Comparative Evaluation of Crithmum maritimum and Origanum dictamnus Cultivation on an Extensive Urban Green Roof
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Cultivation Specifications
2.2. Substrate
2.3. Irrigation
2.4. Meteorological Data
2.5. Plant Growth Evaluation
2.5.1. First Cultivation Period-Plant Biomass
2.5.2. Second Cultivation Period-Plant Biomass
2.6. Statistical Analysis
3. Results
3.1. First Cultivation Period (December 2015–August 2016)
3.1.1. Monthly Growth Assessment During the First Cultivation Period
3.1.2. Plant Biomass Developed in the First Cultivation Period
3.2. Second Cultivation Period (September 2016–June or August 2017)
3.2.1. Monthly Growth Assessment During the Second Cultivation Period
3.2.2. Plant Biomass Developed During Both Cultivation Periods
3.3. Foliage Growth Index Assessment
3.4. Root/Above-Ground Biomass Assessment
4. Discussion
4.1. Effect of Substrate Type
4.2. Effect of Substrate Depth
4.3. Effect of Plant Species
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Kong, F.; Yin, H.; Middel, A.; Zheng, X.; Huang, J.; Xu, H.; Wang, D.; Wen, Z. Impacts of green roofs on water, temperature, and air quality: A bibliometric review. Build. Environ. 2021, 196, 107794. [Google Scholar] [CrossRef]
- Ramyar, R.; Ackerman, A.; Johnston, D.M. Adapting cities for climate change through urban green infrastructure planning. Cities 2021, 117, 103316. [Google Scholar] [CrossRef]
- Cirrincione, L.; Marvuglia, A.; Scaccianoce, G. Assessing the effectiveness of green roofs in enhancing the energy and indoor comfort resilience of urban buildings to climate change: Methodology proposal and application. Build. Environ. 2021, 205, 108198. [Google Scholar] [CrossRef]
- Mihalakakou, G.; Souliotis, M.; Papadaki, M.; Menounou, P.; Dimopoulos, P.; Kolokotsa, D.; Paravantis, J.A.; Tsangrassoulis, A.; Panaras, G.; Giannakopoulos, E.; et al. Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives. Renew. Sustain. Energy Rev. 2023, 180, 113306. [Google Scholar] [CrossRef]
- Whittinghill, L.J.; Rowe, D.B. The role of green roof technology in urban agriculture. Renew. Agric. Food Syst. 2012, 27, 314–322. [Google Scholar] [CrossRef]
- Berardi, U.; Ghaffarian Hoseini, A.H.; Ghaffarian Hoseini, A. State-of-the-art analysis of the environmental benefits of green roofs. Appl. Energy 2014, 115, 411–428. [Google Scholar] [CrossRef]
- Caneva, G.; Kumbaric, A.; Savo, V.; Casalini, R. Ecological approach in selecting extensive green roof plants: A data-set of Mediterranean plants. Plant Biosyst. 2015, 149, 374–383. [Google Scholar] [CrossRef]
- Shafique, M.; Kim, R.; Rafiq, M. Green roof benefits, opportunities and challenges—A review. Renew. Sustain. Energy Rev. 2018, 90, 757–773. [Google Scholar] [CrossRef]
- Li, Y.; Babcock, R.W. Green roofs against pollution and climate change. A review. Agron. Sustain. Dev. 2014, 34, 695–705. [Google Scholar] [CrossRef]
- Barriuso, F.; Urbano, B. Green roofs and walls design intended to mitigate climate change in urban areas across all continents. Sustainability 2021, 13, 2245. [Google Scholar] [CrossRef]
- Raimondo, F.; Trifilò, P.; Lo Gullo, M.A.; Andri, S.; Savi, T.; Nardini, A. Plant performance on Mediterranean green roofs: Interaction of species-specific hydraulic strategies and substrate water relations. AoB Plants 2015, 7, plv007. [Google Scholar] [CrossRef] [PubMed]
