Characteristics of Environmental Pollution. Sustain. Cities Soc. 2020, 53, 101903. [Google Scholar] [CrossRef]
- Behboudian, M.; Kerachian, R.; Motlaghzadeh, K.; Ashrafi, S. Application of Multi-Agent Decision-Making Methods in Hydrological Ecosystem Services Management. MethodsX 2023, 10, 102130. [Google Scholar] [CrossRef] [PubMed]
- Bagyaraj, M.; Senapathi, V.; Karthikeyan, S.; Chung, S.Y.; Khatibi, R.; Nadiri, A.A.; Asgari Lajayer, B. A Study of Urban Heat Island Effects Using Remote Sensing and GIS Techniques in Kancheepuram, Tamil Nadu, India. Urban Clim. 2023, 51, 101597. [Google Scholar] [CrossRef]
- Dibs, H.; Sabah Jaber, H.; Al-Ansari, N. Multi-Fusion Algorithms for Detecting Land Surface Pattern Changes Using Multi-High Spatial Resolution Images and Remote Sensing Analysis. Emerg. Sci. J. 2023, 7, 1215–1231. [Google Scholar] [CrossRef]
- Ding, Q.; Wang, L.; Fu, M.; Huang, N. An Integrated System for Rapid Assessment of Ecological Quality Based on Remote Sensing Data. Environ. Sci. Pollut. Res. 2020, 27, 32779–32795. [Google Scholar] [CrossRef]
- Dibs, H.; Abed, S.A.; Ali, A.H.; Al-Ansari, N. Fusion Landsat-8 Thermal TIRS and OLI Datasets for Superior Monitoring and Change Detection Using Remote Sensing. Emerg. Sci. J. 2023, 7, 428–444. [Google Scholar] [CrossRef]
- Pereira, P. Ecosystem Services in a Changing Environment. Sci. Total Environ. 2020, 702, 135008. [Google Scholar] [CrossRef]
- Ran, P.; Hu, S.; Frazier, A.E.; Yang, S.; Song, X.; Qu, S. The Dynamic Relationships between Landscape Structure and Ecosystem Services: An Empirical Analysis from the Wuhan Metropolitan Area, China. J. Environ. Manag. 2023, 325, 116575. [Google Scholar] [CrossRef]
- Arunyawat, S.; Shrestha, R.P. Assessing Land Use Change and Its Impact on Ecosystem Services in Northern Thailand. Sustainability 2016, 8, 768. [Google Scholar] [CrossRef]
- Yang, Y. Evolution of Habitat Quality and Association with Land-Use Changes in Mountainous Areas: A Case Study of the Taihang Mountains in Hebei Province, China. Ecol. Indic. 2021, 129, 107967. [Google Scholar] [CrossRef]
- Li, M.; Liang, D.; Xia, J.; Song, J.; Cheng, D.; Wu, J.; Cao, Y.; Sun, H.; Li, Q. Evaluation of Water Conservation Function of Danjiang River Basin in Qinling Mountains, China Based on InVEST Model. J. Environ. Manag. 2021, 286, 112212. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, H.; Qian, C. Analysis of the Implementation Effects of Ecological Restoration Projects Based on Carbon Storage and Eco-Environmental Quality: A Case Study of the Yellow River Delta, China. J. Environ. Manag. 2023, 340, 117929. [Google Scholar] [CrossRef]
- Huang, H.; Xue, J.; Feng, X.; Zhao, J.; Sun, H.; Hu, Y.; Ma, Y. Thriving arid oasis urban agglomerations: Optimizing ecosystem services pattern under future climate change scenarios using dynamic Bayesian network. J. Environ. Manag. 2024, 350, 119612. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.-H.; Lo, S.-L. Ecosystem Services and Sustainable Development: Perspectives from the Food-Energy-Water Nexus. Ecosyst. Serv. 2020, 46, 101217. [Google Scholar] [CrossRef]
