Determination of Soil Contamination Due to the Influence of Cemeteries for the Surrounding Land and People in Central Ecuador—Worldwide Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Cemeteries to Sample
2.2. Geographic Conditions and Definition of Soil Sampling Sites
2.3. Analysis of Physicochemical Parameters of the Soil Matrix in the Laboratory
2.4. Statistical Analysis
3. Results
3.1. Laboratory Analysis
3.2. Statistical Analysis of Results
3.2.1. Inter-Season Differences in Soils
Variable | Dry | Rainy | X2 | p | Statistical Test |
---|---|---|---|---|---|
OM (%) | 3.64 ± 1.85 | 3.39 ± 1.64 | 0.9283 | 0.3353 | Kruskal–Wallace |
NO3− (mg.kg−1) | 14.0 ± 13.1 | 11.7 ± 7.6 | 0.2786 | 0.5976 | Kruskal–Wallace |
Humidity (%) | 17.5 ± 9.30 | 17.3 ± 8.89 | 0.0657 | 0.7977 | Kruskal–Wallace |
pH | 7.47 ± 0.79 | 7.16 ± 0.84 | --- | 0.00508 ** | ANOVA |
3.2.2. Differences between Sampling Sections
Variable | Before | Inside | After | X2 | p | Statistical Test |
---|---|---|---|---|---|---|
OM (%) | 3.83 ± 2.13 | 3.68 ± 1.82 | 3.42 ± 1.58 | 0.40043 | 0.8186 | Kruskal– Wallace |
NO3− (mg.kg−1) | 19.8 ± 14.4 | 11.7 ± 9.1 | 10.9 ± 13.4 | 17.104 | 0.0001932 | Kruskal– Wallace |
Humidity (%) | 17.2 ± 9.14 | 17.8 ± 9.51 | 17.5 ± 9.51 | 0.67759 | 0.7126 | Kruskal– Wallace |
pH | 7.67 ± 0.79 | 7.52 ± 0.77 | 7.20 ± 0.76 | --- | 0.0315 * | ANOVA |
3.2.3. Differences between Categories
Variable | Not Suitable | Slightly Adequate | Moderately Adequate | Very Suitable | Completely Adequate | X2 | p |
---|---|---|---|---|---|---|---|
OM (%) | 4.92 ± 1.92 | 3.27 ± 0.79 | 4.34 ± 1.39 | 1.95 ± 0.22 | 2.43 ± 1.43 | 36.29 | <0.001 *** |
NO3− (mg.kg−1) | 10.4 ± 11.7 | 10.7 ± 17.0 | 13.7 ± 5.6 | 15 ± 9.9 | 6.5 ± 2.8 | 14.59 | 0.005639 |
Humidity (%) | 27.3± 9.13 | 19.3 ± 4.32 | 17.6 ± 2.97 | 2.58 ± 1.08 | 15.5 ± 3.59 | 48.93 | <0.001 *** |
pH | 7.03 ± 0.41 | 7.05 ± 0.83 | 7.65 ± 0.43 | 8.35 ± 0.6 | 6.95 ± 0.65 | 31.59 | <0.001 *** |
Compared Categories | p | ||||
---|---|---|---|---|---|
OM (%) | NO3− (mg.kg−1) | Humidity (%) | pH | ||
Completely adequate | Very suitable | 0.57512 | 0.251 | 0.00028 | 0.00040 |
Completely adequate | Moderately adequate | 0.02313 | 0.022 | 0.23299 | 0.03475 |
Completely adequate | Slightly adequate | 0.57512 | 1.000 | 0.08518 | 0.77388 |
Completely adequate | Not suitable | 0.00407 | 1.000 | 0.00037 | 0.96411 |
Very suitable | Moderately adequate | 0.00012 | 1.000 | <0.001 *** | 0.02583 |
Very suitable | Slightly adequate | 0.00058 | 0.251 | <0.001 *** | <0.001 *** |
Very suitable | Not suitable | 0.00047 | 0.451 | <0.001 *** | 0.00046 |
Moderately adequate | Slightly adequate | 0.09932 | 0.031 | 0.23299 | 0.37056 |
Moderately adequate | Not suitable | 0.57512 | 0.196 | 0.00016 | 0.00127 |
Slightly adequate | Not suitable | 0.00444 | 1.000 | 0.00584 | 0.50579 |
4. Discussion
5. Conclusions
6. Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cioruța, B.V.; Coman, M. Definition, Role, and Functions of Soil Related to the Knowledge Society and the Someș-Tisa Hydrographic Area (Romania). Sustainability 2022, 14, 8688. [Google Scholar] [CrossRef]
- Huggett, R.J. Soil as a System. In Hydrogeology, Chemical Weathering, and Soil Formation; American Geophysical Union: Washington, DC, USA, 2021; pp. 1–20. [Google Scholar] [CrossRef]
- Mencarini, V.; Emanueli, L.; Lobosco, G.; Mencarini, V.; Emanueli, L.; Lobosco, G. Moving Horizon, Design Praxis through Soil Transformation: A Landscape Manifesto. In Land-Use Management—Recent Advances, New Perspectives, and Applications; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Timmis, K.; Ramos, J.L. The soil crisis: The need to treat as a global health problem and the pivotal role of microbes in prophylaxis and therapy. Microb. Biotechnol. 2021, 14, 769–797. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Guo, C.; Zhang, H.; Yin, X.; Chen, L.; Wu, D.; Xu, J. Occurrence and removal of illicit drugs in different wastewater treatment plants with different treatment techniques. Environ. Sci. Eur. 2020, 32, 28. [Google Scholar] [CrossRef]
- Myślińska, A.; Szczepański, J.; Dłubakowski, W. The Impact of Decommissioning Cemeteries on the Urban Ecosystem. Sustainability 2021, 13, 9303. [Google Scholar] [CrossRef]
- Ministerio de Salud Pública. Acuerdo Ministerial No. 192: Reglamento Para Establecimientos De Servicios Funerarios Y Manejo De Cadaveres; Estado de Ecuador: Quito, Ecuador, 2018; pp. 1–13.