- Benvenuti, S.; Bacci, D. Initial agronomic performances of Mediterranean xerophytes in simulated dry green roofs. Urban Ecosyst. 2010, 13, 349–363. [Google Scholar] [CrossRef]
- Papafotiou, M.; Pergialioti, N.; Tassoula, L.; Massas, I.; Kargas, G. Growth of native aromatic xerophytes in an extensive Mediterranean green roof as affected by substrate type and depth and irrigation frequency. HortScience 2013, 48, 1327–1333. [Google Scholar] [CrossRef]
- Papafotiou, M.; Martini, A.N.; Tassoula, L.; Stylias, E.G.; Kalantzis, A.; Dariotis, E. Acclimatization of Mediterranean native Sages (Salvia spp.) and interspecific hybrids in an urban green roof under regular and reduced irrigation. Sustainability 2022, 14, 4978. [Google Scholar] [CrossRef]
- Van Mechelen, C.; Dutoit, T.; Hermy, M. Mediterranean open habitat vegetation offers great potential for extensive green roof design. La ndsc. Urban Plan. 2014, 121, 81–91. [Google Scholar] [CrossRef]
- Ondoño, S.; Martínez-Sánchez, J.J.; Moreno, J.L. Evaluating the growth of several Mediterranean endemic species in artificial substrates: Are these species suitable for their future use in green roofs? Ecol. Eng. 2015, 81, 405–417. [Google Scholar] [CrossRef]
- Tassoula, L.; Papafotiou, M.; Liakopoulos, G.; Kargas, G. Growth of the native xerophyte Convolvulus cneorum L. on an extensive Mediterranean green roof under different substrate types and irrigation regimens. HortScience 2015, 50, 1118–1124. [Google Scholar] [CrossRef]
- Tassoula, L.; Papafotiou, M.; Liakopoulos, G.; Kargas, G. Water use efficiency, growth and anatomic-physiological parameters of Mediterranean xerophytes as affected by substrate and irrigation on a green roof. Not. Bot. Horti Agrobot. Cluj. Napoca 2021, 49, 12283. [Google Scholar] [CrossRef]
- Varela-Stasinopoulou, D.S.; Nektarios, P.A.; Ntoulas, N.; Trigas, P.; Roukounakis, G.I. Sustainable growth of medicinal and aromatic Mediterranean plants growing as communities in shallow substrate urban green roof systems. Sustainability 2023, 15, 5940. [Google Scholar] [CrossRef]
- Varela-Stasinopoulou, D.S.; Nektarios, P.A.; Tsanakas, G.F.; Ntoulas, N.; Roukounakis, G.I.; Economou, A.S. Impact of substrate depth and irrigation regime on growth, flowering and physiological indices of Greek sage (Salvia fruticosa Mill.) grown on urban extensive green roof systems. Ecol. Eng. 2023, 186, 106816. [Google Scholar] [CrossRef]
- Savi, T.; Dal Borgo, A.; Love, V.L.; Andri, S.; Tretiach, M.; Nardini, A. Drought versus heat: What’s the major constraint on Mediterranean green roof plants? Sci. Total Environ. 2016, 566, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Naranjo, A.; Colonia, A.; Mesa, J.; Maury, H.; Maury-Ramírez, A. State-of-the-art green roofs: Technical performance and certifications for sustainable construction. Coatings 2020, 10, 69. [Google Scholar] [CrossRef]
- Orsini, F.; Gasperi, D.; Marchetti, L.; Piovene, C.; Draghetti, S.; Ramazzotti, S.; Bazzocchi, G.; Gianquinto, G. Exploring the production capacity of roof top gardens (RTGs) in urban agriculture: The potential impact on food and nutrition security, biodiversity and other ecosystem services in the city of Bologna. Food Secur. 2014, 6, 781–792. [Google Scholar] [CrossRef]
