Assessing Perceived Landscape Change from Opportunistic Spatiotemporal Occurrence Data
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Framework for Analysis
3.2. Data Collection and Preprocessing
3.3. Signed Chi Equation
4. Results and Discussion
4.1. Mass Invasions (Instagram)
I: So what were your motives to come here? Your reasons?P 1: Ahm…P 2: Of course the movie.[…]I: (Laughs) And what did you expect when you came here?P 1: Ahm, basically something like that. [Okay] A little bit overcrowded. [Yeah. Okay] Yeah. But beautiful landscape of course.
4.2. National Parks (Reddit)
- What equipment do I need for Vernal Fall in April?
- Does group size of 1 help half dome lottery chances?
- Yosemite Valley with little kids—in the snow—Trip Report
- Mirror Lake today before the snow
4.3. Cherry Blossoms (Flickr, Twitter)
- wondering why the cherry blossom tourists have to take the Metro during rush hour
- Ugh cherry blossom fest traffic hell. Avoid the downtown mall
- The Sakura flowers are expected to be on its full bloom tomorrow, can’t wait to just sit under the Cherry Trees
- LED Cherry Blossom Tree—National Deal, Special 1
- This looked so nice in the sunlight. A whole tree filled with big clumps of cherry blossom and this little clump was leaning out into the sunlight.
- This is our Cherry tree in full bloom a couple of months ago, before the wind blew the blossom away. You can’t tell from this how overgrown the garden is. Can’t comment at moment.
4.4. Biodiversity Hotspots (Flickr, Twitter, iNaturalist, Instagram)
4.5. Red Kites (iNaturalist)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
1 | Available online: https://lbsn.vgiscience.org/ (accessed on 18 July 2024). |
2 | Available online: https://www.inaturalist.org/ (accessed on 18 July 2024). |
References
- Ingold, T. The Temporality of the Landscape. World Archaeol. 1993, 25, 152–174. [Google Scholar] [CrossRef]
- Dakin, S. There’s More to Landscape than Meets the Eye: Towards Inclusive Landscape Assessment in Resource and Environmental Management. Can. Geogr. 2003, 47, 185–200. [Google Scholar] [CrossRef]
- Bell, S. Landscape: Pattern, Perception and Process, 2nd ed.; Routledge: Abingdon, UK, 2012. [Google Scholar]
- Øian, H.; Fredman, P.; Sandell, K.; Sæþórsdóttir, A.D.; Tyrväinen, L.; Søndergaard Jensen, F. Tourism, Nature and Sustainability; TemaNord; Nordic Council of Ministers: Copenhagen, Denmark, 2018. [Google Scholar] [CrossRef]
- McPhearson, T.; Cook, E.M.; Berbés-Blázquez, M.; Cheng, C.; Grimm, N.B.; Andersson, E.; Barbosa, O.; Chandler, D.G.; Chang, H.; Chester, M.V.; et al. A Social-Ecological-Technological Systems Framework for Urban Ecosystem Services. One Earth 2022, 5, 505–518. [Google Scholar] [CrossRef]
- Hull, R.B.; McCarthy, M.M. Change in the Landscape. Landsc. Urban Plan. 1988, 15, 265–278. [Google Scholar] [CrossRef]
- Käyhkö, N.; Skånes, H. Change Trajectories and Key Biotopes—Assessing Landscape Dynamics and Sustainability. Landsc. Urban Plan. 2006, 75, 300–321. [Google Scholar] [CrossRef]
- Fichera, C.R.; Modica, G.; Pollino, M. Land Cover Classification and Change-Detection Analysis Using Multi-Temporal Remote Sensed Imagery and Landscape Metrics. Eur. J. Remote Sens. 2012, 45, 1–18. [Google Scholar] [CrossRef]