- da Silva, F.C.; Suguio, K.; Pacheco, A. Avaliação Preliminar Do Cemitério De Itaquera, Segundo a Resolução Conama 335/2003, Município De São Paulo. Rev. UnG—Geociências 2008, 7, 31–47. [Google Scholar] [CrossRef]
- Shelvock, M.; Kinsella, E.A.; Harris, D. Beyond the Corporatization of Death Systems: Towards Green Death Practices. Illn. Crisis Loss 2022, 30, 640. [Google Scholar] [CrossRef] [PubMed]
- Rae, R.A. Cemeteries as public urban green space: Management, funding and form. Urban For. Urban Green. 2021, 61, 127078. [Google Scholar] [CrossRef]
- Jonker, C.; Olivier, J. Mineral Contamination from Cemetery Soils: Case Study of Zandfontein Cemetery, South Africa. Int. J. Environ. Res. Public Health 2012, 9, 511–520. [Google Scholar] [CrossRef]
- Williams, A.; Temple, T.; Pollard, S.J.; Jones, R.J.A.; Ritz, K. Environmental considerations for common burial site selection after pandemic events. In Criminal and Environmental Soil Forensics; Springer: Dordrecht, The Netherlands, 2009; pp. 87–101. [Google Scholar] [CrossRef]
- Tolentino, S.; Nunes, L.; Moreira, T. As necrópoles e seus Impactos Ambientais: Um estudo de caso do cemitério são lucas, pelotas/rs. Rev. Gest. Sustentabilidade Ambient. 2020, 8, 110–130. [Google Scholar] [CrossRef]
- de Azevedo, A.P.C.B.; Cardoso, T.A.d.O.; Cohen, S.C. Could Necroleachate Be the Cemetery’s Sewage? A Panorama from Brazilian Legislation. Int. J. Environ. Res. Public Health 2023, 20, 6898. [Google Scholar] [CrossRef]
- Długozima, A. How to find a suitable location for a cemetery? Application of multi-criteria evaluation for identifying potential sites for cemeteries in Białystok, Poland. Morav. Geogr. Rep. 2022, 30, 34–53. [Google Scholar] [CrossRef]
- Scalenghe, R.; Pantani, O.L. Connecting Existing Cemeteries Saving Good Soils (for Livings). Sustainability 2019, 12, 93. [Google Scholar] [CrossRef]
- Coutts, C.; Basmajian, C.; Sehee, J.; Kelty, S.; Williams, P.C. Natural burial as a land conservation tool in the US. Landsc. Urban Plan. 2018, 178, 130–143. [Google Scholar] [CrossRef]
- Carter, D.; Tibbett, M. Cadaver Decomposition and Soil. In Soil Analysis in Forensic Taphonomy; CRC Press: Boca Raton, FL, USA, 2008; pp. 29–51. [Google Scholar] [CrossRef]
- Ueland, M.; Nizio, K.D.; Forbes, S.L.; Stuart, B.H. The interactive effect of the degradation of cotton clothing and decomposition fluid production associated with decaying remains. Forensic Sci. Int. 2015, 255, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Adlam, R.E.; Simmons, T. The effect of repeated physical disturbance on soft tissue decomposition—Are taphonomic studies an accurate reflection of decomposition? J. Forensic Sci. 2007, 52, 1007–1014. [Google Scholar] [CrossRef]
- Goff, M.L. Early post-mortem changes and stages of decomposition in exposed cadavers. Exp. Appl. Acarol. 2009, 49, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Roy, R. Potential Use of Microbiota as a Forensics Tool to Determine a Post-Mortem Interval. Duluth J. Adv. Writ. 2020, 1, 13–22. Available online: https://pubs.lib.umn.edu/index.php/djaws/article/view/3280 (accessed on 14 October 2023).