- Nikalje, G.C.; Bhaskar, S.D.; Yadav, K.; Penna, S. Halophytes: Prospective plants for future. In Eophysiology, Abiotic Stress Responses and Utilization of Halophytes; Hasanuzzaman, M., Nahar, K., Öztürk, M., Eds.; Springer: Singapore, 2019; pp. 221–234. [Google Scholar] [CrossRef]
- Gómez-Bellot, M.J.; Lorente, B.; Ortuño, M.F.; Medina, S.; Gil-Izquierdo, Á.; Bañón, S.; Sánchez-Blanco, M.J. Recycled waste water and reverse osmosis brine use for halophytes irrigation: Differences in physiological, nutritional and hormonal responses of Crithmum maritimum and Atriplex halimus plants. Agronomy 2021, 11, 627. [Google Scholar] [CrossRef]
- Monteiro, M.V.; Blanuša, T.; Verhoef, A.; Richardson, M.; Hadley, P.; Cameron, R.W.F. Functional green roofs: Importance of plant choice in maximizing summer time environmental cooling and substrate insulation potential. Energy Build 2017, 141, 56–68. [Google Scholar] [CrossRef]
- Leotta, L.; Toscano, S.; Romano, D. Which Plant Species for Green Roofs in the Mediterranean Environment? Plants 2023, 12, 3985. [Google Scholar] [CrossRef]
- Kuronuma, T.; Watanabe, H.; Ishihara, T.; Kou, D.; Toushima, K.; Ando, M.; Shindo, S. CO2 pay off of extensive green roofs with different vegetation species. Sustainability 2018, 10, 2256. [Google Scholar] [CrossRef]
- Seyedabadi, M.R.; Eicker, U.; Karimi, S. Plant selection for green roofs and their impact on carbon sequestration and the building carbon footprint. Environ. Chall. 2021, 4, 100119. [Google Scholar] [CrossRef]
- Martini, A.N.; Papafotiou, M.; Massas, I.; Chorianopoulou, N. Using the halophyte Crithmum maritimum in green roofs for sustainable urban horticulture: Effect of substrate and Nutrient Content Analysis including Potentially Toxic Elements. Sustainability 2022, 14, 4713. [Google Scholar] [CrossRef]
- Martini, A.N.; Papafotiou, M.; Massas, I.; Chorianopoulou, N. Growing of the Cretan therapeutic herb Origanum dictamnus in the urban fabric: The effect of substrate and cultivation site on plant growth and potential toxic element accumulation. Plants 2023, 12, 336. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S. Urban agriculture on the roof top. JOJ Hortic. Arboric. 2021, 3, 555611. [Google Scholar] [CrossRef]
- Daneshyar, E. Residential roof top urban agriculture: Architectural design recommendations. Sustainability 2024, 16, 1881. [Google Scholar] [CrossRef]
- Arslan, M.; Yanmaz, R. Use of ornamental vegetables, medicinal and aromatic plants in urban landscape design. Acta Hortic. 2010, 881, 207–211. [Google Scholar] [CrossRef]
- Francini, A.; Romano, D.; Toscano, S.; Ferrante, A. The contribution of ornamental plants to urban ecosystem services. Earth 2022, 3, 1258–1274. [Google Scholar] [CrossRef]
- Walters, S.A.; Gajewski, C.; Sadeghpour, A.; Groninger, J.W. Mitigation of climate change for urban agriculture: Water management of culinary herbs grown in an extensive green roof environment. Climate 2022, 10, 180. [Google Scholar] [CrossRef]
- Huxley, A.; Taylor, W. Flowers of Greece and the Aegean; Chatto & Windus Ltd.: London, UK, 1977; Volume 125, p. 110. [Google Scholar]
- Blamey, M.; Grey-Wilson, C. Mediterranean Wild Flowers; Harper Collins: London, UK, 1993; Volume 399, p. 157. [Google Scholar]
- Atia, A.; Barhoumi, Z.; Mokded, R.; Abdelly, C.; Smaoui, A. Environmental eco-physiology and economical potential of the halophyte Crithmum maritimum L. (Apiaceae). J. Med. Plants Res. 2011, 5, 3564–3571. [Google Scholar]