- Daniel, T.C. Whither Scenic Beauty? Visual Landscape Quality Assessment in the 21st Century. Landsc. Urban Plan. 2001, 54, 267–281. [Google Scholar] [CrossRef]
- Juhász, L.; Hochmair, H. Comparing the Spatial and Temporal Activity Patterns between Snapchat, Twitter and Flickr in Florida. GI_Forum 2019, 7, 134–147. [Google Scholar] [CrossRef]
- Paldino, S.; Kondor, D.; Bojic, I.; Sobolevsky, S.; González, M.C.; Ratti, C. Uncovering Urban Temporal Patterns from Geo-Tagged Photography. PLoS ONE 2016, 11, e0165753. [Google Scholar] [CrossRef]
- Mancini, F.; Coghill, G.M.; Lusseau, D. Using Social Media to Quantify Spatial and Temporal Dynamics of Nature-Based Recreational Activities. PLoS ONE 2018, 13, e0200565. [Google Scholar] [CrossRef]
- Tenkanen, H.; Di Minin, E.; Heikinheimo, V.; Hausmann, A.; Herbst, M.; Kajala, L.; Toivonen, T. Instagram, Flickr, or Twitter: Assessing the Usability of Social Media Data for Visitor Monitoring in Protected Areas. Sci. Rep. 2017, 7, 17615. [Google Scholar] [CrossRef] [PubMed]
- Bowler, D.E.; Callaghan, C.T.; Bhandari, N.; Henle, K.; Benjamin Barth, M.; Koppitz, C.; Klenke, R.; Winter, M.; Jansen, F.; Bruelheide, H.; et al. Temporal Trends in the Spatial Bias of Species Occurrence Records. Ecography 2022, 2022, e06219. [Google Scholar] [CrossRef]
- Rapacciuolo, G.; Young, A.; Johnson, R. Deriving Indicators of Biodiversity Change from Unstructured Community-contributed Data. Oikos 2021, 130, 1225–1239. [Google Scholar] [CrossRef]
- Dunkel, A.; Hartmann, M.C.; Hauthal, E.; Burghardt, D.; Purves, R.S. From Sunrise to Sunset: Exploring Landscape Preference through Global Reactions to Ephemeral Events Captured in Georeferenced Social Media. PLoS ONE 2023, 18, e0280423. [Google Scholar] [CrossRef] [PubMed]
- Senaratne, H.; Mobasheri, A.; Ali, A.L.; Capineri, C.; Haklay, M. A Review of Volunteered Geographic Information Quality Assessment Methods. Int. J. Geogr. Inf. Sci. 2017, 8816, 139–167. [Google Scholar] [CrossRef]
- Lobo, J.M.; Mingarro, M.; Godefroid, M.; García-Roselló, E. Taking Advantage of Opportunistically Collected Historical Occurrence Data to Detect Responses to Climate Change: The Case of Temperature and Iberian Dung Beetles. Ecol. Evol. 2023, 13, e10674. [Google Scholar] [CrossRef] [PubMed]
- Kelling, S.; Johnston, A.; Bonn, A.; Fink, D.; Ruiz-Gutierrez, V.; Bonney, R.; Fernandez, M.; Hochachka, W.M.; Julliard, R.; Kraemer, R.; et al. Using Semistructured Surveys to Improve Citizen Science Data for Monitoring Biodiversity. BioScience 2019, 69, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Grabow, M.; Louvrier, J.L.P.; Planillo, A.; Kiefer, S.; Drenske, S.; Börner, K.; Stillfried, M.; Hagen, R.; Kimmig, S.; Straka, T.M.; et al. Data-Integration of Opportunistic Species Observations into Hierarchical Modeling Frameworks Improves Spatial Predictions for Urban Red Squirrels. Front. Ecol. Evol. 2022, 10, 881247. [Google Scholar] [CrossRef]
- Mashhadi, A.; Winder, S.G.; Lia, E.H.; Wood, S.A. No Walk in the Park: The Viability and Fairness of Social Media Analysis for Parks and Recreational Policy Making. In Proceedings of the International AAAI Conference on Web and Social Media, Palo Alto, CA, USA, 7–10 June 2021; pp. 409–420. [Google Scholar]
