Multi-Scale Analysis of Ecosystem Service Trade-Offs/Synergies in the Yangtze River Delta
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.3. Methods
2.3.1. Equivalent Value Correction
2.3.2. Evaluation of Ecosystem Services
2.3.3. Ecosystem Services Trade-Off/Synergy Analysis
2.3.4. Spatial Heterogeneity of Ecosystem Service Trade-Offs/Synergies
3. Results
3.1. Spatial and Temporal Evolution of Ecosystem Services
3.1.1. Temporal Evolution of Ecosystem Services
3.1.2. Spatial Evolution of Ecosystem Services
3.2. Temporal Evolution of Ecosystem Services Trade-Offs/Synergies
3.2.1. Spatial Scale Effects
3.2.2. Temporal Evolution
3.3. Spatial Heterogeneity of Ecosystem Services Trade-Offs/Synergies
4. Discussion
4.1. Spatio-Temporal Evolution and Multi-Scale Analysis of Ecosystem Service Trade-Offs/Synergies
4.2. Spatial Heterogeneity of Ecosystem Service Trade-Offs/Synergies for Policy Implications
4.3. Research Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
ES Type | FP | WR | CR | EP | SC | BM | AL | Total | |
---|---|---|---|---|---|---|---|---|---|
2000 | Dry land | 51.51 | −99.62 | 11.47 | 3.42 | 0.2 | 4.23 | 1.14 | −27.65 |
Irrigated cropland | 32.2 | 0.76 | 7.25 | 2.01 | 20.73 | 2.62 | 0.76 | 66.33 | |
Broad-leaved forest | 10.67 | 12.51 | 130.84 | 38.85 | 53.34 | 48.51 | 13.42 | 308.14 | |
Shrubbery | 6.99 | 8.1 | 85.15 | 25.77 | 34.62 | 31.6 | 8.74 | 200.97 | |
Grassland, dense | 12.5 | 10.2 | 104.88 | 34.62 | 48.31 | 43.88 | 12.16 | 266.55 | |
Grassland, open | 7.24 | 5.92 | 60.79 | 20.13 | 27.98 | 25.56 | 7.09 | 154.71 | |
Wetland | 5.52 | 28.03 | 72.47 | 72.47 | 46.5 | 158.42 | 59.89 | 443.30 | |
Water bodies | 56.19 | 582.27 | 46.1 | 111.72 | 18.72 | 51.33 | 23.93 | 890.26 | |
2005 | Dry land | 65.57 | −126.8 | 17.47 | 5.21 | 0.31 | 6.44 | 2.49 | −29.31 |
Irrigated cropland | 40.98 | 0.96 | 11.03 | 3.07 | 31.57 | 3.98 | 1.66 | 93.25 | |
Broad-leaved forest | 15.38 | 18.03 | 199.23 | 59.16 | 81.22 | 73.87 | 29.33 | 476.22 | |
Shrubbery | 10.07 | 11.66 | 129.65 | 39.23 | 52.72 | 48.12 | 19.09 | 310.54 | |
Grassland, dense | 14.67 | 11.97 | 159.69 | 52.72 | 73.56 | 66.82 | 26.56 | 405.99 | |
Grassland, open | 8.49 | 6.95 | 92.57 | 30.65 | 42.6 | 38.93 | 15.49 | 235.68 | |
Wetland | 8.45 | 42.91 | 110.34 | 110.34 | 70.8 | 241.22 | 130.87 | 714.93 | |
Water bodies | 77.67 | 804.86 | 70.19 | 170.11 | 28.51 | 78.16 | 52.29 | 1281.79 | |
2010 | Dry land | 95.32 | −184.33 | 27.53 | 8.21 | 0.48 | 10.14 | 5.06 | −37.59 |
Irrigated cropland | 59.58 | 1.4 | 17.39 | 4.83 | 49.75 | 6.28 | 3.37 | 142.60 | |
Broad-leaved forest | 22.08 | 25.88 | 313.95 | 93.22 | 128 | 116.4 | 59.55 | 759.08 | |
Shrubbery | 14.46 | 16.75 | 204.31 | 61.82 | 83.08 | 75.83 | 38.76 | 495.01 | |
Grassland, dense | 22.54 | 18.39 | 251.65 | 83.08 | 115.92 | 105.3 | 53.93 | 650.81 | |
Grassland, open | 13.05 | 10.68 | 145.87 | 48.3 | 67.14 | 61.34 | 31.46 | 377.84 | |