- Long, H.; Qu, Y. Land Use Transitions and Land Management: A Mutual Feedback Perspective. Land Use Policy 2018, 74, 111–120. [Google Scholar] [CrossRef]
- Wang, M.; Sun, X. Potential Impact of Land Use Change on Ecosystem Services in China. Environ. Monit. Assess. 2016, 188, 248. [Google Scholar] [CrossRef]
- Quintas-Soriano, C.; Castro, A.J.; Castro, H.; García-Llorente, M. Impacts of Land Use Change on Ecosystem Services and Implications for Human Well-Being in Spanish Drylands. Land Use Policy 2016, 54, 534–548. [Google Scholar] [CrossRef]
- Bera, D.; Chatterjee, N.D.; Dinda, S.; Ghosh, S.; Dhiman, V.; Bashir, B.; Calka, B.; Zhran, M. Assessment of Carbon Stock and Sequestration Dynamics in Response to Land Use and Land Cover Changes in a Tropical Landscape. Land 2024, 13, 1689. [Google Scholar] [CrossRef]
- Doelman, J.C.; Stehfest, E.; Tabeau, A.; van Meijl, H.; Lassaletta, L.; Gernaat, D.E.H.J.; Hermans, K.; Harmsen, M.; Daioglou, V.; Biemans, H.; et al. Exploring SSP Land-Use Dynamics Using the IMAGE Model: Regional and Gridded Scenarios of Land-Use Change and Land-Based Climate Change Mitigation. Glob. Environ. Chang. 2018, 48, 119–135. [Google Scholar] [CrossRef]
- Kebede, A.S.; Nicholls, R.J.; Allan, A.; Arto, I.; Cazcarro, I.; Fernandes, J.A.; Hill, C.T.; Hutton, C.W.; Kay, S.; Lázár, A.N.; et al. Applying the Global RCP–SSP–SPA Scenario Framework at Sub-National Scale: A Multi-Scale and Participatory Scenario Approach. Sci. Total Environ. 2018, 635, 659–672. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Dong, N.; You, L.; Cai, W.; Li, G.; Lin, H. Land Use Projections in China under Global Socioeconomic and Emission Scenarios: Utilizing a Scenario-Based Land-Use Change Assessment Framework. Glob. Environ. Chang. 2018, 50, 164–177. [Google Scholar] [CrossRef]
- Qiu, Y.; Feng, J.; Yan, Z.; Wang, J. Assessing the Land-Use Harmonization (LUH) 2 Dataset in Central Asia for Regional Climate Model Projection. Environ. Res. Lett. 2023, 18, 064008. [Google Scholar] [CrossRef]
- Guo, W.; Teng, Y.; Li, J.; Yan, Y.; Zhao, C.; Li, Y.; Li, X. A New Assessment Framework to Forecast Land Use and Carbon Storage under Different SSP-RCP Scenarios in China. Sci. Total Environ. 2024, 912, 169088. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Kurban, A.; Van de Voorde, T.; De Maeyer, P.; Zhang, C. Coupled SSPs-RCPs scenarios to project the future dynamic variations of water-soil-carbon-biodiversity services in Central Asia. Ecol. Indic. 2021, 129, 107936. [Google Scholar] [CrossRef]
- Shi, X.; Matsui, T.; Machimura, T.; Haga, C.; Hu, A.; Gan, X. Impact of Urbanization on the Food–Water–Land–Ecosystem Nexus: A Study of Shenzhen, China. Sci. Total Environ. 2022, 808, 152138. [Google Scholar] [CrossRef]
- Wu, J.; Luo, J.; Zhang, H.; Qin, S.; Yu, M. Projections of Land Use Change and Habitat Quality Assessment by Coupling Climate Change and Development Patterns. Sci. Total Environ. 2022, 847, 157491. [Google Scholar] [CrossRef]
