A Comprehensive Accounting of Carbon Emissions and Carbon Sinks of China’s Agricultural Sector
Abstract
:1. Introduction
2. Materials and Methods
2.1. Agricultural Carbon Emissions and Carbon Sink Accounting System
2.1.1. Accounting for Agricultural Carbon Emissions
- (1)
- Paddy field planting
- (2)
- Farmland soil management
- (3)
- Livestock and poultry breeding
- (4)
- Input of agricultural energy and chemicals
2.1.2. Accounting for Agricultural Carbon Sinks
2.2. Agricultural Carbon Emissions and Carbon Sinks Scenario Prediction Model
2.3. Data Source and Processing
3. Results Analysis
3.1. Analysis of the Current Status of Agricultural Carbon Emissions and Carbon Sinks
3.1.1. Analysis of Temporal Characteristics
3.1.2. Analysis of Regional Heterogeneity
3.2. Prediction of Emission Reduction and Carbon Sink Increase Potential in the Agricultural Sector
4. Discussion
5. Conclusions and Enlightenments
- From 1995 to 2020, carbon emissions in China’s agricultural sector exhibited an “M”-shaped trend, with two peaks in 2006 and 2015, reaching 1081.7 Mt CO2 e and 1055.2 Mt CO2 e, respectively. Meanwhile, agricultural carbon sinks showed a fluctuating but overall increasing trend, rising from 414.5 Mt CO2 e in 1995 to 654.7 Mt CO2 e in 2020.
- Livestock farming was the largest source of agricultural carbon emissions, although its share has been decreasing. Conversely, the share of emissions from agricultural energy, chemical inputs, and farmland soil management has been increasing, surpassing livestock farming as the dominant agricultural carbon source after 2016.
- There are significant regional differences in the structure of agricultural carbon emissions and sinks across China. Based on these distinctions, China’s 31 provinces can be classified into five types: carbon sink-dominated regions, rice planting-dominated regions, livestock farming-dominated regions, resource inputs-dominated regions, and regions dominated by a combination of factors.
- The level of agricultural technology and the scale of agricultural development are the main factors affecting agricultural carbon emissions and sinks in China. A 1% decrease in agricultural carbon intensity could result in a 0.72% reduction in agricultural carbon emissions, while a 1% increase in the total output value of agriculture, forestry, animal husbandry, and fisheries leads to 0.51% increase in agricultural carbon sinks.
- Compared to the baseline value in 2020, the emission reduction potential by 2050 under the baseline scenario, reducing emissions-oriented scenario, and increasing carbon sinks-oriented scenario are 4.5%, 21.3%, and 7.1%, respectively, while the carbon sink increase potential will be −1.2%, −14.5%, and 18.9%. After taking into account carbon emissions, carbon sinks, and net carbon emissions, this paper argues that the effect of emission reduction before 2045 is more obvious than that of increasing carbon sinks. Therefore, emission reduction potential should be fully harnessed. While after 2045, as carbon sinks accumulate, the effect of carbon sink becomes more significant. So, efforts should be made to actively develop agricultural carbon sinks after this time.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Tang, H.; Muhammad, A.; Huang, G. Emission Mechanism and Reduction Countermeasures of Agricultural Greenhouse Gases—A Review. Greenh. Gases Sci. Technol. 2019, 9, 160–174. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food Systems Are Responsible for a Third of Global Anthropogenic GHG Emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- Frank, S.; Havlík, P.; Stehfest, E.; van Meijl, H.; Witzke, P.; Pérez-Domínguez, I.; van Dijk, M.; Doelman, J.C.; Fellmann, T.; Koopman, J.F.L.; et al. Agricultural Non-CO2 Emission Reduction Potential in the Context of the 1.5 °C Target. Nature Clim. Change 2019, 9, 66–72. [Google Scholar] [CrossRef]
- van Beek, C.L.; Meerburg, B.G.; Schils, R.L.M.; Verhagen, J.; Kuikman, P.J. Feeding the World’s Increasing Population While Limiting Climate Change Impacts: Linking N2O and CH4 Emissions from Agriculture to Population Growth. Environ. Sci. Policy 2010, 13, 89–96. [Google Scholar] [CrossRef]
- IPCC; Core Writing Team. Sections. In Climate Change 2023: Synthesis Report; Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar]
- Xia, Q. Based on the Carbon Sink of Agricultural Development Mode Transition Study. Ecol. Econ. 2010, 10, 106–109. [Google Scholar]