- Kraouia, M.; Nartea, A.; Maoloni, A.; Osimani, A.; Garofalo, C.; Fanesi, B.; Ismaiel, L.; Aquilanti, L.; Pacetti, D. Sea Fennel (Crithmum maritimum L.) as an emerging cop for the manufacturing of innovative foods and nutraceuticals. Molecules 2023, 28, 4741. [Google Scholar] [CrossRef] [PubMed]
- Phillips, R. Wild Food; Pan Books: London, UK, 1983; ISBN 0-330-28069-4. [Google Scholar]
- Renna, M.; Gonnella, M. The use of the sea fennel as a new spice-colorant in culinary preparations. Inter. J. Gastron. Food Sci. 2012, 1, 111–115. [Google Scholar] [CrossRef]
- Renna, M.; Gonnella, M.; Caretto, S.; Mita, G.; Serio, F. Sea fennel (Crithmum maritimum L.): From underutilized crop to new dried product for food use. Genet. Resour. Crop Evol. 2017, 64, 205–216. [Google Scholar] [CrossRef]
- Meot-Duros, L.; Cérantola, S.; Talarmin, H.; Le Meur, C.; LeFloch, G.; Magné, C. New antibacterial and cytotoxic activities of falcarindiol isolated in Crithmum maritimum L. leaf extract. Food Chem. Toxicol. 2010, 48, 553–557. [Google Scholar] [CrossRef]
- Houta, O.; Akrout, A.; Najja, H.; Neffati, M.; Amri, H. Chemical composition, antioxidant and antimicrobial activities of essential oil from Crithmum maritimum cultivated in Tunisia. J. Essent. Oil Bear. Plants 2015, 18, 1459–1466. [Google Scholar] [CrossRef]
- Pereira, C.G.; Barreira, L.; daRosaNeng, N.; Nogueira, J.M.F.; Marques, C.; Santos, T.F.; Varela, J.; Custódio, L. Searching for new sources of innovative products for the food industry within halophyte aromatic plants: In vitro antioxidant activity and phenolic and mineral contents of infusions and decoctions of Crithmum maritimum L. Food Chem. Toxicol. 2017, 107, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Polatoglu, K.; Karakoç, O.C.; Yücel, Y.Y.; Gücel, S.; Demirci, B.; CanBa¸ser, K.H.; Demirci, F. Insecticidal activity of edible Crithmum maritimum L. essential oil against Coleopteran and Lepidopteran insects. Ind. Crop. Prod. 2016, 89, 383–389. [Google Scholar] [CrossRef]
- Pavela, R.; Maggi, F.; Lupidi, G.; Cianfaglione, K.; Dauvergne, X.; Bruno, M.; Benelli, G. Efficacy of sea fennel (Crithmum maritimum L.; Apiaceae) essential oils against Culex quinquefasciatus Say and Spodoptera littoralis (Boisd.). Ind. Crop Prod. 2017, 109, 603–610. [Google Scholar] [CrossRef]
- Correia, I.; Antunes, M.; Tecelão, C.; Neves, M.; Pires, C.L.; Cruz, P.F.; Rodrigues, M.; Peralta, C.C.; Pereira, C.D.; Reboredo, F.; et al. Nutritive value and bioactivities of a halophyte edible plant: Crithmum maritimum L. (Sea Fennel). Plants 2024, 13, 427. [Google Scholar] [CrossRef] [PubMed]
- Renna, M. Reviewing the prospects of sea fennel (Crithmum maritimum L.) as emerging vegetable crop. Plants 2018, 7, 92. [Google Scholar] [CrossRef]
- Karkanis, A.; Polyzos, N.; Kompocholi, M.; Petropoulos, S.A. Rock Samphire, a candidate crop for saline agriculture: Cropping practices, chemical composition and health effects. Appl. Sci. 2022, 12, 737. [Google Scholar] [CrossRef]
- Zenobi, S.; Fiorentini, M.; Zitti, S.; Aquilanti, L.; Foligni, R.; Mannozzi, C.; Mozzon, M.; Orsini, R. Crithmum maritimum L.: First results on phenological development and biomass production in Mediterranean areas. Agronomy 2021, 11, 773. [Google Scholar] [CrossRef]