- Gong, J.; Liu, D.; Zhang, J.; Xie, Y.; Cao, E.; Li, H. Tradeoffs/Synergies of Multiple Ecosystem Services Based on Land Use Simulation in a Mountain-Basin Area, Western China. Ecol. Indic. 2019, 99, 283–293. [Google Scholar] [CrossRef]
- Luo, Y.; Yang, D.; O’Connor, P.; Wu, T.; Ma, W.; Xu, L.; Guo, R.; Lin, J. Dynamic Characteristics and Synergistic Effects of Ecosystem Services under Climate Change Scenarios on the Qinghai–Tibet Plateau. Sci. Rep. 2022, 12, 2540. [Google Scholar] [CrossRef]
- Yin, Z.; Fu, X.; Sun, R.; Li, S.; Tang, M.; Deng, H.; Wu, G. Spatially Heterogeneous Relationships between Ecosystem Service Trade-Offs and Their Driving Factors: A Case Study in Baiyangdian Basin, China. Land 2024, 13, 1619. [Google Scholar] [CrossRef]
- Zheng, H.; Li, Y.; Ouyang, Z.; Luo, Y. Progress and Perspectives of Ecosystem Services Management. Acta Ecol. Sin. 2013, 33, 702–710. [Google Scholar] [CrossRef]
- Han, P.; Yang, G.; Wang, Z.; Liu, Y.; Chen, X.; Zhang, W.; Zhang, Z.; Wen, Z.; Shi, H.; Lin, Z.; et al. Driving Factors and Trade-Offs/Synergies Analysis of the Spatiotemporal Changes of Multiple Ecosystem Services in the Han River Basin, China. Remote Sens. 2024, 16, 2115. [Google Scholar] [CrossRef]
- Geneletti, D. Assessing the Impact of Alternative Land-Use Zoning Policies on Future Ecosystem Services. Environ. Impact Assess. Rev. 2013, 40, 25–35. [Google Scholar] [CrossRef]
- Divinsky, I.; Becker, N.; Bar (Kutiel), P. Ecosystem Service Tradeoff between Grazing Intensity and Other Services—A Case Study in Karei-Deshe Experimental Cattle Range in Northern Israel. Ecosyst. Serv. 2017, 24, 16–27. [Google Scholar] [CrossRef]
- Jiang, W.; Chen, G.; Meng, X.; Jin, J.; Zhao, Y.; Lin, L.; Li, Y.; Zhang, Y. Probabilistic Rainfall Threshold of Landslides in Data-Scarce Mountainous Areas: A Case Study of the Bailong River Basin, China. Catena 2022, 213, 106190. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the Drivers of Sustainable Land Expansion Using a Patch-Generating Land Use Simulation (PLUS) Model: A Case Study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Shan, X.; Yin, J.; Wang, J. Risk Assessment of Shanghai Extreme Flooding under the Land Use Change Scenario. Nat. Hazards 2022, 110, 1039–1060. [Google Scholar] [CrossRef]
- Lin, Q.; Wang, Y.; Glade, T.; Zhang, J.; Zhang, Y. Assessing the Spatiotemporal Impact of Climate Change on Event Rainfall Characteristics Influencing Landslide Occurrences Based on Multiple GCM Projections in China. Clim. Chang. 2020, 162, 761–779. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, T.; Song, C.; Hein, L.; Shi, F.; Han, M.; Ouyang, Z. Influences of Climate Change and Land Use Change on the Interactions of Ecosystem Services in China’s Xijiang River Basin. Ecosyst. Serv. 2022, 58, 101489. [Google Scholar] [CrossRef]
- Yue, D.; Zhou, Y.; Guo, J.; Chao, Z.; Liang, G.; Zheng, X. Ecosystem Service Evaluation and Optimisation in the Shule River Basin, China. Catena 2022, 215, 106320. [Google Scholar] [CrossRef]