- Shrestha, R.; Kanchan, T.; Krishan, K. Methods of Estimation of Time Since Death. In StatPearls; May 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK549867/ (accessed on 14 October 2023).
- Joseph, I.; Mathew, D.G.; Sathyan, P.; Vargheese, G. The use of insects in forensic investigations: An overview on the scope of forensic entomology. J. Forensic Dent. Sci. 2011, 3, 89. [Google Scholar] [CrossRef]
- Martin, C.; Verheggen, F. All equal in the face of death!—Characterization of the volatile cadaveric compounds of fresh stage human corpses. Forensic Chem. 2023, 35, 100516. [Google Scholar] [CrossRef]
- Martin, C.; Verheggen, F. Odour profile of human corpses: A review. Forensic Chem. 2018, 10, 27–36. [Google Scholar] [CrossRef]
- Fiedler, S.; Graw, M. Decomposition of buried corpses, with special reference to the formation of adipocere. Naturwissenschaften 2003, 90, 291–300. [Google Scholar] [CrossRef]
- Gunawardena, S.A.; Abeyratne, P.; Jayasena, A.; Rajapaksha, S.; Senadhipathi, H.; Siriwardana, D.; Vindula, N.; Perera, C.; Peiris, D. Retrospective analysis of factors affecting rate of skeletonization within a tropical climate. Sci. Justice 2023, 63, 638–650. [Google Scholar] [CrossRef]
- Gonçalves, L.R.; Roberto, M.M.; Braga, A.P.A.; Barozzi, G.B.; Canizela, G.S.; de Souza Gigeck, L.; de Souza, L.R.; Marin-Morales, M.A. Another casualty of the SARS-CoV-2 pandemic—The environmental impact. Environ. Sci. Pollut. Res. 2022, 29, 1696–1711. [Google Scholar] [CrossRef]
- Neckel, A.; Korcelski, C.; Kujawa, H.A.; da Silva, I.S.; Prezoto, F.; Amorin, A.L.W.; Maculan, L.S.; Gonçalves, A.C.; Bodah, E.T.; Bodah, B.W.; et al. Hazardous elements in the soil of urban cemeteries; constructive solutions aimed at sustainability. Chemosphere 2021, 262, 128248. [Google Scholar] [CrossRef]
- Eche, J.J.E. Evaluación de impacto ambiental de un cementerio tipo parque ecológico. Rev. Del Inst. De Investig. De La Fac. De Minas Metal. Y Cienc. Geográficas 2001, 4, 53–58. [Google Scholar] [CrossRef]
- Zychowski, J.; Bryndal, T. Impact of cemeteries on groundwater contamination by bacteria and viruses—A review. J. Water Health 2015, 13, 285–301. [Google Scholar] [CrossRef] [PubMed]
- Campobasso, C.P.; Di Vella, G.; Introna, F. Factors affecting decomposition and Diptera colonization. Forensic Sci. Int. 2001, 120, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Franco, D.S.; Georgin, J.; Campo, L.A.V.; Mayoral, M.A.; Goenaga, J.O.; Fruto, C.M.; Neckel, A.; Oliveira, M.L.; Ramos, C.G. The environmental pollution caused by cemeteries and cremations: A review. Chemosphere 2022, 307, 136025. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, V.; Albuquerque, A.; Carvalho, P.; Almeida, P.; Cavaleiro, V. Groundwater Vulnerability Assessment to Cemeteries Pollution through GIS-Based DRASTIC Index. Water 2023, 15, 812. [Google Scholar] [CrossRef]
- Cobaugh, K.L.; Schaeffer, S.M.; DeBruyn, J.M. Functional and Structural Succession of Soil Microbial Communities below Decomposing Human Cadavers. PLoS ONE 2015, 10, e0130201. [Google Scholar] [CrossRef] [PubMed]
- Gwenzi, W. The ‘thanato-resistome’—The funeral industry as a potential reservoir of antibiotic resistance: Early insights and perspectives. Sci. Total Environ. 2020, 749, 141120. [Google Scholar] [CrossRef] [PubMed]
- Spongberg, A.L.; Becks, P.M. Inorganic Soil Contamination from Cemetery Leachate. Water Air Soil Pollut. 2000, 117, 313–327. [Google Scholar] [CrossRef]
- Keenan, S.W.; Emmons, A.L.; Taylor, L.S.; Phillips, G.; Mason, A.R.; Mundorff, A.Z.; Bernard, E.C.; Davoren, J.; DeBruyn, J.M. Spatial impacts of a multi-individual grave on microbial and microfaunal communities and soil biogeochemistry. PLoS ONE 2018, 13, e0208845. [Google Scholar] [CrossRef]
- Taylor, L.S.; Gonzalez, A.; Essington, M.E.; Lenaghan, S.C.; Stewart, C.N.; Mundorff, A.Z.; Steadman, D.W.; DeBruyn, J.M. Soil elemental changes during human decomposition. PLoS ONE 2023, 18, e0287094. [Google Scholar] [CrossRef]
- Wang, X.; Chi, Y.; Song, S. Important soil microbiota’s effects on plants and soils: A comprehensive 30-year systematic literature review. Front. Microbiol. 2024, 15, 1347745. [Google Scholar] [CrossRef] [PubMed]