- Martins-Noguerol, R.; Rico-Jiménez, D.; Matías, L.; Pérez-Ramos, I.M.; Moreira, X.; Francisco, M.; Álvarez, R.; Gandullo, J.; Pedroche, J.; Martínez-Force, E.; et al. Effects of drought and increased temperature on phytochemical traits of the edible halophyte Crithmum maritimum: Perspectives for future climatic scenarios. Environ. Exp. Bot. 2024, 226, 105924. [Google Scholar] [CrossRef]
- Ciccarelli, D.; Picciarelli, P.; Bedini, G.; Sorce, C. Mediterranean sea cliff plants: Morphological and physiological responses to environmental conditions. J. Plant Ecol. 2016, 9, 153–164. [Google Scholar] [CrossRef]
- Schweitzer, O.; Erell, E. Evaluation of the energy performance and irrigation requirements of extensive green roofs in a water-scarce Mediterranean climate. Energy Build. 2014, 68, 25–32. [Google Scholar] [CrossRef]
- Nektarios, P.A.; Nydrioti, E.; Kapsali, T.; Ntoulas, N. Crithmum maritimum grow thin extensive green roof systems with different substrate type, depth and irrigation regime. Acta Hortic. 2016, 1108, 303–308. [Google Scholar] [CrossRef]
- Azeñas, V.; Janner, I.; Medrano, H.; Gulías, J. Evaluating the establishment performance of six native perennial Mediterranean species for use in extensive green roofs under water-limiting conditions. Urban For. Urban Green. 2019, 41, 158–169. [Google Scholar] [CrossRef]
- Cirrincione, L.; La Gennusa, M.; Peri, G.; Rizzo, G.; Scaccianoce, G.; Sorrentino, G.; Aprile, S. Green roofs as effective tools for improving the indoor comfort levels of buildings—An application to a case study in Sicily. Appl. Sci. 2020, 10, 893. [Google Scholar] [CrossRef]
- Martini, A.N.; Papafotiou, M.; Evangelopoulos, K. Effect of substrate type and depth on the establishment of the edible and medicinal native species Crithmum maritimum on an extensive urban Mediterranean green roof. Acta Hortic. 2017, 1189, 451–454. [Google Scholar] [CrossRef]
- Martini, A.N.; Papafotiou, M.; Massas, I.; Chorianopoulou, N.; Živanović, I. Effect of substrate type and cultivation position on growth and safety to consume of the edible medicinal species Crithmum maritimum L.; in an extensive urban green roof in Athens (Greece). Acta Hortic. 2020, 1298, 413–418. [Google Scholar] [CrossRef]
- Mitropoulou, G.; Fitsiou, E.; Stavropoulou, E.; Papavassilopoulou, E.; Vamvakias, M.; Pappa, A.; Oreopoulou, A.; Kourkoutas, Y. Composition, antimicrobial, antioxidant, and antiproliferative activity of Origanum dictamnus (dittany) essential oil. Microb. Ecol. Health Dis. 2015, 26, 26543. [Google Scholar] [CrossRef]
- Solomou, A.D.; Fountouli, A.; Molla, A.; Petrakis, M.; Manolikaki, I.; Skoufogianni, E. Ecology, cultivation, and utilization of the Dittany of Crete (Origanum dictamnus L.) from ancient times to the present: A short review. Agronomy 2024, 14, 1066. [Google Scholar] [CrossRef]
- Liolios, C.C.; Graikou, K.; Skaltsa, E.; Chinou, I. Dittany of Crete: A botanical and ethnopharmacological review. J. Ethnopharmacol. 2010, 131, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Pirintsos, S.A.; Bariotakis, M.; Kampa, M.; Sourvinos, G.; Lionis, C.; Castanas, E. The therapeutic potential of the essential oil of Thymbra capitata (L.) Cav., Origanum dictamnus L. and Salvia fruticosa Mill. and a case of plant-based pharmaceutical development. Front. Pharmacol. 2020, 11, 522213. [Google Scholar] [CrossRef] [PubMed]