- Gong, J.; Jin, T.; Liu, D.; Zhu, Y.; Yan, L. Are Ecosystem Service Bundles Useful for Mountainous Landscape Function Zoning and Management? A Case Study of Bailongjiang Watershed in Western China. Ecol. Indic. 2022, 134, 108495. [Google Scholar] [CrossRef]
- Xu, L.; He, N.; Yu, G. A Dataset of Carbon Density in Chinese Terrestrial Ecosystems (2010s). CSD 2018, 4. [Google Scholar] [CrossRef]
- Chen, L.; Yao, Y.; Xiang, K.; Dai, X.; Li, W.; Dai, H.; Lu, K.; Li, W.; Lu, H.; Zhang, Y.; et al. Spatial-Temporal Pattern of Ecosystem Services and Sustainable Development in Representative Mountainous Cities: A Case Study of Chengdu-Chongqing Urban Agglomeration. J. Environ. Manag. 2024, 368, 122261. [Google Scholar] [CrossRef] [PubMed]
- Raudsepp-Hearne, C.; Peterson, G.D.; Bennett, E.M. Ecosystem Service Bundles for Analyzing Tradeoffs in Diverse Landscapes. Proc. Natl. Acad. Sci. USA 2010, 107, 5242–5247. [Google Scholar] [CrossRef]
- Xia, H.; Yuan, S.; Prishchepov, A.V. Spatial-Temporal Heterogeneity of Ecosystem Service Interactions and Their Social-Ecological Drivers: Implications for Spatial Planning and Management. Resour. Conserv. Recycl. 2023, 189, 106767. [Google Scholar] [CrossRef]
- Xu, C.; Jiang, Y.; Su, Z.; Liu, Y.; Lyu, J. Assessing the Impacts of Grain-for-Green Programme on Ecosystem Services in Jinghe River Basin, China. Ecol. Indic. 2022, 137, 108757. [Google Scholar] [CrossRef]
- Gomes, E.; Inácio, M.; Bogdzevič, K.; Kalinauskas, M.; Karnauskaitė, D.; Pereira, P. Future Land-Use Changes and Its Impacts on Terrestrial Ecosystem Services: A Review. Sci. Total Environ. 2021, 781, 146716. [Google Scholar] [CrossRef]
- Tan, M.; Li, X.; Xie, H.; Lu, C. Urban Land Expansion and Arable Land Loss in China—A Case Study of Beijing–Tianjin–Hebei Region. Land Use Policy 2005, 22, 187–196. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, H. Interactive Relationship among Urban Expansion, Economic Development, and Population Growth since the Reform and Opening up in China: An Analysis Based on a Vector Error Correction Model. Land 2019, 8, 153. [Google Scholar] [CrossRef]
- Weisberg, P.J.; Lingua, E.; Pillai, R.B. Spatial Patterns of Pinyon–Juniper Woodland Expansion in Central Nevada. Rangel. Ecol. Manag. 2007, 60, 115–124. [Google Scholar] [CrossRef]
- Cen, X.; Zhang, H. Impacts of Multi-Scenario Land Use Change on Ecosystem Services and Ecological Security Pattern: A Case Study of the Yellow River Delta. Res. Cold Arid Reg. 2024, 16, 30–44. [Google Scholar] [CrossRef]
- Lyu, R.; Clarke, K.C.; Zhang, J.; Feng, J.; Jia, X.; Li, J. Spatial Correlations among Ecosystem Services and Their Socio-Ecological Driving Factors: A Case Study in the City Belt along the Yellow River in Ningxia, China. Appl. Geogr. 2019, 108, 64–73. [Google Scholar] [CrossRef]
- Wen, X.; Deng, X.; Zhang, F. Scale Effects of Vegetation Restoration on Soil and Water Conservation in a Semi-Arid Region in China: Resources Conservation and Sustainable Management. Resour. Conserv. Recycl. 2019, 151, 104474. [Google Scholar] [CrossRef]
- Wang, H.; Liu, G.; Li, Z.; Zhang, L.; Wang, Z. Processes and Driving Forces for Changing Vegetation Ecosystem Services: Insights from the Shaanxi Province of China. Ecol. Indic. 2020, 112, 106105. [Google Scholar] [CrossRef]