- Xiong, C.; Yang, D.; Xia, F.; Huo, J. Changes in Agricultural Carbon Emissions and Factors That Influence Agricultural Carbon Emissions Based on Different Stages in Xinjiang, China. Sci. Rep. 2016, 6, 36912. [Google Scholar] [CrossRef]
- Song, S.; Zhao, S.; Zhang, Y.; Ma, Y. Carbon Emissions from Agricultural Inputs in China over the Past Three Decades. Agriculture 2023, 13, 919. [Google Scholar] [CrossRef]
- Jin, S.; Lin, Y.; Niu, K. Driving Green Transformation of Agriculture with Low Carbon: Characteristics of Agricultural Carbon Emissions and Its Emission Reduction Path in China. Reform 2021, 5, 29–37. [Google Scholar]
- Ye, X.; Cheng, Y.; Zhang, Y.; Wu, Z.; Li, Q.; Liu, C. Scenario Simulation, Main Paths and Policy Measures of Greenhouse Gas Emission Reduction of Agricultural Activities in China. Issues Agric. Econ 2022, 2, 4–16. [Google Scholar]
- Goglio, P.; Smith, W.N.; Grant, B.B.; Desjardins, R.L.; Gao, X.; Hanis, K.; Tenuta, M.; Campbell, C.A.; McConkey, B.G.; Nemecek, T.; et al. A Comparison of Methods to Quantify Greenhouse Gas Emissions of Cropping Systems in LCA. J. Clean. Prod. 2018, 172, 4010–4017. [Google Scholar] [CrossRef]
- O’Brien, D.; Shalloo, L.; Crosson, P.; Donnellan, T.; Farrelly, N.; Finnan, J.; Hanrahan, K.; Lalor, S.; Lanigan, G.; Thorne, F.; et al. An Evaluation of the Effect of Greenhouse Gas Accounting Methods on a Marginal Abatement Cost Curve for Irish Agricultural Greenhouse Gas Emissions. Environ. Sci. Policy 2014, 39, 107–118. [Google Scholar] [CrossRef]
- Yue, Q.; Xu, X.; Hillier, J.; Cheng, K.; Pan, G. Mitigating Greenhouse Gas Emissions in Agriculture: From Farm Production to Food Consumption. J. Clean. Prod. 2017, 149, 1011–1019. [Google Scholar] [CrossRef]
- Bennetzen, E.H.; Smith, P.; Porter, J.R. Agricultural Production and Greenhouse Gas Emissions from World Regions—The Major Trends over 40 Years. Glob. Environ. Change 2016, 37, 43–55. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Salvatore, M.; Rossi, S.; Ferrara, A.; Fitton, N.; Smith, P. The FAOSTAT Database of Greenhouse Gas Emissions from Agriculture. Environ. Res. Lett. 2013, 8, 015009. [Google Scholar] [CrossRef]
- Thamo, T.; Kingwell, R.S.; Pannell, D.J. Measurement of Greenhouse Gas Emissions from Agriculture: Economic Implications for Policy and Agricultural Producers. Aust. J. Agric. Resour. Econ. 2013, 57, 234–252. [Google Scholar] [CrossRef]
- Jones, C.A.; Sands, R.D. Impact of Agricultural Productivity Gains on Greenhouse Gas Emissions: A Global Analysis. Am. J. Agric. Econ. 2013, 95, 1309–1316. [Google Scholar] [CrossRef]
- Laborde, D.; Mamun, A.; Martin, W.; Piñeiro, V.; Vos, R. Agricultural Subsidies and Global Greenhouse Gas Emissions. Nat. Commun. 2021, 12, 2601. [Google Scholar] [CrossRef]
- McGinn, S.M. Measuring Greenhouse Gas Emissions from Point Sources in Agriculture. Can. J. Soil. Sci. 2006, 86, 355–371. [Google Scholar] [CrossRef]
- Ro, K.S.; Johnson, M.H.; Varma, R.M.; Hashmonay, R.A.; Hunt, P. Measurement of Greenhouse Gas Emissions from Agricultural Sites Using Open-Path Optical Remote Sensing Method. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2009, 44, 1011–1018. [Google Scholar] [CrossRef]
- Chen, Y.E.; Chen, W. A study on the relationship among agricultural mechanization, industrial upgrading and agricultural carbon emission—The empirical research based on dynamic panel data model. J. Agrotech. Econ. 2018, 5, 122–133. [Google Scholar]
- Li, B.; Zhang, J.; Li, H. Research on Spatial-Temporal Characteristics and Affecting Factors Decomposition of Agricultural Carbon Emission in China. China Popul. Resour. Environ. 2011, 21, 80–86. [Google Scholar]
- Tian, Y.; Zhang, J.B.; Li, B. Research on Spatial-Temporal Characteristics and Factor Decomposition of Agricultural Carbon Emission Based on Input Angle-Taking Hubei Province for Example. Res. Agric. Mod. 2011, 6, 752–755. [Google Scholar]
- Li, Y.; Lin, E.; Zhen, X. Advances in Methods of Agricultural Greenhouse Gas Inventories. Adv. Earth Sci. 2007, 22, 1076. [Google Scholar]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; Institute for Global Environmental Strategies: Hayama, Japan, 2006. [Google Scholar]
- National Development and Reform Commission. Guidelines for Provincial Greenhouse Gas Inventory Compilation (Trial); National Development and Reform Commission: Beijing, China, 2010.