- Ayilara, M.S.; Babalola, O.O. Bioremediation of environmental wastes: The role of microorganisms. Front. Agron. 2023, 5, 1183691. [Google Scholar] [CrossRef]
- Aini, A.N.; Hadi, M.; Rahadian, R. Effect of location and clothing on decomposition of rat carcasses as forensic indicator. In AIP Conference Proceedings; AIP Publishing: Long Island, NY, USA, 2023; Volume 2738. [Google Scholar] [CrossRef]
- Zychowski, J. Impact of cemeteries on groundwater chemistry: A review. Catena 2012, 93, 29–37. [Google Scholar] [CrossRef]
- Lowe, A.C.; Beresford, D.; Carter, D.; Gaspari, F.; O’brien, R.; Stuart, B.; Forbes, S. The effect of soil texture on the degradation of textiles associated with buried bodies. Forensic Sci. Int. 2013, 231, 331–339. [Google Scholar] [CrossRef]
- Gelderman, H.T.; Kruiver, C.A.; Oostra, R.J.; Zeegers, M.P.; Duijst, W.L.J.M. Estimation of the postmortem interval based on the human decomposition process. J. Forensic Leg. Med. 2019, 61, 122–127. [Google Scholar] [CrossRef]
- Pittner, S.; Bugelli, V.; Benbow, M.E.; Ehrenfellner, B.; Zissler, A.; Campobasso, C.P.; Oostra, R.-J.; Aalders, M.C.G.; Zehner, R.; Lutz, L.; et al. The applicability of forensic time since death estimation methods for buried bodies in advanced decomposition stages. PLoS ONE 2020, 15, e0243395. [Google Scholar] [CrossRef] [PubMed]
- Shedge, R.; Krishan, K.; Warrier, V.; Kanchan, T. Postmortem Changes. In StatPearls; July 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK539741/ (accessed on 13 October 2023).
- Netto, L.G.; Filho, W.M.; Moreira, C.A.; di Donato, F.T.; Helene, L.P.I. Delineation of necroleachate pathways using electrical resistivity tomography (ERT): Case study on a cemetery in Brazil. Environ. Chall. 2021, 5, 100344. [Google Scholar] [CrossRef]
- Tumer, A.R.; Karacaoglu, E.; Namli, A.; Keten, A.; Farasat, S.; Akcan, R.; Sert, O.; Odabaşi, A.B. Effects of different types of soil on decomposition: An experimental study. Leg. Med. 2013, 15, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Janaway, R.C.; Wilson, A.S.; Díaz, G.C.; Guillen, S. Taphonomic changes to the buried body in arid environments: An experimental case study in Peru. In Criminal and Environmental Soil Forensics; Springer: Dordrecht, The Netherlands, 2009; pp. 341–356. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X.; Wang, J.; Xu, L.; Zheng, X.; Zhang, Y.; Hu, C. Dominant environmental factors influencing soil metal concentrations of Poyang Lake wetland, China: Soil property, topography, plant species and wetland type. Catena 2021, 207, 105601. [Google Scholar] [CrossRef]
- Boente, C.; Baragaño, D.; García-González, N.; Forján, R.; Colina, A.; Gallego, J.R. A holistic methodology to study geochemical and geomorphological control of the distribution of potentially toxic elements in soil. Catena 2022, 208, 105730. [Google Scholar] [CrossRef]
- Crisanto-Perrazo, T.; Guayasamín-Vergara, J.; Mayorga-Llerena, E.; Sinde-Gonzalez, I.; Vizuete-Freire, D.; Toulkeridis, T.; Gomez, G.F.; Fierro-Naranjo, G. Determination of Empirical Environmental Indices for the Location of Cemeteries—An Innovative Proposal for Worldwide Use. Sustainability 2022, 14, 6284. [Google Scholar] [CrossRef]
- Nimmo, J.; Shillito, R. Infiltration of Water Into Soil. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2023. [Google Scholar] [CrossRef]
- Baldovino, J.A.; Izzo, R.; Millan-Paramo, C. The Capillary Rise in Fine and Coarse-Grained Soils Considering the Matric Suction. Eng. Lett. 2021, 29, 1608. [Google Scholar] [CrossRef]
- Yu, P.; Pengbo, M.; Hongkun, C.; Dong, L.; Arıcı, M. Characterization investigation on pore-resistance relationship of oil contaminants in soil porous structure. J. Pet. Sci. Eng. 2020, 191, 107208. [Google Scholar] [CrossRef]
- Rivera, A.V.; Marlevis, Y.; Zea, M. Evaluación por Contaminación en Suelos Aledaños a los Cementerios Jardines el Recuerdo E Inmaculada. Cienc. E Ing. Neogranadina 2012, 22, 165–175. [Google Scholar] [CrossRef]
- Crisanto-Perrazo, T.; Arcos-Yanez, E.; Sinde-Gonzalez, I.; orga-Llerena, E.; Vizuete-Freire, D.; Toulkeridis, T. Land Use Evaluation of Cemeteries in Central Ecuador. Land Use Evaluation of Cemeteries in Central Ecuador. 2022. Available online: https://cit-conferences.org/earth-and-construction-sciences/ (accessed on 1 October 2023).