- Lyu, F.; Tang, J.; Olhnuud, A.; Hao, F.; Gong, C. The Impact of Large-Scale Ecological Restoration Projects on Trade-Offs/Synergies and Clusters of Ecosystem Services. J. Environ. Manag. 2024, 365, 121591. [Google Scholar] [CrossRef]
- Zhu, L.; Song, R.; Sun, S.; Li, Y.; Hu, K. Land Use/Land Cover Change and Its Impact on Ecosystem Carbon Storage in Coastal Areas of China from 1980 to 2050. Ecol. Indic. 2022, 142, 109178. [Google Scholar] [CrossRef]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of Land Use Change on Ecosystem Services: A Review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhang, X.; Li, D.H.; Lu, L.; Yu, H. Multi-scenario simulation of the impact of urban land use change on ecosystem service value in Shenzhen. Acta Ecol. Sin. 2022, 42, 2086–2097. [Google Scholar]
- Gong, J.; Cao, E.; Xie, Y.; Xu, C.; Li, H.; Yan, L. Integrating Ecosystem Services and Landscape Ecological Risk into Adaptive Management: Insights from a Western Mountain-Basin Area, China. J. Environ. Manag. 2021, 281, 111817. [Google Scholar] [CrossRef]
- Goldstein, J.H.; Caldarone, G.; Duarte, T.K.; Ennaanay, D.; Hannahs, N.; Mendoza, G.; Polasky, S.; Wolny, S.; Daily, G.C. Integrating Ecosystem-Service Tradeoffs into Land-Use Decisions. Proc. Natl. Acad. Sci. USA 2012, 109, 7565–7570. [Google Scholar] [CrossRef]
- Daily, G.C.; Polasky, S.; Goldstein, J.; Kareiva, P.M.; Mooney, H.A.; Pejchar, L.; Ricketts, T.H.; Salzman, J.; Shallenberger, R. Ecosystem Services in Decision Making: Time to Deliver. Front. Ecol. Environ. 2009, 7, 21–28. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, K.; Liu, H.; Zhang, C.; Yue, Y.; Qi, X. Effect of Ecological Engineering Projects on Ecosystem Services in a Karst Region: A Case Study of Northwest Guangxi, China. J. Clean. Prod. 2018, 183, 831–842. [Google Scholar] [CrossRef]
- Egarter Vigl, L.; Schirpke, U.; Tasser, E.; Tappeiner, U. Linking Long-Term Landscape Dynamics to the Multiple Interactions among Ecosystem Services in the European Alps. Landsc. Ecol. 2016, 31, 1903–1918. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; She, D.; Wang, G.; Zhang, Q. Future Projections of Flooding Characteristics in the Lancang-Mekong River Basin under Climate Change. J. Hydrol. 2021, 602, 126778. [Google Scholar] [CrossRef]
- Liang, X.; Liu, X.; Li, D.; Zhao, H.; Chen, G. Urban Growth Simulation by Incorporating Planning Policies into a CA-Based Future Land-Use Simulation Model. Int. J. Geogr. Inf. Sci. 2018, 32, 2294–2316. [Google Scholar] [CrossRef]
- Tan, R.; Liu, P.; Zhou, K.; He, Q. Evaluating the Effectiveness of Development-Limiting Boundary Control Policy: Spatial Difference-in-Difference Analysis. Land Use Policy 2022, 120, 106229. [Google Scholar] [CrossRef]
- Yang, H.; Huang, X.; Thompson, J.R.; Flower, R.J. Enforcement Key to China’s Environment. Science 2015, 347, 834–835. [Google Scholar] [CrossRef]