- Zhang, F.; Xuan, X.; Jin, G.; Wu, F. Agricultural Non-CO2 Greenhouse Gases Emissions and Scenario Simulation Analysis. Acta Geogr. Sin. 2023, 78, 35–53. [Google Scholar]
- Yonghao, H.U.; Kunyang, Z.; Nanyan, H.U.; Laping, W.U. Review on Measurement of Agricultural Carbon Emission in China. Chin. J. Eco-Agric. 2023, 31, 163–176. [Google Scholar] [CrossRef]
- Wang, M.; Li, J.; Zheng, X. Methane Emission and Mechanisms of Methane Production, Oxidation, Transportation in the Rice Fields. Sci. Atmos. Sin. 1998, 22, 610–621. [Google Scholar]
- Zhang, X.; Wang, J.; Zhang, T.; Li, B.; Yan, L. Assessment of Nitrous Oxide Emissions from Chinese Agricultural System and Low-Carbon Measures. Jiangsu J. Agric. Sci. 2021, 37, 1215–1233. [Google Scholar]
- Liu, X.; Xu, J.; Wang, F.; Zhang, F.; Ma, W. The Resource and Distribution of Nitrogen Nutrient in Animal Excretion in China. J. Agric. Univ. Hebei 2005, 28, 27–32. [Google Scholar]
- Chen, J.; Cheng, S.; Song, M. Changes in Energy-Related Carbon Dioxide Emissions of the Agricultural Sector in China from 2005 to 2013. Renew. Sustain. Energy Rev. 2018, 94, 748–761. [Google Scholar] [CrossRef]
- West, T.O.; Marland, G. A Synthesis of Carbon Sequestration, Carbon Emissions, and Net Carbon Flux in Agriculture: Comparing Tillage Practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Cheng, K.; Pan, G.; Smith, P.; Luo, T.; Li, L.; Zheng, J.; Zhang, X.; Han, X.; Yan, M. Carbon Footprint of China’s Crop Production—An Estimation Using Agro-Statistics Data over 1993–2007. Agric. Ecosyst. Environ. 2011, 142, 231–237. [Google Scholar] [CrossRef]
- Díaz, S. Ecosystem Function Measurement, Terrestrial Communities. In Encyclopedia of Biodiversity, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 72–89. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, J. Regional Differentiation Research on Net Carbon Effect of Agricultural Production in China. J. Nat. Resour. 2013, 28, 1298–1309. [Google Scholar] [CrossRef]
- Wang, X.L. Carbon Dioxide, Climate Change, and Agriculture; China Meteorological Press: Beijing, China, 1996. [Google Scholar]
- Han, Z.-Y.; Meng, Y.-L.; Xu, J.; Wu, Y.; Zhou, Z.-G. Temporal and Spatial Difference in Carbon Footprint of Regional Farmland Ecosystem—Taking Jiangsu Province as a Case. J. Agro-Environ. Sci. 2012, 31, 1034–1041. [Google Scholar]
- Aziz, S.; Chowdhury, S.A. Analysis of agricultural greenhouse gas emissions using the STIRPAT model: A case study of Bangladesh. Environ. Dev. Sustain. 2023, 25, 3945–3965. [Google Scholar] [CrossRef]
- Dietz, T.; Rosa, E.A. Rethinking the Environmental Impacts of Population, Affluence and Technology. Hum. Ecol. Rev. 1994, 1, 277–300. [Google Scholar]
- York, R.; Rosa, E.A.; Dietz, T. STIRPAT, IPAT and ImPACT: Analytic Tools for Unpacking the Driving Forces of Environmental Impacts. Ecol. Econ. 2003, 46, 351–365. [Google Scholar] [CrossRef]
- Li, L.; Lei, Y.; He, C.; Wu, S.; Chen, J. Prediction on the Peak of the CO2 Emissions in China Using the STIRPAT Model. Adv. Meteorol. 2016, 2016, 5213623. [Google Scholar] [CrossRef]
- Qu, S.; Guo, C. Forecast of China’s Carbon Emissions Based on STIRPAT Model. China Popul. Resour. Environ. 2010, 20, 10–15. [Google Scholar]
- Su, K.; Lee, C.-M. When Will China Achieve Its Carbon Emission Peak? A Scenario Analysis Based on Optimal Control and the STIRPAT Model. Ecol. Indic. 2020, 112, 106138. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, T.; Yuan, R. Scenario Simulations for the Peak of Provincial Household CO2 Emissions in China Based on the STIRPAT Model. Sci. Total Environ. 2022, 809, 151098. [Google Scholar] [CrossRef]