- Guayasamín, J. Establecimiento de Índices Empíricos Ambientales Para Manejo de Cadáveres Humanos: Entierro y Cremación en Ecuador. Universidad de las Fuerzas Armadas ESPE. 2021. Available online: https://repositorio.espe.edu.ec/bitstream/21000/26580/1/T-ESPE-050865.pdf (accessed on 2 June 2022).
- Ponce-Arguello, M.; Abad-Sarango, V.; Crisanto-Perrazo, T.; Toulkeridis, T. Removal of METH through Tertiary or Advanced Treatment in a WWTP. Water 2022, 14, 1807. [Google Scholar] [CrossRef]
- Moeinaddini, M.; Khorasani, N.; Danehkar, A.; Darvishsefat, A.A.; M. zienalyan, “Siting MSW landfill using weighted linear combination and analytical hierarchy process (AHP) methodology in GIS environment (case study: Karaj). Waste Manag. 2010, 30, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Zarin, R.; Azmat, M.; Naqvi, S.R.; Saddique, Q.; Ullah, S. Landfill site selection by integrating fuzzy logic, AHP, and WLC method based on multi-criteria decision analysis. Environ. Sci. Pollut. Res. 2021, 28, 19726–19741. [Google Scholar] [CrossRef] [PubMed]
- Orejuela, I.P.; Toulkeridis, T. Evaluation of the susceptibility to landslides through diffuse logic and analytical hierarchy process (AHP) between Macas and Riobamba in Central Ecuador. In Proceedings of the 2020 7th International Conference on eDemocracy and eGovernment ICEDEG, Buenos Aires, Argentina, 22–24 April 2020; pp. 201–207. [Google Scholar] [CrossRef]
- Blachowski, J. Methodology for assessment of the accessibility of a brown coal deposit with Analytical Hierarchy Process and Weighted Linear Combination. Environ. Earth Sci. 2015, 74, 4119–4131. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef]
- Saaty, T.L. Fundamentals of the Analytic Hierarchy Process. In The Analytic Hierarchy Process in Natural Resource and Environmental Decision Making; Springer: Dordrecht, The Netherlands, 2001; Volume 3. [Google Scholar] [CrossRef]
- Ministerio de Salud Pública del Ecuador. Reglamento Para Regular El Funcionamiento De Los Establecimientos Que Prestan Servicios Funerarios Y De Manejo De Cadáveres Y Restos Humanos; Estado de Ecuador: Quito, Ecuador, 2013.
- Pan American Health Organization. Management of Dead Bodies after Disasters: A Field Manual for First Responders. Second (Revised) Edition. 2016. Available online: https://iris.paho.org/handle/10665.2/31295 (accessed on 19 February 2024).
- Fisher, J.; Reed, R.A. Disposal of Dead Bodies in Emergency Conditions. Disposal of Dead Bodies in Emergency Conditions. July 2013, pp. 1–4. Available online: https://www.who.int/publications/i/item/disposal-of-dead-bodies-in-emergency-conditions (accessed on 18 February 2024).
- Cárdenas-Barrantes, M.A.; Muñoz, J.D.; Araujo, N.M. Percolation study for the capillary ascent of a liquid through a granular soil. EPJ Web Conf. 2017, 140, 15007. [Google Scholar] [CrossRef]
- Kaliakin, V.N. Example Problems Involving In Situ Stresses Under Hydrostatic Conditions. In Soil Mechanics; Elsevier: Amsterdam, The Netherlands, 2017; pp. 205–242. [Google Scholar] [CrossRef]
- ASTM D1586; Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils. ASTM: West Conshohocken, PA, USA, 2011; pp. 1–9. Available online: https://cdn.standards.iteh.ai/samples/112203/79e943d76af1485881dbb89c72341184/ASTM-D1586-D1586M-18e1.pdf (accessed on 19 February 2024).