Wetland | 13.39 | 67.99 | 173.88 | 173.88 | 111.57 | 380.13 | 265.71 | 1186.55 | |
Water bodies | 116.34 | 1205.59 | 110.61 | 268.07 | 44.92 | 123.17 | 106.17 | 1974.87 | |
2015 | Dry land | 119.55 | −231.2 | 36.16 | 10.78 | 0.63 | 13.32 | 3.07 | −47.69 |
Irrigated cropland | 74.72 | 1.76 | 22.84 | 6.34 | 65.33 | 8.25 | 2.05 | 181.29 | |
Broad-leaved forest | 27.79 | 32.58 | 412.3 | 122.42 | 168.09 | 152.87 | 36.18 | 952.23 | |
Shrubbery | 18.21 | 21.08 | 268.31 | 81.19 | 109.1 | 99.59 | 23.55 | 621.03 | |
Grassland, dense | 28.3 | 23.08 | 330.48 | 109.1 | 152.24 | 138.28 | 32.76 | 814.24 | |
Grassland, open | 16.38 | 13.4 | 191.56 | 63.43 | 88.17 | 80.56 | 19.11 | 472.61 | |
Wetland | 17.58 | 89.29 | 228.35 | 228.35 | 146.53 | 499.21 | 161.43 | 1370.74 | |
Water bodies | 145.34 | 1506.09 | 145.26 | 352.04 | 58.99 | 161.75 | 64.5 | 2433.97 | |
2020 | Dry land | 97.75 | −189.03 | 33.59 | 10.02 | 0.59 | 12.37 | 2.54 | −32.17 |
Irrigated cropland | 61.09 | 1.44 | 21.21 | 5.89 | 60.69 | 7.66 | 1.69 | 159.67 | |
Broad-leaved forest | 23.75 | 27.85 | 383.01 | 113.72 | 156.15 | 142.01 | 29.86 | 876.35 | |
Shrubbery | 15.56 | 18.02 | 249.25 | 75.42 | 101.35 | 92.51 | 19.44 | 571.55 | |
Grassland, dense | 20.3 | 16.56 | 307 | 101.35 | 141.42 | 128.46 | 27.04 | 742.13 | |
Grassland, open | 11.75 | 9.62 | 177.95 | 58.92 | 81.9 | 74.83 | 15.77 | 430.74 | |
Wetland | 16.51 | 83.85 | 212.13 | 212.13 | 136.12 | 463.73 | 133.23 | 1257.70 | |
Water bodies | 144.53 | 1497.66 | 134.94 | 327.03 | 54.8 | 150.26 | 53.24 | 2362.46 |
References
- Qiu, S.; Peng, J.; Dong, J.; Wang, X.; Meersmans, J. Understanding the relationships between ecosystem services and associated social-ecological drivers in a karst region: A case study of Guizhou province, China. Prog. Phys. Geogr. 2020, 45, 98–114. [Google Scholar] [CrossRef]
- Magdalena, U.R.; Gonçalves De Souza, G.B.; Amorim, R.R. Spatial analysis guiding decision making in environmental conservation: Systematic conservation planning and ecosystem services. Prog. Phys. Geogr. 2022, 47, 123–139. [Google Scholar] [CrossRef]
- Castro, A.J.; Verburg, P.H.; Martín-López, B.; Garcia-Llorente, M.; Cabello, J.; Vaughn, C.C.; López, E. Ecosystem service trade-offs from supply to social demand: A landscape-scale spatial analysis. Landscape Urban Plan. 2014, 132, 102–110. [Google Scholar] [CrossRef]
- Dunford, R.W.; Smith, A.C.; Harrison, P.A.; Hanganu, D. Ecosystem service provision in a changing europe: Adapting to the impacts of combined climate and socio-economic change. Landscape Ecol. 2015, 30, 443–461. [Google Scholar] [CrossRef] [PubMed]
- Estoque, R.C.; Murayama, Y. Landscape pattern and ecosystem service value changes: Implications for environmental sustainability planning for the rapidly urbanizing summer capital of the Philippines. Landscape Urban Plan. 2013, 116, 60–72. [Google Scholar] [CrossRef]