- Tseliou, M.; Pirintsos, S.A.; Lionis, C.; Castanas, E.; Sourvinos, G. Antiviral effect of an essential oil combination derived from three aromatic plants (Coridothymus capitatus (L.) Rchb. f., Origanum dictamnus L. and Salvia fruticosa (Mill.) against viruses causing infections of the upper respiratory tract. J. Herb. Med. 2019, 17–18, 100288. [Google Scholar] [CrossRef]
- Walter, K.S.; Gillett, H.J. 1997 IUCN Red List of Threatened Plants; IUCN (The World Conservation Union): Gland, Switzerland; Cambridge, UK, 1998. [Google Scholar]
- Krigas, N.; Lazari, D.; Maloupa, E.; Stikoudi, M. Introducing Dittany of Crete (Origanum dictamnus L.) to gastronomy: A new culinary concept for a traditionally used medicinal plant. Int. J. Gastron. Food Sci. 2015, 2, 112–118. [Google Scholar] [CrossRef]
- Papafotiou, M.; Pergialioti, N.; Papanastassatos, E.A.; Tassoula, L.; Massas, I.; Kargas, G. Effect of substrate type and depth and the irrigation frequency on growth of semi woody mediterranean species in green roofs. Acta Hortic. 2013, 990, 481–486. [Google Scholar] [CrossRef]
- Martini, A.N.; Papafotiou, M.; Evangelopoulos, K. Establishment of the edible and medicinal endemic species Origanum dictamnus on an extensive urban Mediterranean green roof as affected by substrate type and depth. Acta Hortic. 2017, 1189, 461–464. [Google Scholar] [CrossRef]
- Martini, A.N.; Papafotiou, M.; Massas, Ι.; Chorianopoulou, N.; Živanović, I. Effect of substrate type and cultivation site in the urban fabric on growth and safety to consume the edible medicinal species Origanum dictamnus. Acta Hortic. 2021, 1327, 487–494. [Google Scholar] [CrossRef]
- Chenot, J.; Gaget, E.; Moinardeau, C.; Jaunatre, R.; Buisson, E.; Dutoit, T. Substrate composition and depth affect soil moisture behavior and plant-soil relationship on Mediterranean extensive green roofs. Water 2017, 9, 817. [Google Scholar] [CrossRef]
- Ampim, P.A.; Sloan, J.J.; Cabrera, R.I.; Harp, D.A.; Jaber, F.H. Green roof growing substrates: Types, ingredients, composition and properties. J. Environ. Hort. 2010, 28, 244–252. [Google Scholar] [CrossRef]
- FLL. FLL Guidelines for the Planning, Construction and Maintenance of Green Roofing-Green Roofing Guideline; Landscape, Research, Development & Construction Society: Bonn, Germany, 2008. [Google Scholar]
- Conn, R.; Werdin, J.; Rayner, J.P.; Farrell, C. Green roof substrate physical properties differ between standard laboratory tests due to differences incompaction. J. Environ. Manag. 2020, 261, 110206. [Google Scholar] [CrossRef] [PubMed]
- Kader, S.; Chadalavada, S.; Jaufer, L.; Spalevic, V.; Dudic, B. Green roof substrates—A literature review. Front. Built Environ. 2022, 8, 1019362. [Google Scholar] [CrossRef]
- Papafotiou, M.; Tassoula, L.; Liakopoulos, G.; Kargas, G. Effect of substrate type and irrigation frequency on growth of Mediterranean xerophytes on green roofs. Acta Hortic. 2016, 1108, 309–316. [Google Scholar] [CrossRef]
- Nektarios, P.A.; Amountzias, I.; Kokkinou, I.; Ntoulas, N. Green roof substrate type and depth affect the growth of the native species Dianthus fruticosus under reduced irrigation regimens. HortScience 2011, 46, 1208–1216. [Google Scholar] [CrossRef]
- Kotsiris, G.; Nektarios, P.A.; Paraskevopoulou, A.T. Lavandula angustifolia growth and physiology is affected by substrate type and depth when grown under Mediterranean semi-intensive green roof conditions. HortScience 2012, 47, 311–317. [Google Scholar] [CrossRef]