- Ortiz-Hernández, E.; Chunga, K.; Pastor, J.L.; Toulkeridis, T. Assessing Susceptibility to Soil Liquefaction Using the Standard Penetration Test (SPT). Land 2022, 11, 463. [Google Scholar] [CrossRef]
- FAO. Standard Operating Procedure for Soil Moisture Content by Gravimetric Method. 2023, pp. 1–19. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/e8811ce2-af62-470f-90fb-71b1da2d00c0/content (accessed on 18 February 2024).
- ASTM D2216; Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM: West Conshohocken, PA, USA, 2019. Available online: https://www.astm.org/d2216-19.html (accessed on 17 February 2024).
- SEMARNAT. NORMA Oficial Mexicana NOM-021-RECNAT-2000. Diario Oficial de la Federación. 2002, pp. 1–73. Available online: https://faolex.fao.org/docs/pdf/mex50674.pdf (accessed on 28 October 2023).
- ASTM D422; Standard Test Method for Particle-Size Analysis of Soils. ASTM International: West Conshohocken, PA, USA, 2002; pp. 1–8. Available online: https://civillabs.kashanu.ac.ir/file/download/page/1593845138-d-422-63-r02-rdqymg-.pdf (accessed on 18 February 2024).
- APHA. Standard Methods for the Examination of Water and Wastewater, 24th ed. 2023. Available online: https://es.scribd.com/document/663250411/Standard-Methods-24th-2023?utm_medium=cpc&utm_source=google_search&utm_campaign=Scribd_Google_DSA_NB_RoW_UGC&utm_adgroup=Documents&utm_term=&utm_matchtype=&utm_device=c&utm_network=g&gad_source=1&gclid=CjwKCAiA8sau (accessed on 18 February 2024).
- Sthle, L.; Wold, S. Analysis of variance (ANOVA). Chemom. Intell. Lab. Syst. 1989, 6, 259–272. [Google Scholar] [CrossRef]
- McHugh, M.L. Multiple comparison analysis testing in ANOVA. Biochem. Med. (Zagreb) 2011, 21, 203–209. [Google Scholar] [CrossRef]
- Gurvich, V.; Naumova, M. Logical contradictions in the one-way Anova and Tukey-Kramer multiple comparisons tests with more than two groups of observations. Symmetry 2021, 13, 1387. [Google Scholar] [CrossRef]
- Yarnold, P.R. UniODA vs. Kruskal-Wallace Test: Farming Method and Corn Yield. Optim. Data Anal. 2015, 4, 113–115. [Google Scholar]
- Mistri, M.; Pitacco, V.; Granata, T.; Moruzzi, L.; Munari, C. When the levee breaks: Effects of flood on offshore water contamination and benthic community in the Mediterranean (Ionian Sea). Mar. Pollut. Bull. 2019, 140, 588–596. [Google Scholar] [CrossRef]
- Wallace, D.L. Simplified Beta-Approximations to the Kruskal-Wallis H Test. J. Am. Stat. Assoc. 1959, 54, 225–230. [Google Scholar] [CrossRef]
- Das, D.; Das, T. The “P”-Value: The Primary Alphabet of Research Revisited. Int. J. Prev. Med. 2023, 14, 41. [Google Scholar] [CrossRef] [PubMed]
- CIIFEN. ¡ No Bajemos la Guardia ! El Niño Continua en su Etapa de Maduración, Gran Atención en la Región. 2024, pp. 2–5. Available online: https://ciifen.org/ (accessed on 25 February 2024).
- CIIFEN. El Niño/La Niña en América Latina. Boletín CIIFEN. 2023, pp. 1–27. Available online: https://ciifen.org/wp-content/uploads/2023/08/Boletin_CIIFEN_agosto_2023.pdf (accessed on 25 February 2024).
- UNRCP. El Evento de El Niño en América Latina y el Caribe. 2023. Available online: https://www.undrr.org/sites/default/files/2023-08/es-el-nino-en-america-latina-y-el-caribe-2023.pdf?startDownload=true (accessed on 25 February 2024).
- National Weather Service, US Department of Commerce NOAA. NOAA Declares the Arrival of El Niño; National Weather Service, US Department of Commerce NOAA: Silver Spring, MD, USA, 2023.
- INAMHI. Boletín de Predicción Climática. In Climate Wheather Research and Forescasting.; 2023; pp. 1–11. Available online: https://www.inamhi.gob.ec/pronostico/cwrf/2023/Boletin_CWRF.pdf (accessed on 26 July 2024).