- Geng, W.; Li, Y.; Zhang, P.; Yang, D.; Jing, W.; Rong, T. Analyzing spatio-temporal changes and trade-offs/synergies among ecosystem services in the Yellow river basin, China. Ecol. Indic. 2022, 138, 108825. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, J.; Su, J.; Sun, W. Ecosystem service value evaluation method in a complex ecological environment: A case study of Gansu Province, China. PLoS ONE 2021, 16, e240272. [Google Scholar] [CrossRef]
- Torres, A.V.; Tiwari, C.; Atkinson, S.F. Progress in ecosystem services research: A guide for scholars and practitioners. Ecosyst. Serv. 2021, 49, 101267. [Google Scholar] [CrossRef]
- Wang, X.; Peng, J.; Luo, Y.; Qiu, S.; Dong, J.; Zhang, Z.; Vercruysse, K.; Grabowski, R.C.; Meersmans, J.; Cleveland, C.J. Exploring social-ecological impacts on trade-offs and synergies among ecosystem services. Ecol. Econ. 2022, 197, 107438. [Google Scholar] [CrossRef]
- Gong, J.; Xu, C.; Yan, L.; Zhu, Y.; Zhang, Y.; Jin, T. Multi-scale analysis of ecosystem services trade-offs in an ecotone in the eastern margin of the Qinghai-tibetan Plateau. J. Mt. Sci.-Engl. 2021, 18, 2803–2819. [Google Scholar] [CrossRef]
- Aryal, K.; Maraseni, T.; Apan, A. How much do we know about trade-offs in ecosystem services? A systematic review of empirical research observations. Sci. Total Environ. 2022, 806, 151229. [Google Scholar] [CrossRef]
- Huang, L.; Du, Y.; Tang, Y. Ecosystem service trade-offs and synergies and their drivers in severely affected areas of the Wenchuan earthquake, China. Land. Degrad. Dev. 2024, 35, 3881–3896. [Google Scholar] [CrossRef]
- Liu, J.; Pei, X.; Zhu, W.; Jiao, J. Scenario modeling of ecosystem service trade-offs and bundles in a semi-arid valley basin. Sci. Total Environ. 2023, 896, 166413. [Google Scholar] [CrossRef]
- Qiao, X.; Gu, Y.; Zou, C.; Xu, D.; Wang, L.; Ye, X.; Yang, Y.; Huang, X. Temporal variation and spatial scale dependency of the trade-offs and synergies among multiple ecosystem services in the Taihu Lake Basin of China. Sci. Total Environ. 2019, 651, 218–229. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yan, W.; Li, Z.; Wende, W.; Xiao, S.; Wan, S.; Li, S. Spatial patterns of associations among ecosystem services across different spatial scales in metropolitan areas: A case study of Shanghai, China. Ecol. Indic. 2022, 136, 108682. [Google Scholar] [CrossRef]
- Petz, K.; Alkemade, R.; Bakkenes, M.; Schulp, C.J.E.; van der Velde, M.; Leemans, R. Mapping and modelling trade-offs and synergies between grazing intensity and ecosystem services in rangelands using global-scale datasets and models. Glob. Environ. Chang. 2014, 29, 223–234. [Google Scholar] [CrossRef]
- Armatas, C.A.; Campbell, R.M.; Watson, A.E.; Borrie, W.T.; Neal, C.; Venn, T.J. An integrated approach to valuation and tradeoff analysis of ecosystem services for national forest decision-making. Ecosyst. Serv. 2018, 33, 1–18. [Google Scholar] [CrossRef]