- Jiang, J.; Zhao, T.; Wang, J. Decoupling Analysis and Scenario Prediction of Agricultural CO2 Emissions: An Empirical Analysis of 30 Provinces in China. J. Clean. Prod. 2021, 320, 128798. [Google Scholar] [CrossRef]
- IPCC; Core Writing Team. Climate Change 2007: Synthesis Report; Pachauri, R.K., Reisinger, A., Eds.; IPCC: Geneva, Switzerland, 2007; 104p. [Google Scholar]
- Zhu, Q.; Peng, X.; Lu, Z.; Yu, J. Analysis Model and Empirical Study of Impacts from Population and Consumption on Carbon Emissions. China Popul. Resour. Environ. 2010, 20, 98–102. [Google Scholar]
- Zhang, Y.; Li, H.; Zhao, Z.H. Effects of Grain Crop Planting Changes on Agricultural Carbon Emissions between Provinces in China. Chin. J. Agric. Resour. Reg. Plan. 2023, 44, 29–38. [Google Scholar]
- Yu, Z.H.; Mao, S.P. Analysis of the decoupling of China’s agricultural net carbon emissions from its economic growth. China Popul. Resour. Environ. 2022, 32, 30. [Google Scholar]
- Tian, Y.; Yin, M.H. Re-evaluation of China’s agricultural carbon emissions: Basic status, dynamic evolution and spatial spillover effects. Chin. Rural Econ. 2022, 3, 104–127. [Google Scholar]
- Tian, C.S.; Chen, Y. China’s provincial agricultural carbon emissions measurement and low carbonization level evaluation: Based on the application of derivative indicators and TOPSIS. J. Nat. Resour. 2021, 36, 395–410. [Google Scholar] [CrossRef]
- Yang, H.; Wang, X.; Bin, P. Agriculture carbon-emission reduction and changing factors behind agricultural eco-efficiency growth in China. J. Clean. Prod. 2022, 334, 130193. [Google Scholar] [CrossRef]
- Yang, J. The Effects of Technological Advances on Agricultural Carbon Emission-Evidence from Chinese Provincial Data. Soft Sci. 2013, 27, 116. [Google Scholar]
- Ma, S.; Li, J.; Wei, W. The carbon emission reduction effect of digital agriculture in China. In Environmental Science and Pollution Research; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–18. [Google Scholar] [CrossRef]
- Tian, Y.; Cai, Y.R. Research progress and future prospects of agricultural carbon issues under “Dual carbon” goal. J. Huazhong Agric. Univ. 2024, 43, 75–88. [Google Scholar]
Area | Single Cropping Rice | Double Season Early Rice | Double Season Late Rice | |
---|---|---|---|---|
North China | Beijing | 234 | - | - |
Tianjin | 234 | - | - | |
Hebei | 234 | - | - | |
Shanxi | 234 | - | - | |
Inner Mongolia | 234 | - | - | |
Northeast China | Liaoning | 168 | - | - |
Jilin | 168 | - | - | |
Heilongjiang | 168 | - | - | |
East China | Shanghai | 215.5 | 211.4 | 224 |
Jiangsu | 215.5 | 211.4 | 224 | |
Zhejiang | 215.5 | 211.4 | 224 | |
Anhui | 215.5 | 211.4 | 224 | |
Fujian | 215.5 | 211.4 | 224 | |
Jiangxi | 215.5 | 211.4 | 224 | |
Shandong | 215.5 | 211.4 | 224 | |
Central and Southern China | Henan | 236.7 | 241 | 273.2 |
Hubei | 236.7 | 241 | 273.2 | |
Hunan | 236.7 | 241 | 273.2 | |
Guangdong | 236.7 | 241 | 273.2 | |
Guangxi | 236.7 | 241 | 273.2 | |
Hainan | 236.7 | 241 | 273.2 | |
Southwest China | Chongqing | 156.2 | 156.2 | 171.7 |
Sichuan | 156.2 | 156.2 | 171.7 | |
Guizhou | 156.2 | 156.2 | 171.7 | |
Yunnan | 156.2 | 156.2 | 171.7 | |
Xizang | 156.2 | 156.2 | 171.7 | |
Northwest China | Shaanxi | 231.2 | - | - |
Gansu | 231.2 | - | - | |
Qinghai | 231.2 | - | - | |
Ningxia | 231.2 | - | - | |
Xinjiang | 231.2 | - | - |
Area | Direct Nitrous Oxide Emission Factors () |
---|---|
Beijing | 0.0057 |
Tianjin | 0.0057 |
Hebei | 0.0057 |
Shanxi | 0.0056 |
Inner Mongolia | 0.0056 |
Liaoning | 0.0114 |
Jilin | 0.0114 |
Heilongjiang | 0.0114 |
Shanghai | 0.0109 |
Jiangsu | 0.0109 |
Zhejiang | 0.0109 |
Anhui | 0.0109 |
Fujian | 0.0178 |
Jiangxi | 0.0109 |
Shandong | 0.0057 |
Henan | 0.0057 |
Hubei | 0.0109 |
Hunan | 0.0109 |
Guangdong | 0.0178 |
Guangxi | 0.0178 |
Hainan | 0.0178 |
Chongqing | 0.0109 |