- Bixler, R.P.; Lieberknecht, K.; Leite, F.; Felkner, J.; Oden, M.; Richter, S.M.; Atshan, S.; Zilveti, A.; Thomas, R. An Observatory Framework for Metropolitan Change: Understanding Urban Social–Ecological–Technical Systems in Texas and Beyond. Sustainability 2019, 11, 3611. [Google Scholar] [CrossRef]
- Tress, B.; Tress, G. Capitalising on Multiplicity: A Transdisciplinary Systems Approach to Landscape Research. Landsc. Urban Plan. 2001, 57, 143–157. [Google Scholar] [CrossRef]
- Rakova, B.; Dobbe, R. Algorithms as Social-Ecological-Technological Systems: An Environmental Justice Lens on Algorithmic Audits. In 2023 ACM Conference on Fairness, Accountability, and Transparency; ACM: Chicago, IL, USA, 2023; p. 491. [Google Scholar] [CrossRef]
- van Dijck, J. Flickr and the Culture of Connectivity: Sharing Views, Experiences, Memories. Mem. Stud. 2011, 4, 401–415. [Google Scholar] [CrossRef]
- Metcalf, J.; Crawford, K. Where Are Human Subjects in Big Data Research? The Emerging Ethics Divide. Big Data Soc. 2016, 3, 205395171665021. [Google Scholar] [CrossRef]
- Antoniou, V.; Morley, J.; Haklay, M. Web 2.0 Geotagged Photos: Assessing the Spatial Dimension of the Phenomenon. Geomatica 2010, 64, 99–110. [Google Scholar]
- Sunstein, C.R. #Republic: Divided Democracy in the Age of Social Media; Princeton University Press: Princeton, NJ, USA, 2017. [Google Scholar]
- Dunkel, A.; Löchner, M.; Burghardt, D. Privacy-Aware Visualization of Volunteered Geographic Information (VGI) to Analyze Spatial Activity: A Benchmark Implementation. IJGI 2020, 9, 607. [Google Scholar] [CrossRef]
- Visvalingam, M. The Signed Chi-Square Measure for Mapping. Cartogr. J. 1978, 15, 93–98. [Google Scholar] [CrossRef]
- Dunkel, A.; Burghardt, D. Supplementary Materials for the Publication “Assessing Perceived Landscape Change from Opportunistic Spatio-Temporal Occurrence Data”. 2024. Available online: https://opara.zih.tu-dresden.de/items/14b6d22e-f705-4260-972c-9c4a8d0e551e (accessed on 18 July 2024).
- Tautenhahn, C. Das Phänomen der Masse: Landschaftliche Wirkungen Sozialer Medien. Master’s Thesis, Department of Landscape Architecture and Environmental Planning, Berkeley, CA, USA, 2020. [Google Scholar]
- Urry, J. The Tourist Gaze: Leisure and Travel in Contemporany Societies; Sage: Chicago, IL, USA, 1990. [Google Scholar]
- Anselin, L.; Sridharan, S.; Gholston, S. Using Exploratory Spatial Data Analysis to Leverage Social Indicator Databases: The Discovery of Interesting Patterns. Soc. Indic. Res. 2007, 82, 287–309. [Google Scholar] [CrossRef]
- Dunkel, A.; Andrienko, G.; Andrienko, N.; Burghardt, D.; Hauthal, E.; Purves, R. A Conceptual Framework for Studying Collective Reactions to Events in Location-Based Social Media. Int. J. Geogr. Inf. Sci. 2019, 33, 780–804. [Google Scholar] [CrossRef]
- Bubalo, M.; van Zanten, B.T.; Verburg, P.H. Crowdsourcing Geo-Information on Landscape Perceptions and Preferences: A Review. Landsc. Urban Plan. 2019, 184, 101–111. [Google Scholar] [CrossRef]
- White, T.M. Cartographic Pleasures: Maps Inspired by Joy Division’s Unknown Pleasures Album Art. Cartogr. Perspect. 2019, 92, 65–78. [Google Scholar] [CrossRef]
- Hahmann, S.; Purves, R.; Burghardt, D. Twitter Location (Sometimes) Matters: Exploring the Relationship between Georeferenced Tweet Content and Nearby Feature Classes. JOSIS 2014, 9, 1–36. [Google Scholar] [CrossRef]