- Karimi, J.D.; Harris, J.A.; Corstanje, R. Using Bayesian Belief Networks to assess the influence of landscape connectivity on ecosystem service trade-offs and synergies in urban landscapes in the UK. Landscape Ecol. 2021, 36, 3345–3363. [Google Scholar] [CrossRef]
- Su, C.; Dong, M.; Fu, B.; Liu, G. Scale effects of sediment retention, water yield, and net primary production: A case-study of the Chinese Loess Plateau. Land Degrad. Dev. 2020, 31, 1408–1421. [Google Scholar] [CrossRef]
- Xiong, L.; Li, R. Assessing and decoupling ecosystem services evolution in karst areas: A multi-model approach to support land management decision-making. J. Environ. Manag. 2024, 350, 119632. [Google Scholar] [CrossRef]
- Deng, X.; Xiong, K.; Yu, Y.; Zhang, S.; Kong, L.; Zhang, Y. A review of ecosystem service trade-offs/synergies: Enlightenment for the optimization of forest ecosystem functions in karst desertification control. Forests 2023, 14, 88. [Google Scholar] [CrossRef]
- Hou, Y.; Lü, Y.; Chen, W.; Fu, B. Temporal variation and spatial scale dependency of ecosystem service interactions: A case study on the central loess plateau of China. Landscape Ecol. 2017, 32, 1201–1217. [Google Scholar] [CrossRef]
- Rodríguez, J.P.; Beard, J.T.D.; Bennett, E.M.; Cumming, G.S.; Cork, S.J.; Agard, J.; Dobson, A.P.; Peterson, G.D. Trade-offs across space, time, and ecosystem services. Ecol. Soc. 2006, 11, 28. [Google Scholar] [CrossRef]
- Li, B.; Wang, W. Trade-offs and synergies in ecosystem services for the Yinchuan basin in China. Ecol. Indic. 2018, 84, 837–846. [Google Scholar] [CrossRef]
- Zhang, B.; Li, W.; Xie, G. Ecosystem services research in China: Progress and perspective. Ecol. Econ. 2010, 69, 1389–1395. [Google Scholar] [CrossRef]
- Yang, M.; Gao, X.; Zhao, X.; Wu, P. Scale effect and spatially explicit drivers of interactions between ecosystem services—A case study from the Loess Plateau. Sci. Total Environ. 2021, 785, 147389. [Google Scholar] [CrossRef]
- Pan, J.; Wei, S.; Li, Z. Spatiotemporal pattern of trade-offs and synergistic relationships among multiple ecosystem services in an arid inland river basin in NW China. Ecol. Indic. 2020, 114, 106345. [Google Scholar] [CrossRef]
- Li, R.; Kong, L.; Yang, Y.; Wang, Y.; Zheng, H.; Liang, M. Dynamic bundles to detect the spatiotemporal characteristics and impact factors of ecosystem services in northern China. Prog. Phys. Geogr. 2023, 47, 687–701. [Google Scholar] [CrossRef]
- Tao, Y.; Tao, Q.; Sun, X.; Qiu, J.; Pueppke, S.G.; Ou, W.; Guo, J.; Qi, J. Mapping ecosystem service supply and demand dynamics under rapid urban expansion: A case study in the Yangtze River Delta of China. Ecosyst. Serv. 2022, 56, 101448. [Google Scholar] [CrossRef]
- Cai, W.; Gibbs, D.; Zhang, L.; Ferrier, G.; Cai, Y. Identifying hotspots and management of critical ecosystem services in rapidly urbanizing Yangtze river delta region, China. J. Environ. Manag. 2017, 191, 258–267. [Google Scholar] [CrossRef]