- Li, L.; Huang, X.; Wu, D.; Yang, H. Construction of Ecological Security Pattern Adapting to Future Land Use Change in Pearl River Delta, China. Appl. Geogr. 2023, 154, 102946. [Google Scholar] [CrossRef]
- Sun, L.; Yu, H.; Sun, M.; Wang, Y. Coupled Impacts of Climate and Land Use Changes on Regional Ecosystem Services. J. Environ. Manag. 2023, 326, 116753. [Google Scholar] [CrossRef]
Data Type | Application | Data Source | Data Format | Spatial Resolution |
---|---|---|---|---|
Land use/land cover | Simulation of land use, HQ, WY, SC, CS | The land use data are the second (2010) and third (2020) national land use survey data collected from the Natural Resources Bureau of the five counties and districts | Shpfile | / |
Precipitation | WY, SC | National Earth System Science Data Center, National Science and Technology Infrastructure of China | Raster | 1 km |
Temperature | WY | National Earth System Science Data Center, National Science and Technology Infrastructure of China | Raster | 1 km |
Evapotranspiration | WY | National Ecosystem Science Data Center | Raster | 1 km |
Root depth, Soil depth, and soil texture | WY, SC, Simulation of land use | China soil map-based harmonized world soil database (HWSD) (v1.1) | Raster | 1 km |
Digital elevation model(DEM) | WY, SC | Geospatial Data Cloud | Raster | 30 m |
Slope | Simulation of land use | Slope data is calculated using DEM data. | Raster | 30 m |
Carbon density | CS | A dataset of carbon density in Chinese terrestrial ecosystems (2010s) | Spreadsheet | / |
Residential point and road data | Simulation of land use, HQ | National Basic Geographic Information Center | Raster | Shpfile |
Population density (POP) | Simulation of land use, HQ | Resource and Environmental Science Data Center | Raster | 1 km |
Gross domestic product (GDP) | Simulation of land use | Resource and Environmental Science Data Center | Raster | 1 km |
Soil type | Simulation of land use | Resource and Environment Science and Data Center | Raster | 1 km |
Lithology | Simulation of land use | 1:200,000 regional geological map | Shpfile | / |
Water system data | Simulation of land use | National Basic Geographic Information Center | Shpfile | / |
Nighttime light data | Simulation of land use | Earth observation group | Raster | 500 m |
Precipitation and Temperature Data of BCC-CSM2-MR Climate Model | Simulation of land use | CMIP6 | Raster | 110 km |
GDP and POP under different Shared Socioeconomic Pathways (SSPs) | Simulation of land use | Scientific Data Bank | Raster | 55 km |
Farmland | Forestland | Grassland | Water Bodies | Built-Up Land | Unused Land | |
---|---|---|---|---|---|---|
C | 0.20 | 0.05 | 0.30 | 0.00 | 0.00 | 1.00 |
P | 0.15 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 |
Threat Factor | MAX_DIST(km) | Weight | Decay Type |
---|---|---|---|
National and Provincial Highways | 2.5 | 0.6 | Linear |
County and township roads | 0.5 | 0.5 | Linear |
Residential area | 2.5 | 0.4 | Exponential |
Urban | 6.0 | 0.8 | Exponential |
Farmland | 1.5 | 0.6 | Exponential |
Population density | 3.5 | 0.3 | Exponential |