- Hargittai, E. Potential Biases in Big Data: Omitted Voices on Social Media. Soc. Sci. Comput. Rev. 2020, 38, 10–24. [Google Scholar] [CrossRef]
- Steels, L. Collaborative tagging as distributed cognition. In Cognition Distributed: How Cognitive Technology Extends Our Minds; Cognitive Pragmatism; Harnad, S., Dror, I.E., Eds.; John Benjamins Publishing Company: Amsterdam, The Netherlands, 2008; pp. 93–98. [Google Scholar]
- Sontag, S. On Photography; Farrar, Straus and Giroux: New York, NY, USA, 1977. [Google Scholar]
- Teles da Mota, V.; Pickering, C. Assessing the Popularity of Urban Beaches Using Metadata from Social Media Images as a Rapid Tool for Coastal Management. Ocean Coast. Manag. 2021, 203, 105519. [Google Scholar] [CrossRef]
- Hartmann, M.C.; Koblet, O.; Baer, M.F.; Purves, R.S. Automated Motif Identification: Analysing Flickr Images to Identify Popular Viewpoints in Europe’s Protected Areas. J. Outdoor Recreat. Tour. 2022, 37, 100479. [Google Scholar] [CrossRef]
- Stevens, M.; Murn, C.; Hennessey, R. Population Change of Red Kites Milvus Milvus in Central Southern England between 2011 and 2016 Derived from Line Transect Surveys and Multiple Covariate Distance Sampling. Acta Ornithol. 2020, 54, 243–254. [Google Scholar] [CrossRef]
- Elmas, T.; Overdorf, R.; Özkalay, A.F.; Aberer, K. Ephemeral Astroturfing Attacks: The Case of Fake Twitter Trends. In 2021 IEEE European Symposium on Security and Privacy (EuroS&P); IEEE: New York, NY, USA, 2021; pp. 403–422. [Google Scholar] [CrossRef]
- Terren, L.; Borge-Bravo, R. Echo Chambers on Social Media: A Systematic Review of the Literature. Rev. Commun. Res. 2021, 9, 99–118. [Google Scholar] [CrossRef]
- Casu, M.; Guarnera, L.; Caponnetto, P.; Battiato, S. GenAI Mirage: The Impostor Bias and the Deepfake Detection Challenge in the Era of Artificial Illusions. Forensic Sci. Int. Digit. Investig. 2024, 50, 301795. [Google Scholar] [CrossRef]
Case Study | Flickr | iNaturalist | |||
---|---|---|---|---|---|
(1) “Mass invasions” | 998,800 2007–2019 | / | / | / | / |
(2) “National parks” | / | / | / | 345,900 2007–2023 | / |
(3) “Cherry blossoms” | / | 100,700 2007–2018 | 1.6 M 2007–2018 | / | / |
(4) “Biodiversity hotspots” | 997,200 2007–2020 | 915,800 2007–2022 | 221,100 2007–2022 | / | 117,000 2007–2022 |
(5) “Red Kite” | / | 22,080 2007–2023 | / | / | 9 M 2007–2023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dunkel, A.; Burghardt, D. Assessing Perceived Landscape Change from Opportunistic Spatiotemporal Occurrence Data. Land 2024, 13, 1091. https://doi.org/10.3390/land13071091
Dunkel A, Burghardt D. Assessing Perceived Landscape Change from Opportunistic Spatiotemporal Occurrence Data. Land. 2024; 13(7):1091. https://doi.org/10.3390/land13071091
Chicago/Turabian StyleDunkel, Alexander, and Dirk Burghardt. 2024. "Assessing Perceived Landscape Change from Opportunistic Spatiotemporal Occurrence Data" Land 13, no. 7: 1091. https://doi.org/10.3390/land13071091
APA StyleDunkel, A., & Burghardt, D. (2024). Assessing Perceived Landscape Change from Opportunistic Spatiotemporal Occurrence Data. Land, 13(7), 1091. https://doi.org/10.3390/land13071091