- DeBruyn, J.M.; Hoeland, K.M.; Taylor, L.S.; Stevens, J.D.; Moats, M.A.; Bandopadhyay, S.; Dearth, S.P.; Castro, H.F.; Hewitt, K.K.; Campagna, S.R.; et al. Comparative Decomposition of Humans and Pigs: Soil Biogeochemistry, Microbial Activity and Metabolomic Profiles. Front. Microbiol. 2021, 11, 608–856. [Google Scholar] [CrossRef] [PubMed]
- Arcos-Yanez, E. Identificación de zonas ambientalmente no adecuadas para la ubicación de camposantos en los cantones Mejía, Quito y Rumiñahui. Universidad de las Fuerzas Armadas ESPE. Matriz Sangolquí. 2020. Available online: http://repositorio.espe.edu.ec/handle/21000/21908 (accessed on 1 October 2023).
- Fiedler, S.; Berns, A.E.; Schwark, L.; Woelk, A.T.; Graw, M. The chemistry of death—Adipocere degradation in modern graveyards. Forensic Sci. Int. 2015, 257, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Ubelaker, D.H.; Zarenko, K.M. Adipocere: What is known after over two centuries of research. Forensic Sci. Int. 2011, 208, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.S.; Janaway, R.C.; Holland, A.D.; Dodson, H.I.; Baran, E.; Pollard, A.M.; Tobin, D.J. Modelling the buried human body environment in upland climes using three contrasting field sites. Forensic Sci. Int. 2007, 169, 6–18. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, A.; Myburgh, J.; Steyn, M.; Becker, P.J. The effect of body size on the rate of decomposition in a temperate region of South Africa. Forensic Sci. Int. 2013, 231, 257–262. [Google Scholar] [CrossRef]
- Wescott, D.J. Recent advances in forensic anthropology: Decomposition research. Forensic Sci. Res. 2018, 3, 327. [Google Scholar] [CrossRef]
- Forbes, S.L.; Stuart, B.H.; Dent, B.B. The effect of the burial environment on adipocere formation. Forensic Sci. Int. 2005, 154, 24–34. [Google Scholar] [CrossRef]
- Gómez, G.F.; Crisanto-Perrazo, T.; Toulkeridis, T.; Fierro-Naranjo, G.; Guevara-García, P.; Mayorga-Llerena, E.; Vizuete-Freire, D.; Salazar, E.; Sinde-Gonzalez, I. Proposal of an Initial Environmental Management and Land Use for Critical Cemeteries in Central Ecuador. Sustainability 2022, 14, 1577. [Google Scholar] [CrossRef]
Variable | Category | Values/Data | Weighing |
---|---|---|---|
Accessibility | Low | - | 1 |
Average | - | 5 | |
High | - | 9 | |
Distance to the population (m) | Low | >301 | 1 |
Average | 201–300 | 5 | |
High | 0–200 | 9 | |
Affected population | Very low | 0–2 | 1 |
Low | 3–20 | 3 | |
Average | 21–80 | 5 | |
High | 81–160 | 7 | |
Very high | >160 | 9 | |
Buried population | Very low | 0–1000 | 1 |
Low | 1001–5000 | 3 | |
Average | 5001–25,000 | 5 | |
High | 25,001–50,000 | 7 | |
Very high | >50,001 | 9 | |
Burial form | Low | Niches | 1 |
Average | Land-niches | 5 | |
High | Land | 9 | |
Years of service or operation | Very low | <1833 | 1 |
Low | 1833–1933 | 3 | |
Average | 1933–1983 | 5 | |
High | 1983–2008 | 7 | |
Very high | 2008–2023 | 9 |
Accessibility | Distance to the Population | Affected Population | Buried Population | Burial Form | Years of Service or Operation | = | wi | |
---|---|---|---|---|---|---|---|---|
Accessibility | 1 | 6.00 | 1.20 | 0.75 | 0.67 | 0.86 | = | 0.17 |
Distance to the population | 0.17 | 1 | 0.20 | 0.13 | 0.11 | 0.14 | = | 0.03 |
Affected population | 0.83 | 5.00 | 1 | 0.63 | 0.56 | 0.71 | = | 0.14 |
Buried population | 1.33 | 8.00 | 1.60 | 1 | 0.89 | 1.14 | = | 0.22 |
Burial form | 1.50 | 9.00 | 1.80 | 1.13 | 1 | 1.29 | = | 0.25 |
Years of service or operation | 1.17 | 7.00 | 1.40 | 0.88 | 0.78 | 1 | = | 0.19 |