Sichuan | 0.0109 |
Guizhou | 0.0106 |
Yunnan | 0.0106 |
Xizang | 0.0056 |
Shannxi | 0.0056 |
Gansu | 0.0056 |
Qinghai | 0.0056 |
Ningxia | 0.0056 |
Xinjiang | 0.0056 |
Crop Type | Nitrogen Content of the Grain | Nitrogen Content of the Straw | Economic Coefficient | Root/Shoot Ratio | Straw Returning Rate |
---|---|---|---|---|---|
Rice | 0.01 | 0.00753 | 0.489 | 0.125 | 32.3 |
Wheat | 0.014 | 0.00516 | 0.434 | 0.166 | 76.5 |
Corn | 0.017 | 0.0058 | 0.438 | 0.17 | 9.3 |
Sorghum | 0.017 | 0.0073 | 0.393 | 0.185 | 4 |
Soybean | 0.06 | 0.0181 | 0.425 | 0.13 | 9.3 |
Oilseed | 0.0055 | 0.0055 | 0.271 | 0.15 | 61.85 |
Hemp | 0.0131 | 0.0131 | 0.83 | 0.2 | 9.3 |
Potato | 0.004 | 0.011 | 0.667 | 0.05 | 39.92 |
Vegetables | 0.008 | 0.008 | 0.83 | 0.25 | 61.85 |
Tobacco | 0.041 | 0.0144 | 0.83 | 0.2 | 61.85 |
Animal Species | Excretion per Unit (kg/Head) | Nitrogen Content (%) |
---|---|---|
Cattle | 15500 | 0.438 |
Sheep | 632 | 0.898 |
Horse | 5237 | 0.52 |
Donkey | 3092 | 0.5 |
Mule | 3092 | 0.5 |
Camel | 5237 | 0.52 |
Pig | 3419 | 0.238 |
Poultry | 39.83 | 0.8285 |
Rabbit | 50 | 0.297 |
Type of Animal | Scale Breeding | Free-Range Farming | Grazing Feeding | Mean |
---|---|---|---|---|
Cows | 88.1 | 89.3 | 99.3 | 92.23 |
Non-cow | 52.9 | 67.9 | 85.3 | 68.7 |
Buffalo | 70.5 | 87.7 | - | 79.1 |
Sheep | 8.2 | 8.7 | 7.5 | 8.13 |
Goat | 8.9 | 9.4 | 6.7 | 8.33 |
Pig | 1 | 1 | 1 | 1 |
Horse | 18 | 18 | 18 | 18 |
Donkey | 10 | 10 | 10 | 10 |
Mule | 10 | 10 | 10 | 10 |
Camel | 46 | 46 | 46 | 46 |
Type of Animal | Manure Management Methane Emission Factors | Manure Management Nitrous Oxide Emission Factors | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
North China | Northeast China | East China | Central South China | Southwest China | Northwest China | North China | Northeast China | East China | Central South China | Southwest China | Northwest China | |
Cows | 7.46 | 2.23 | 8.33 | 8.45 | 6.51 | 5.93 | 1.846 | 1.096 | 2.065 | 1.71 | 1.884 | 1.447 |
Non-cow | 2.82 | 1.02 | 3.31 | 4.72 | 3.21 | 1.86 | 0.794 | 0.913 | 0.846 | 0.805 | 0.691 | 0.545 |
Buffalo | - | - | 5.55 | 8.24 | 1.53 | - | - | - | 0.875 | 0.86 | 1.197 | - |
Sheep | 0.15 | 0.15 | 0.26 | 0.34 | 0.48 | 0.28 | 0.093 | 0.057 | 0.113 | 0.106 | 0.064 | 0.074 |
Goat | 0.17 | 0.16 | 0.28 | 0.31 | 0.53 | 0.32 | 0.093 | 0.057 | 0.113 | 0.106 | 0.064 | 0.074 |
Pig | 3.12 | 1.12 | 5.08 | 5.85 | 4.18 | 1.38 | 0.227 | 0.266 | 0.175 | 0.157 | 0.159 | 0.195 |
Horse | 1.09 | 1.09 | 1.64 | 1.64 | 1.64 | 1.09 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 |
Donkey | 0.6 | 0.6 | 0.9 | 0.9 | 0.9 | 0.6 | 0.188 | 0.188 | 0.188 | 0.188 | 0.188 | 0.188 |
Mule | 0.6 | 0.6 | 0.9 | 0.9 | 0.9 | 0.6 | 0.188 | 0.188 | 0.188 | 0.188 | 0.188 | 0.188 |
Camel | 1.28 | 1.28 | 1.92 | 1.92 | 1.92 | 1.28 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 |
Poultry | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.01 | 0.007 | 0.007 | 0.007 | 0.007 | 0.007 | 0.007 |
Energy | Conversion Factor (MJ/kg) | Carbon Content per Unit Calorific Value (kg/GJ) | Non-Combustible Carbon (10,000 tons) | Carbon Oxidation Factor |
---|---|---|---|---|
Diesel fuel | 42.705 | 20.2 | 0 | 0.98 |
Coal | 20.934 | 26.37 | 0 | 0.94 |
Crop Type | Carbon Absorption Rate | Average Moisture Content % |
---|---|---|
Rice | 0.414 | 12 |
Wheat | 0.485 | 12 |
Corn | 0.471 | 13 |
Sorghum | 0.414 | 12 |
Soybean | 0.45 | 13 |
Oil seed | 0.45 | 10 |
Hemp | 0.45 | 12 |
Potato | 0.423 | 70 |
Vegetables | 0.45 | 90 |
Tobacco | 0.45 | 85 |
Variables | Growth Level | Time Period | ||
---|---|---|---|---|
2021–2030 | 2031–2040 | 2041–2050 | ||
Level of economic development—GDP(A per capita (A)) | Low | 3.5 | 2.5 | 1.5 |
Medium | 5.0 | 4.0 | 3.0 | |