Land Use Type | Habitat Suitability | National and Provincial Highways | County and Township Roads | Residential Area | Urban | Farmland | Population Density |
---|---|---|---|---|---|---|---|
Farmland | 0.30 | 0.50 | 0.60 | 0.40 | 0.50 | 0.00 | 0.80 |
Forestland | 0.90 | 0.90 | 0.70 | 0.50 | 0.60 | 0.30 | 0.70 |
Grassland | 0.60 | 0.70 | 0.50 | 0.20 | 0.30 | 0.50 | 0.50 |
Water bodies | 0.90 | 0.75 | 0.65 | 0.70 | 0.80 | 0.10 | 0.50 |
Built-up land | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.85 |
Unused land | 0.01 | 0.20 | 0.20 | 0.10 | 0.10 | 0.10 | 0.30 |
HQ126_2040 | HQ126_2060 | HQ126_2080 | HQ126_2100 | |
---|---|---|---|---|
SC126_2040 | 0.449 ** | 0.444 ** | 0.439 ** | 0.438 ** |
SC126_2060 | 0.446 ** | 0.440 ** | 0.435 ** | 0.433 ** |
SC126_2080 | 0.442 ** | 0.439 ** | 0.434 ** | 0.433 ** |
SC126_2100 | 0.442 ** | 0.440 ** | 0.435 ** | 0.434 ** |
CS126_2040 | 0.972 ** | 0.963 ** | 0.955 ** | 0.954 ** |
CS126_2060 | 0.964 ** | 0.970 ** | 0.966 ** | 0.966 ** |
CS126_2080 | 0.957 ** | 0.967 ** | 0.968 ** | 0.968 ** |
CS126_2100 | 0.955 ** | 0.966 ** | 0.967 ** | 0.968 ** |
WY126_2040 | 0.348 ** | 0.343 ** | 0.346 ** | 0.345 ** |
WY126_2060 | 0.343 ** | 0.340 ** | 0.342 ** | 0.341 ** |
WY126_2080 | 0.355 ** | 0.352 ** | 0.353 ** | 0.353 ** |
WY126_2100 | 0.360 ** | 0.361 ** | 0.362 ** | 0.362 ** |
SC126_2040 | SC126_2060 | SC126_2080 | SC126_2100 | |
CS126_2040 | 0.406 ** | 0.407 ** | 0.403 ** | 0.408 ** |
CS126_2060 | 0.396 ** | 0.396 ** | 0.395 ** | 0.401 ** |
CS126_2080 | 0.389 ** | 0.389 ** | 0.388 ** | 0.394 ** |
CS126_2100 | 0.387 ** | 0.386 ** | 0.385 ** | 0.391 ** |
WY126_2040 | 0.316 ** | 0.303 ** | 0.312 ** | 0.318 ** |
WY126_2060 | 0.334 ** | 0.324 ** | 0.335 ** | 0.348 ** |
WY126_2080 | 0.340 ** | 0.335 ** | 0.349 ** | 0.371 ** |
WY126_2100 | 0.350 ** | 0.352 ** | 0.372 ** | 0.415 ** |
CS126_2040 | CS126_2060 | CS126_2080 | CS126_2100 | |
WY126_2040 | 0.257 ** | 0.244 ** | 0.247 ** | 0.245 ** |
WY126_2060 | 0.256 ** | 0.243 ** | 0.245 ** | 0.243 ** |
WY126_2080 | 0.283 ** | 0.271 ** | 0.271 ** | 0.270 ** |
WY126_21000 | 0.309 ** | 0.302 ** | 0.301 ** | 0.300 ** |
HQ245_2040 | HQ245_2060 | HQ245_2080 | HQ245_2100 | |
---|---|---|---|---|
SC245_2040 | 0.451 ** | 0.447 ** | 0.445 ** | 0.438 ** |
SC245_2060 | 0.453 ** | 0.450 ** | 0.450 ** | 0.439 ** |
SC245_2080 | 0.444 ** | 0.441 ** | 0.440 ** | 0.430 ** |
SC245_2100 | 0.445 ** | 0.440 ** | 0.438 ** | 0.431 ** |
CS245_2040 | 0.959 ** | 0.970 ** | 0.972 ** | 0.931 ** |
CS245_2060 | 0.973 ** | 0.971 ** | 0.968 ** | 0.939 ** |
CS245_2080 | 0.948 ** | 0.963 ** | 0.969 ** | 0.923 ** |
CS245_2100 | 0.939 ** | 0.956 ** | 0.963 ** | 0.915 ** |
WY245_2040 | 0.344 ** | 0.325 ** | 0.314 ** | 0.345 ** |
WY245_2060 | 0.365 ** | 0.354 ** | 0.349 ** | 0.368 ** |
WY245_2080 | 0.327 ** | 0.314 ** | 0.308 ** | 0.328 ** |
WY245_2100 | 0.324 ** | 0.303 ** | 0.292 ** | 0.324 ** |
SC245_2040 | SC245_2060 | SC245_2080 | SC245_2100 | |
CS245_2040 | 0.408 ** | 0.416 ** | 0.406 ** | 0.402 ** |
CS245_2060 | 0.417 ** | 0.424 ** | 0.414 ** | 0.411 ** |
CS245_2080 | 0.402 ** | 0.411 ** | 0.401 ** | 0.396 ** |