Category | Cemetery | Latitude | Longitude | Season | OM (%) | NO3− (mg.kg−1) | Humidity (%) | pH | Textural Class |
---|---|---|---|---|---|---|---|---|---|
Not suitable | Tambillo | 0°24′17.0006″ S | 78°32′57.8845″ W | dry | 5.4 | 18 | 29 | 7.02 | Clay |
rainy | 4.7 | 13 | 26 | 6.53 | |||||
La Libertad de Chillogallo | 0°17′6.1401″ S | 78°34′47.3232″ W | dry | 5.9 | 10 | 27 | 6.12 | Sandy clay loam | |
rainy | 5.4 | 4 | 26 | 6.17 | |||||
Nanegal | 0°8′22.0378″ N | 78°40′37.1893″ W | dry | 9.4 | 53 | 50 | 6.93 | Sandy clay loam | |
rainy | 8.9 | 4 | 49 | 5.97 | |||||
Slightly adequate | Aloasí | 0°30′59.7751″ S | 78°35′14.5372″ W | dry | 3 | 75 | 17 | 7.88 | Sandy clay loam |
rainy | 2.8 | 24 | 17 | 8.05 | |||||
Lumbisí | 0°13′55.1394″ S | 78°27′8.8344″ W | dry | 4.0 | 10 | 22 | 7.79 | Sandy clay loam | |
rainy | 4.1 | 24 | 23 | 7.65 | |||||
Uyumbicho | 0°22′55.6563″ S | 78°31′18.7682″ W | dry | 4.2 | 15 | 25 | 5.32 | Sandy clay loam | |
rainy | 4.8 | 22 | 27 | 5.54 | |||||
Moderately adequate | Guangopolo | 0°15′20.4411″ S | 78°26′59.6962″ W | dry | 8 | 14 | 25 | 7.62 | Sandy clay loam |
rainy | 4.8 | 11 | 23 | 7.31 | |||||
Tababela | 0°11′14.4457″ S | 78°20′56.2596″ W | dry | 3.4 | 23 | 18 | 8.23 | Sandy clay loam | |
rainy | 5.4 | 19 | 15 | 7.79 | |||||
Yaruquí | 0°9′21.1911″ S | 78°19′8.2484″ W | dry | 4.9 | 19 | 16 | 8.56 | Sandy clay loam | |
rainy | - | - | - | - | |||||
Very suitable | Descanso Eterno | 0°5′54.8324″ S | 78°24′55.3176″ W | dry | 2.3 | 12 | 5 | 8.81 | Sandy clay loam |
rainy | 2.8 | 14 | 5 | 8.22 | |||||
Puellaro | 0°3′44.2347″ N | 78°24′14.2151″ W | dry | 2.2 | 34 | 4 | 9.16 | Sandy loam | |
rainy | 2.1 | 30 | 4 | 9.90 | |||||
Completely adequate | Chavezpamba | 0°7′19.7715″ N | 78°24′12.6394″ W | dry | 4.1 | 12 | 17 | 5.65 | Sandy clay loam |
rainy | 3.1 | 13 | 18 | 7.40 | |||||
Nono | 0°4′9.0194″ S | 78°34′43.7041″ W | dry | 4.3 | 10 | 23 | 7.64 | Loamy sand | |
rainy | 5.8 | 10 | 21 | 6.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abad-Sarango, V.; Crisanto-Perrazo, T.; Guevara-García, P.; Fierro-Naranjo, G.; Toulkeridis, T.; Ocaña Garzón, E.; Quishpe-Gómez, B.; Suntaxi-Pachacama, S. Determination of Soil Contamination Due to the Influence of Cemeteries for the Surrounding Land and People in Central Ecuador—Worldwide Implications. Land 2024, 13, 1306. https://doi.org/10.3390/land13081306
Abad-Sarango V, Crisanto-Perrazo T, Guevara-García P, Fierro-Naranjo G, Toulkeridis T, Ocaña Garzón E, Quishpe-Gómez B, Suntaxi-Pachacama S. Determination of Soil Contamination Due to the Influence of Cemeteries for the Surrounding Land and People in Central Ecuador—Worldwide Implications. Land. 2024; 13(8):1306. https://doi.org/10.3390/land13081306
Chicago/Turabian StyleAbad-Sarango, Viviana, Tania Crisanto-Perrazo, Paulina Guevara-García, Greta Fierro-Naranjo, Theofilos Toulkeridis, Edwin Ocaña Garzón, Betzabeth Quishpe-Gómez, and Silvana Suntaxi-Pachacama. 2024. "Determination of Soil Contamination Due to the Influence of Cemeteries for the Surrounding Land and People in Central Ecuador—Worldwide Implications" Land 13, no. 8: 1306. https://doi.org/10.3390/land13081306
APA StyleAbad-Sarango, V., Crisanto-Perrazo, T., Guevara-García, P., Fierro-Naranjo, G., Toulkeridis, T., Ocaña Garzón, E., Quishpe-Gómez, B., & Suntaxi-Pachacama, S. (2024). Determination of Soil Contamination Due to the Influence of Cemeteries for the Surrounding Land and People in Central Ecuador—Worldwide Implications. Land, 13(8), 1306. https://doi.org/10.3390/land13081306