High | 6.5 | 5.5 | 4.5 | |
Agricultural Technology Level—Agricultural Carbon Emission Intensity (T) | Low | −1.5 | −2.0 | −2.5 |
Medium | −2.5 | −3.0 | −3.5 | |
High | −3.0 | −3.5 | −4.0 | |
Agricultural Development Scale—Gross Output Value of Agriculture, Forestry, Animal Husbandry, and Fishery (AO) | Low | 2.9 | 3.1 | 3.3 |
Medium | 3.3 | 3.5 | 3.7 | |
High | 3.7 | 3.9 | 4.1 |
Year | Paddy Field Planting | Farmland Soil Management | Livestock and Poultry Breeding | Input of Agricultural Energy and Chemicals | Carbon Emissions (Mt CO2 e) | Carbon Sinks (Mt CO2 e) | Net Carbon Emissions (Mt CO2 e) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Emissions (Mt CO2 e) | Proportion (%) | Emissions (Mt CO2 e) | Proportion (%) | Emissions (Mt CO2 e) | Proportion (%) | Emissions (Mt CO2 e) | Proportion (%) | ||||
1995 | 169.4 | 18.2 | 119.5 | 12.9 | 499.4 | 53.7 | 140.8 | 15.2 | 929.2 | 414.5 | 514.6 |
1996 | 172.7 | 19.9 | 125.5 | 14.5 | 421.0 | 48.6 | 146.7 | 16.9 | 865.9 | 447.5 | 418.4 |
1997 | 174.4 | 19.2 | 130.3 | 14.3 | 447.8 | 49.3 | 156.3 | 17.2 | 908.8 | 443.8 | 464.9 |
1998 | 170.7 | 18.1 | 133.3 | 14.1 | 473.8 | 50.3 | 164.3 | 17.4 | 942.2 | 460.8 | 481.4 |
1999 | 170.9 | 17.9 | 133.7 | 14.0 | 485.0 | 50.7 | 166.7 | 17.4 | 956.3 | 464.0 | 492.3 |
2000 | 162.8 | 17.0 | 134.7 | 14.1 | 495.4 | 51.7 | 164.7 | 17.2 | 957.5 | 429.5 | 528.1 |
2001 | 156.1 | 16.2 | 137.5 | 14.3 | 498.0 | 51.7 | 171.3 | 17.8 | 962.9 | 424.4 | 538.5 |
2002 | 152.4 | 15.6 | 140.0 | 14.3 | 509.4 | 52.0 | 177.7 | 18.1 | 979.5 | 430.2 | 549.3 |
2003 | 143.5 | 14.6 | 142.1 | 14.5 | 525.4 | 53.5 | 170.9 | 17.4 | 981.9 | 408.5 | 573.4 |
2004 | 153.4 | 14.9 | 149.3 | 14.6 | 542.1 | 52.8 | 181.2 | 17.7 | 1026.0 | 447.1 | 578.9 |
2005 | 155.9 | 14.5 | 153.2 | 14.2 | 557.3 | 51.8 | 210.0 | 19.5 | 1076.4 | 462.1 | 614.3 |
2006 | 157.8 | 14.6 | 156.9 | 14.5 | 548.6 | 50.7 | 218.3 | 20.2 | 1081.7 | 473.7 | 608.0 |
2007 | 155.3 | 16.0 | 160.4 | 16.5 | 433.2 | 44.6 | 221.6 | 22.8 | 970.5 | 477.5 | 493.0 |
2008 | 156.8 | 16.2 | 165.2 | 17.0 | 436.8 | 45.0 | 210.8 | 21.7 | 969.6 | 506.9 | 462.7 |
2009 | 159.0 | 16.0 | 170.1 | 17.1 | 446.3 | 44.8 | 220.4 | 22.1 | 995.8 | 512.7 | 483.1 |
2010 | 159.9 | 16.0 | 174.0 | 17.4 | 438.3 | 43.8 | 228.3 | 22.8 | 1000.6 | 526.8 | 473.8 |
2011 | 160.7 | 15.8 | 179.0 | 17.6 | 433.3 | 42.7 | 242.1 | 23.8 | 1015.0 | 549.3 | 465.7 |
2012 | 161.0 | 15.6 | 183.1 | 17.8 | 435.4 | 42.3 | 249.7 | 24.3 | 1029.1 | 569.4 | 459.7 |
2013 | 161.5 | 15.7 | 185.5 | 18.1 | 436.7 | 42.5 | 243.3 | 23.7 | 1026.9 | 583.2 | 443.7 |
2014 | 161.8 | 15.5 | 187.9 | 18.0 | 442.9 | 42.5 | 250.5 | 24.0 | 1043.1 | 587.9 | 455.2 |
2015 | 161.3 | 15.3 | 190.9 | 18.1 | 447.9 | 42.5 | 255.0 | 24.2 | 1055.2 | 627.6 | 427.6 |
2016 | 160.9 | 15.4 | 188.6 | 18.0 | 438.2 | 41.9 | 257.9 | 24.7 | 1045.6 | 597.9 | 447.7 |
2017 | 163.3 | 16.2 | 186.0 | 18.5 | 397.4 | 39.4 | 261.1 | 25.9 | 1007.8 | 644.4 | 363.5 |
2018 | 160.2 | 16.6 | 181.2 | 18.8 | 390.5 | 40.4 | 233.9 | 24.2 | 965.8 | 640.5 | 325.3 |
2019 | 157.1 | 16.7 | 175.3 | 18.7 | 375.1 | 40.0 | 231.1 | 24.6 | 938.6 | 648.2 | 290.4 |
2020 | 159.4 | 16.4 | 172.7 | 17.8 | 405.8 | 41.8 | 232.9 | 24.0 | 970.9 | 654.7 | 316.2 |
Region | Paddy Field Planting | Farmland Soil Management | Livestock and Poultry Breeding | Input of Agricultural Energy and Chemicals | Carbon Emissions | Carbon Sinks | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Emissions (Mt CO2 e) | Proportion (%) | Emissions (Mt CO2 e) | Proportion (%) | Emissions (Mt CO2 e) | Proportion (%) | Emissions (Mt CO2 e) | Proportion (%) | Emissions (Mt CO2 e) | Rank | Emissions (Mt CO2 e) | Rank | |
Beijing | 0.8 | 0.9 | 9.5 | 10.0 | 27.7 | 29.1 | 57.1 | 60.0 | 95.2 | 30 | 32.9 | 29 |