- Brown, C.; Lundholm, J. Microclimate and substrate depth influence green roof plant community dynamics. Landsc. Urban Plan. 2015, 143, 134–142. [Google Scholar] [CrossRef]
- Eksi, M.; Rowe, D.B. Effect of substrate depth and type on plant growth for extensive green roofs in a Mediterranean climate. J. Green. Build. 2019, 14, 29–44. [Google Scholar] [CrossRef]
- Cao, C.T.N.; Farrell, C.; Kristiansen, P.E.; Rayner, J.P. Biochar makes green roof substrates lighter and improves water supply to plants. Ecol. Eng. 2014, 71, 368–374. [Google Scholar] [CrossRef]
- Martins-Noguerol, R.; Matías, L.; Pérez-Ramos, I.M.; Moreira, X.; Francisco, M.; Pedroche, J.; DeAndrés-Gil, C.; Gutiérrez, E.; Salas, J.J.; Moreno-Pérez, A.J.; et al. Soil physicochemical properties associated with the yield and phytochemical composition of the edible halophyte Crithmum maritimum. Sci. Total Environ. 2023, 869, 161806. [Google Scholar] [CrossRef] [PubMed]
- Butler, C.; Orians, C.M. Sedum cools soil and can improve neighboring plant performanced during water deficit on a green roof. Ecol. Eng. 2011, 37, 1796–1803. [Google Scholar] [CrossRef]
- Lee, K.E.; Williams, K.J.H.; Sargent, L.D.; Farrell, C.; Williams, N.S. Living roof preference is influenced by plant characteristics and diversity. Landsc. Urban Plan. 2014, 122, 152–159. [Google Scholar] [CrossRef]
- Alarcón, J.J.; Morales, M.A.; Ferrández, T.; Sánchez-Blanco, M.J. Effects of water and salt stresses on growth, water relations and gas exchange in Rosmarinus officinalis. J. Hortic. Sci. Biotechnol. 2006, 81, 845–853. [Google Scholar] [CrossRef]
- Zhou, G.; Zhou, X.; Nie, Y.; Bai, S.H.; Zhou, L.; Shao, J.; Cheng, W.; Wang, J.; Hu, F.; Fu, Y. Drought-induced changes in root biomass largely result from altered root morphological traits: Evidence from a synthesis of global field trials. Plant Cell Environ. 2018, 41, 2589–2599. [Google Scholar] [CrossRef] [PubMed]
- Chaves, M.M.; Maroco, J.P.; Pereira, J.S. Understanding plant responses to drought—From genes to the whole plant. Funct. Plant Biol. 2003, 30, 239–264. [Google Scholar] [CrossRef]
A. Physicochemical Properties | ||||
Substrate | Bulk Density | EAW | pH | EC (μs/cm) |
CPePu | 0.68 | 0.063 | 7.48 | 352 |
CPePuS | 0.74 | 0.126 | 7.58 | 267 |
B. Chemical Properties | ||||
Substrate | N * (%) | P ** (mg/Kg) | K *** (mg/Kg) | Na *** (mg/Kg) |
CPePu | 0.61 | 498.60 | 121.38 | 6.45 |
CPePuS | 0.62 | 499.96 | 133.78 | 14.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martini, A.N.; Papafotiou, M. Comparative Evaluation of Crithmum maritimum and Origanum dictamnus Cultivation on an Extensive Urban Green Roof. Land 2025, 14, 195. https://doi.org/10.3390/land14010195
Martini AN, Papafotiou M. Comparative Evaluation of Crithmum maritimum and Origanum dictamnus Cultivation on an Extensive Urban Green Roof. Land. 2025; 14(1):195. https://doi.org/10.3390/land14010195
Chicago/Turabian StyleMartini, Aikaterini N., and Maria Papafotiou. 2025. "Comparative Evaluation of Crithmum maritimum and Origanum dictamnus Cultivation on an Extensive Urban Green Roof" Land 14, no. 1: 195. https://doi.org/10.3390/land14010195
APA StyleMartini, A. N., & Papafotiou, M. (2025). Comparative Evaluation of Crithmum maritimum and Origanum dictamnus Cultivation on an Extensive Urban Green Roof. Land, 14(1), 195. https://doi.org/10.3390/land14010195