- Shu, H.; Xiong, P. Reallocation planning of urban industrial land for structure optimization and emission reduction: A practical analysis of urban agglomeration in China’s Rangtze River Delta. Land. Use Policy 2019, 81, 604–623. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of the evaluation method for ecosystem service value based on per unit area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Luo, Q.; Zhang, X.; Li, Z.; Yang, M.; Lin, Y. The effects of China’s ecological control line policy on ecosystem services: The case of Wuhan city. Ecol. Indic. 2018, 93, 292–301. [Google Scholar] [CrossRef]
- Wu, X.; Wang, S.; Fu, B.; Liu, Y.; Zhu, Y. Land use optimization based on ecosystem service assessment: A case study in the Yanhe watershed. Land. Use Policy 2018, 72, 303–312. [Google Scholar] [CrossRef]
- Xie, G.; Zhen, L.; Lu, C.; Xiao, Y.; Li, W. Applying value transfer method for eco-service valuation in China. J. Resour. Ecol. 2010, 1, 51–59. [Google Scholar]
- Xu, S.; Liu, Y. Associations among ecosystem services from local perspectives. Sci. Total Environ. 2019, 690, 790–798. [Google Scholar] [CrossRef]
- Zheng, D.; Wang, Y.; Hao, S.; Xu, W.; Lv, L.; Yu, S. Spatial-temporal variation and tradeoffs/synergies analysis on multiple ecosystem services: A case study in the three-river headwaters region of China. Ecol. Indic. 2020, 116, 106494. [Google Scholar] [CrossRef]
- Tian, Y.; Jiang, G.; Zhou, D.; Li, G. Systematically addressing the heterogeneity in the response of ecosystem services to agricultural modernization, industrialization and urbanization in the Qinghai-Tibetan plateau from 2000 to 2018. J. Clean. Prod. 2021, 285, 125323. [Google Scholar] [CrossRef]
- Felipe-Lucia, M.R.; Comín, F.A.; Bennett, E.M. Interactions among ecosystem services across land uses in a floodplain agroecosystem. Ecol. Soc. 2014, 19, 20. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Y.; Xiao, W.; Yellishetty, M.; Yang, D. Identifying ecosystem service bundles and the spatiotemporal characteristics of trade-offs and synergies in coal mining areas with a high groundwater table. Sci. Total Environ. 2022, 807, 151036. [Google Scholar] [CrossRef]
- Yang, Y.; Li, M.; Feng, X.; Yan, H.; Su, M.; Wu, M. Spatiotemporal variation of essential ecosystem services and their trade-off/synergy along with rapid urbanization in the lower pearl river basin, China. Ecol. Indic. 2021, 133, 108439. [Google Scholar] [CrossRef]
- Xue, C.; Chen, X.; Xue, L.; Zhang, H.; Chen, J.; Li, D. Modeling the spatially heterogeneous relationships between tradeoffs and synergies among ecosystem services and potential drivers considering geographic scale in bairin left banner, China. Sci. Total Environ. 2023, 855, 158834. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhan, J.; Zhao, F.; Wang, C.; Zhang, F.; Teng, Y.; Chu, X.; Kumi, M.A. Spatio-temporal variations of ecosystem services and their drivers in the pearl river delta, China. J. Clean. Prod. 2022, 337, 130466. [Google Scholar] [CrossRef]