Tianjin | 4.3 | 4.5 | 12.2 | 12.7 | 32.0 | 33.5 | 47.2 | 49.3 | 95.7 | 29 | 47.3 | 26 |
Hebei | 15.0 | 1.3 | 180.8 | 16.2 | 598.1 | 53.5 | 324.8 | 29.0 | 1118.7 | 10 | 825.3 | 4 |
Shanxi | 0.4 | 0.1 | 55.6 | 13.0 | 190.5 | 44.4 | 182.2 | 42.5 | 428.7 | 23 | 262.2 | 19 |
Inner Mongolia | 15.3 | 1.5 | 88.2 | 8.5 | 722.4 | 69.5 | 213.9 | 20.6 | 1039.8 | 13 | 528.5 | 11 |
Liaoning | 61.1 | 8.8 | 137.7 | 19.9 | 303.7 | 43.9 | 189.4 | 27.4 | 691.8 | 18 | 453.6 | 12 |
Jinlin | 71.6 | 10.3 | 181.7 | 26.1 | 330.7 | 47.4 | 113.4 | 16.3 | 697.4 | 17 | 681.0 | 8 |
Heilongjiang | 259.4 | 23.3 | 161.2 | 14.5 | 407.8 | 36.6 | 284.8 | 25.6 | 1113.2 | 11 | 1019.3 | 3 |
Shanghai | 18.3 | 19.9 | 14.9 | 16.2 | 16.1 | 17.5 | 42.7 | 46.4 | 92.0 | 31 | 33.3 | 28 |
Jiangsu | 311.0 | 27.8 | 308.9 | 27.6 | 190.8 | 17.0 | 309.9 | 27.7 | 1120.6 | 9 | 800.9 | 5 |
Zhejiang | 161.5 | 28.5 | 87.0 | 15.3 | 89.3 | 15.8 | 229.0 | 40.4 | 566.8 | 20 | 206.9 | 23 |
Anhui | 313.6 | 28.0 | 269.2 | 24.0 | 354.7 | 31.6 | 184.1 | 16.4 | 1121.6 | 8 | 778.4 | 6 |
Fujian | 135.7 | 26.1 | 138.2 | 26.5 | 127.9 | 24.6 | 119.1 | 22.9 | 520.9 | 21 | 150.1 | 24 |
Jiangxi | 448.0 | 45.2 | 108.8 | 11.0 | 310.8 | 31.3 | 124.3 | 12.5 | 991.9 | 14 | 415.7 | 13 |
Shandong | 18.7 | 1.2 | 270.6 | 16.7 | 802.8 | 49.6 | 526.6 | 32.5 | 1618.8 | 3 | 1267.1 | 2 |
Henan | 87.0 | 4.7 | 311.6 | 16.8 | 1108.0 | 59.9 | 343.7 | 18.6 | 1850.2 | 1 | 1474.0 | 1 |
Hubei | 341.4 | 27.3 | 255.7 | 20.4 | 404.5 | 32.3 | 249.0 | 19.9 | 1250.6 | 5 | 632.9 | 10 |
Hunan | 647.0 | 37.4 | 194.2 | 11.2 | 576.9 | 33.4 | 310.3 | 18.0 | 1728.3 | 2 | 638.7 | 9 |
Guangdong | 357.0 | 29.2 | 273.1 | 22.3 | 335.4 | 27.4 | 256.8 | 21.0 | 1222.3 | 7 | 333.1 | 16 |
Guangxi | 359.8 | 29.0 | 246.9 | 19.9 | 544.3 | 43.9 | 87.9 | 7.1 | 1239.0 | 6 | 340.1 | 14 |
Hainan | 54.0 | 21.1 | 51.5 | 20.1 | 96.5 | 37.7 | 54.2 | 21.1 | 256.2 | 27 | 40.4 | 27 |
Chongqing | 66.9 | 15.8 | 73.6 | 17.4 | 169.7 | 40.1 | 112.8 | 26.7 | 422.9 | 24 | 207.1 | 22 |
Sichuan | 213.6 | 13.5 | 226.1 | 14.3 | 969.6 | 61.4 | 170.7 | 10.8 | 1580.0 | 4 | 774.2 | 7 |
Guizhou | 71.8 | 9.2 | 84.0 | 10.7 | 488.2 | 62.4 | 138.2 | 17.7 | 782.2 | 16 | 249.0 | 20 |
Yunnan | 102.9 | 9.3 | 148.9 | 13.4 | 702.1 | 63.2 | 156.7 | 14.1 | 1110.5 | 12 | 336.5 | 15 |
Xizang | 0.1 | 0.0 | 9.9 | 2.0 | 485.0 | 97.8 | 0.8 | 0.2 | 495.9 | 22 | 9.5 | 31 |
Shaanxi | 19.7 | 4.7 | 98.2 | 23.3 | 203.6 | 48.2 | 100.7 | 23.9 | 422.2 | 25 | 287.2 | 18 |
Gansu | 0.8 | 0.1 | 46.6 | 7.9 | 385.5 | 65.3 | 157.7 | 26.7 | 590.6 | 19 | 208.0 | 21 |
Qinghai | 0.0 | 0.0 | 10.9 | 2.7 | 382.2 | 95.2 | 8.2 | 2.1 | 401.3 | 26 | 27.5 | 30 |
Ningxia | 11.0 | 7.2 | 20.1 | 13.1 | 90.4 | 59.1 | 31.5 | 20.6 | 153.1 | 28 | 76.8 | 25 |
Xinjiang | 10.6 | 1.2 | 80.1 | 9.1 | 514.1 | 58.1 | 279.9 | 31.6 | 884.6 | 15 | 295.3 | 17 |
North China | 35.9 | 1.3 | 346.2 | 12.5 | 1570.8 | 56.5 | 825.2 | 29.7 | 2778.0 | 4 | 1696.2 | 4 |
Northeast China | 392.0 | 15.7 | 480.6 | 19.2 | 1042.2 | 41.6 | 587.6 | 23.5 | 2502.4 | 5 | 2153.9 | 3 |
East China | 1406.8 | 23.3 | 1197.7 | 19.9 | 1892.4 | 31.4 | 1535.7 | 25.5 | 6032.5 | 2 | 3652.5 | 1 |
Central south China | 1846.2 | 24.5 | 1333.0 | 17.7 | 3065.5 | 40.6 | 1301.9 | 17.3 | 7546.7 | 1 | 3459.1 | 2 |
Southwest China | 455.2 | 10.4 | 542.5 | 12.4 | 2814.6 | 64.1 | 579.2 | 13.2 | 4391.5 | 3 | 1576.4 | 5 |
Northwest China | 42.1 | 1.7 | 255.8 | 10.4 | 1575.8 | 64.3 | 578.1 | 23.6 | 2451.8 | 6 | 894.9 | 6 |
Type | Provinces |
---|---|
Carbon sink-dominated regions | Hebei, Shanxi, Liaoning, Jilin, Heilongjiang, Jiangsu, Anhui, Shandong, Henan, Shaanxi |
Paddy planting-dominated regions | Jiangxi |
Livestock farming-dominated regions | Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Xizang, Gansu, Qinghai, Ningxia, Xinjiang |