CS245_2100 | 0.397 ** | 0.408 ** | 0.397 ** | 0.391 ** |
WY245_2040 | 0.316 ** | 0.324 ** | 0.310 ** | 0.306 ** |
WY245_2060 | 0.360 ** | 0.385 ** | 0.364 ** | 0.348 ** |
WY245_2080 | 0.323 ** | 0.343 ** | 0.327 ** | 0.313 ** |
WY245_2100 | 0.311 ** | 0.316 ** | 0.304 ** | 0.302 ** |
CS245_2040 | CS245_2060 | CS245_2080 | CS245_2100 | |
WY245_2040 | 0.233 ** | 0.260 ** | 0.216 ** | 0.206 ** |
WY245_2060 | 0.277 ** | 0.296 ** | 0.267 ** | 0.262 ** |
WY245_2080 | 0.236 ** | 0.257 ** | 0.224 ** | 0.218 ** |
WY245_2100 | 0.212 ** | 0.240 ** | 0.194 ** | 0.183 ** |
HQ585_2040 | HQ585_2060 | HQ585_2080 | HQ585_2100 | |
---|---|---|---|---|
SC585_2040 | 0.425 ** | 0.426 ** | 0.423 ** | 0.421 ** |
SC585_2060 | 0.415 ** | 0.416 ** | 0.414 ** | 0.411 ** |
SC585_2080 | 0.421 ** | 0.421 ** | 0.420 ** | 0.417 ** |
SC585_2100 | 0.434 ** | 0.434 ** | 0.432 ** | 0.428 ** |
CS585_2040 | 0.968 ** | 0.976 ** | 0.958 ** | 0.948 ** |
CS585_2060 | 0.975 ** | 0.976 ** | 0.970 ** | 0.964 ** |
CS585_2080 | 0.976 ** | 0.971 ** | 0.975 ** | 0.971 ** |
CS585_2100 | 0.973 ** | 0.965 ** | 0.975 ** | 0.974 ** |
WY585_2040 | 0.364 ** | 0.371 ** | 0.359 ** | 0.357 ** |
WY585_2060 | 0.367 ** | 0.376 ** | 0.360 ** | 0.356 ** |
WY585_2080 | 0.333 ** | 0.341 ** | 0.327 ** | 0.325 ** |
WY585_2100 | 0.345 ** | 0.354 ** | 0.340 ** | 0.338 ** |
SC585_2040 | SC585_2060 | SC585_2080 | SC585_2100 | |
CS585_2040 | 0.412 ** | 0.402 ** | 0.406 ** | 0.415 ** |
CS585_2060 | 0.415 ** | 0.406 ** | 0.410 ** | 0.419 ** |
CS585_2080 | 0.416 ** | 0.408 ** | 0.412 ** | 0.420 ** |
CS585_2100 | 0.416 ** | 0.408 ** | 0.411 ** | 0.419 ** |
WY585_2040 | 0.410 ** | 0.390 ** | 0.375 ** | 0.366 ** |
WY585_2060 | 0.297 ** | 0.280 ** | 0.277 ** | 0.287 ** |
WY585_2080 | 0.359 ** | 0.342 ** | 0.328 ** | 0.321 ** |
WY585_2100 | 0.326 ** | 0.309 ** | 0.301 ** | 0.300 ** |
CS585_2040 | CS585_2060 | CS585_2080 | CS585_2100 | |
WY126_2040 | 0.329 ** | 0.320 ** | 0.315 ** | 0.313 ** |
WY126_2060 | 0.319 ** | 0.306 ** | 0.298 ** | 0.293 ** |
WY126_2080 | 0.300 ** | 0.289 ** | 0.283 ** | 0.280 ** |
WY126_2100 | 0.303 ** | 0.292 ** | 0.285 ** | 0.282 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Zhou, Y.; Yue, D.; Guo, Z.; Li, Z. Scenario Simulation of Ecosystem Services Based on Land Use/Land Cover Change in the Bailong River Basin, in China. Land 2025, 14, 25. https://doi.org/10.3390/land14010025
Li S, Zhou Y, Yue D, Guo Z, Li Z. Scenario Simulation of Ecosystem Services Based on Land Use/Land Cover Change in the Bailong River Basin, in China. Land. 2025; 14(1):25. https://doi.org/10.3390/land14010025
Chicago/Turabian StyleLi, Shuangying, Yanyan Zhou, Dongxia Yue, Zhongling Guo, and Zhi Li. 2025. "Scenario Simulation of Ecosystem Services Based on Land Use/Land Cover Change in the Bailong River Basin, in China" Land 14, no. 1: 25. https://doi.org/10.3390/land14010025
APA StyleLi, S., Zhou, Y., Yue, D., Guo, Z., & Li, Z. (2025). Scenario Simulation of Ecosystem Services Based on Land Use/Land Cover Change in the Bailong River Basin, in China. Land, 14(1), 25. https://doi.org/10.3390/land14010025