- Wang, H.; Liu, L.; Yin, L.; Shen, J.; Li, S. Exploring the complex relationships and drivers of ecosystem services across different geomorphological types in the Beijing-Tianjin-Hebei region, China (2000–2018). Ecol. Indic. 2021, 121, 107116. [Google Scholar] [CrossRef]
Classification in the Land Use Data | Land Use Classification | |
---|---|---|
Xie et al. [32] | This Study | |
Paddy field | Paddy field | Irrigated cropland |
Dry land | Dry land | Dry land |
Marsh, saline–alkaline land, beach, bottom land | Wetland | Wetland |
Canals, lakes, reservoirs and ponds | River system | Water bodies |
Woodland, sparse woodland, other woodlands | Broad-leaved forest | Broad-leaved forest |
Shrubbery | Shrubbery | Shrubbery |
High0cover grassland | Bush | Grassland, dense |
Low- and medium-cover grassland | Meadow | Grassland, open |
Sandy land, bare land, bare rock stony land | Bare land | Barren or sparsely vegetated |
Land Use | FP | WR | CR | EP | SC | BM | AL | |
---|---|---|---|---|---|---|---|---|
Arable land | Dry land | 0.85 | 0.02 | 0.36 | 0.1 | 1.03 | 0.13 | 0.06 |
Irrigated cropland | 1.36 | −2.63 | 0.57 | 0.17 | 0.01 | 0.21 | 0.09 | |
Forest land | Broad-leaved forest | 0.29 | 0.34 | 6.5 | 1.93 | 2.65 | 2.41 | 1.06 |
Shrubbery | 0.19 | 0.22 | 4.23 | 1.28 | 1.72 | 1.57 | 0.69 | |
Grassland | Dense grassland | 0.38 | 0.31 | 5.21 | 1.72 | 2.4 | 2.18 | 0.96 |
Open grassland | 0.22 | 0.18 | 3.02 | 1 | 1.39 | 1.27 | 0.56 | |
Water bodies | Wetland | 0.51 | 2.59 | 3.6 | 3.6 | 2.31 | 7.87 | 4.73 |
Water bodies | 0.8 | 8.29 | 2.29 | 5.55 | 0.93 | 2.55 | 1.89 |
Correction Factor | 2000 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|
FP of arable land | 3.50 | 2.91 | 2.67 | 2.55 | 2.22 |
FP of forest land | 3.40 | 3.20 | 2.90 | 2.78 | 2.53 |
FP of grassland | 3.04 | 2.33 | 2.26 | 2.16 | 1.65 |
FP of water bodies | 6.49 | 5.86 | 5.54 | 5.27 | 5.58 |
CR, EP, SC, BM | 1.86 | 1.85 | 1.84 | 1.84 | 1.82 |
AL | 1.17 | 1.67 | 2.14 | 0.99 | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Liu, W.; Zhao, F.; Zhao, Q.; Xu, Z.; Asiedu Kumi, M. Multi-Scale Analysis of Ecosystem Service Trade-Offs/Synergies in the Yangtze River Delta. Land 2024, 13, 1462. https://doi.org/10.3390/land13091462
Chen Y, Liu W, Zhao F, Zhao Q, Xu Z, Asiedu Kumi M. Multi-Scale Analysis of Ecosystem Service Trade-Offs/Synergies in the Yangtze River Delta. Land. 2024; 13(9):1462. https://doi.org/10.3390/land13091462
Chicago/Turabian StyleChen, Yongqi, Wei Liu, Fen Zhao, Qing Zhao, Zhiwei Xu, and Michael Asiedu Kumi. 2024. "Multi-Scale Analysis of Ecosystem Service Trade-Offs/Synergies in the Yangtze River Delta" Land 13, no. 9: 1462. https://doi.org/10.3390/land13091462
APA StyleChen, Y., Liu, W., Zhao, F., Zhao, Q., Xu, Z., & Asiedu Kumi, M. (2024). Multi-Scale Analysis of Ecosystem Service Trade-Offs/Synergies in the Yangtze River Delta. Land, 13(9), 1462. https://doi.org/10.3390/land13091462