Resource inputs-dominated regions | Beijing, Tianjin, Shanghai, Zhejiang |
Composite factor-dominated regions | Fujian, Hubei, Hunan, Guangdong, Hainan |
Variables | Model(3) | Model(4) |
---|---|---|
lnIEC | lnISC | |
lnP | 0.0879 *** (8.88) | 0.0076 (0.34) |
lnA | −0.0029 (−0.44) | −0.2451 *** (−15.04) |
lnT | 0.7151 *** (77.65) | −0.1221 *** (−5.61) |
lnRP | 0.1447 *** (17.02) | 0.4783 *** (28.04) |
lnAO | 0.7046 *** (93.74) | 0.5066 *** (31.59) |
Constant | −4.0693 *** (−51.20) | −2.3933 *** (−10.54) |
R2 | 0.9712 | 0.8307 |
K | 0.05 | 0.15 |
Variables | lnIEC | ||||
---|---|---|---|---|---|
Carbon Sink-Dominated Regions | Paddy Planting-Dominated Regions | Livestock Farming-Dominated Regions | Resource Inputs-Dominated Regions | Composite Factor-Dominated Regions | |
lnP | 0.2037 *** (7.48) | 0.3295 (0.70) | 0.1335 *** (8.14) | 0.1398 *** (4.45) | 0.2109 *** (13.02) |
lnA | 0.0014 (0.10) | 0.0075 (0.79) | 0.0398 *** (3.77) | −0.0651 *** (−3.11) | −0.0032 (−0.21) |
lnT | 0.6114 *** (31.32) | 0.0431 ** (2.52) | 0.6263 *** (35.89) | 0.5271 *** (14.94) | 0.4149 *** (18.53) |
lnRP | 0.0788 *** (3.86) | 0.0140(0.16) | 0.1026 *** (6.83) | 0.2481 *** (14.19) | 0.2212 *** (14.77) |
lnAO | 0.6437 *** (41.96) | 0.0485 *** (3.10) | 0.6244 *** (41.89) | 0.5744 *** (29.32) | 0.4161 *** (22.04) |
Constant | −4.0661 *** (−19.90) | 0.3041 (0.07) | −3.8202 *** (−31.34) | −3.8217 *** (−12.65) | −3.3292 *** (22.04) |
R2 | 0.9456 | 0.2733 | 0.9472 | 0.9843 | 0.9509 |
K | 0.05 | 0.05 | 0.05 | 0.05 | 0.10 |
Scenario | Economic Development Level—per Capita GDP | Agricultural Technology Level—Agricultural Carbon Intensity | Agricultural Development Scale—Total Output Value of Agriculture, Forestry, Animal Husbandry, and Fishery |
---|---|---|---|
Baseline | Medium | Medium | Medium |
Carbon Emission Reduction-Oriented Scenario | High | High | Low |
Carbon Sink Increase-Oriented Scenario | Low | High | High |
Scheme 2025 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |
---|---|---|---|---|---|---|---|
Carbon Emissions | Baseline | 1073.3 | 1076.0 | 1066.9 | 1059.4 | 1041.9 | 1022.4 |
Carbon Emission Reduction-Oriented Scenario | 1039.2 | 1008.7 | 968.4 | 931.0 | 886.5 | 842.1 | |
Carbon Sink Increase-Oriented Scenario | 1068.4 | 1066.2 | 1052.3 | 1040.0 | 1017.9 | 994.1 | |
Carbon Sinks | Baseline | 477.2 | 463.9 | 461.3 | 461.6 | 474.6 | 485.8 |
Carbon Emission Reduction-Oriented Scenario | 465.9 | 442.1 | 429.1 | 419.1 | 420.6 | 420.1 | |
Carbon Sink Increase-Oriented Scenario | 492.1 | 493.1 | 505.7 | 521.8 | 553.3 | 584.1 | |
Net Carbon Emissions | Baseline | 596.0 | 612.1 | 605.5 | 597.8 | 567.3 | 536.6 |
Carbon Emission Reduction-Oriented Scenario | 573.3 | 566.7 | 539.3 | 511.9 | 465.9 | 422.0 | |
Carbon Sink Increase-Oriented Scenario | 576.3 | 573.1 | 546.5 | 518.2 | 464.6 | 410.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liang, S.; Liang, Y.; Liu, X. A Comprehensive Accounting of Carbon Emissions and Carbon Sinks of China’s Agricultural Sector. Land 2024, 13, 1452. https://doi.org/10.3390/land13091452
Wang Y, Liang S, Liang Y, Liu X. A Comprehensive Accounting of Carbon Emissions and Carbon Sinks of China’s Agricultural Sector. Land. 2024; 13(9):1452. https://doi.org/10.3390/land13091452
Chicago/Turabian StyleWang, Yufei, Shuang Liang, Yuxin Liang, and Xiaoxue Liu. 2024. "A Comprehensive Accounting of Carbon Emissions and Carbon Sinks of China’s Agricultural Sector" Land 13, no. 9: 1452. https://doi.org/10.3390/land13091452
APA StyleWang, Y., Liang, S., Liang, Y., & Liu, X. (2024). A Comprehensive Accounting of Carbon Emissions and Carbon Sinks of China’s Agricultural Sector. Land, 13(9), 1452. https://doi.org/10.3390/land13091452