Advancements in Biochar Modification for Enhanced Phosphorus Utilization in Agriculture
Abstract
:1. Introduction
1.1. Background
1.2. P Dynamics in Soils
1.3. Overview of Biochar and Its Role in P Management
2. Phosphorus Fixation Challenges and Impacts
2.1. Significance of Phosphorus in Crop Nutrition
2.2. Detrimental Effects of P Fixation
3. Role of Biochar in P Adsorption
3.1. Basic Mechanism of P Adsorption by Biochar
3.2. Factors Influencing Adsorption and Desorption
4. Advancements in Biochar Preparation
4.1. Feedstock Variability in Biochar Production and Its Implications
4.2. Evolution of Pyrolysis Techniques and Their Influence on Biochar Production
4.3. Advances in Pyrolysis Techniques
Property/ Characteristic | Traditional Biochar | Modified Biochar | Impact on P Adsorption | P Adsorption by Modified Biochar | Experimental Conditions | References |
---|---|---|---|---|---|---|
Porosity | Low to moderate | Enhanced, due to specific modification techniques | Higher porosity can increase the surface area available for P adsorption | 620 mg g−1 | Phosphate solutions | [61,62] |
Surface Area (m2/g) | Typically <300 | Can exceed 1000, depending on the modification technique | A larger surface area provides more adsorption sites, increasing P retention | 10.4 mg g−1 | P-containing wastewater | [63,64] |
pH | Generally alkaline, but variable (6–9) | Can be fine-tuned to desired values using specific precursors or post-treatment methods | pH close to phosphate’s zero point of charge (pH_zpc) can enhance P adsorption | 95.2 mg g−1 | River sediment-water | [12,61] |
Cation Exchange Capacity (CEC) | Moderate | Enhanced due to the addition of functional groups or mineral phases | Higher CEC can lead to better P retention by promoting ion exchange | 28–29 mg g−1 | Phosphate solutions | [65] |
Presence of Functional Groups | Limited presence of hydroxyl, carboxyl, and phenolic groups | Enriched with specific functional groups post-modification | Functional groups play a crucial role in P binding, especially hydroxyl groups | 24.7 mg g−1 | Phosphate solutions | [35] |
Stability in Soil | Moderate | Enhanced, especially if cross-linked or treated with minerals | Stable biochars persist longer in soil, providing sustained P management | Reduced P runoff from soil; greater microaggregate stability. | Temperate Agricultural Soil | [66] |
Hydrophobicity | Often high due to carbon-rich nature | Can be adjusted using post-treatments | Lower hydrophobicity may promote aqueous interactions and P adsorption | 56.12 mg g−1 | Phosphate solution | [67,68] |
Metal Content | It depends on the biomass source | It can be enriched if treated with metal solutions | Metals can act as bridges for P, enhancing its adsorption onto biochar through ligand exchange and electrostatic attraction | 19.66 mg g−1 | Phosphate solution | [64,69] |
5. Modification and Characterization
5.1. Biochar Modification Techniques
5.2. Functional Groups in Biochar
5.3. Nanotechnology and Its Role in Enhancing P Adsorption
6. Biochar in Sustainable Agriculture
6.1. Integration of Advanced Analytical Methods with Cutting-Edge Characterization Techniques and Their Insights
Analytical Technique | Principle/Methodology | Benefits in Biochar Research | Challenges/Limitations | References |
---|---|---|---|---|
X-ray Photoelectron Spectroscopy (XPS) | Measures the elemental composition and electronic state of elements | Reveals surface chemistry and potential functional groups | Limited to surface analysis; time-consuming | [107] |
Scanning Electron Microscopy (SEM) | Provides detailed images of biochar surfaces using electron beams | Visualizes microstructure and porosity; aids in determining biochar’s physical properties | Requires gold or carbon sputter coating for some samples, potentially altering surface | [108] |
Fourier-Transform Infrared Spectroscopy (FTIR) | Measures vibrational frequencies to determine chemical compounds | Identifies functional groups and organic components | Limited sensitivity for very low-concentration species | [109] |
Nuclear Magnetic Resonance (NMR) | Utilizes nuclear spins in a magnetic field | Offers insights into biochar’s carbon types and distribution | Requires high concentrations of samples; relatively expensive | [110] |
Thermogravimetric Analysis (TGA) | Monitors weight change in a material as a function of temperature or time | Assesses thermal stability and organic content of biochar | Does not provide specific information on biochar’s chemical structure | [111] |
Brunauer–Emmett–Teller (BET) Method | Measures gas adsorption on solid surfaces | Evaluates specific surface area, aiding in understanding adsorption capacity | Limited to certain gas–solid systems; does not consider pore geometry | [112] |
6.2. Role of Artificial Intelligence in Data Analysis and Prediction
6.3. Highlighting More Nuanced AI Applications in Biochar Research
7. Practical Implications and Benefits
7.1. Addressing the Environmental and Health Impacts of P Leaching through Sustainable Agricultural Practices
7.2. Economic Advantages in Agriculture: The Promise of Biochar
8. Gaps and Future Directions
8.1. Existing Research Gaps in Biochar Preparation and Modification
8.2. Opportunities for Further Innovation and Research
8.3. Potential Challenges and Solutions in Biochar Research and Application
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, D.; Wang, L.; Nan, H.; Cao, Y.; Wang, H.; Kumar, T.V.; Wang, C. Phosphorus Adsorption by Functionalized Biochar: A Review. Environ. Chem. Lett. 2023, 21, 497–524. [Google Scholar] [CrossRef]
- Rumi, R.; Maurya, K.; Pandey, M.; Kohli, P.S.; Panchal, P.; Sinha, A.K.; Giri, J. Biotechnological Approaches for Improving Phosphate Uptake and Assimilation in Plants. In Plant Phosphorus Nutrition; CRC Press: Boca Raton, FL, USA, 2023; pp. 110–128. [Google Scholar] [CrossRef]
- Kolodiazhnyi, O.I.; Kukhar, V.P. Phosphorus Compounds of Natural Origin: Prebiotic, Stereochemistry, Application. Symmetry 2021, 13, 889. [Google Scholar] [CrossRef]
- Barquet, K.; Järnberg, L.; Rosemarin, A.; Macura, B. Identifying Barriers and Opportunities for a Circular Phosphorus Economy in the Baltic Sea Region. Water Res. 2020, 171, 115433. [Google Scholar] [CrossRef]
- Randive, K.; Raut, T.; Jawadand, S. An Overview of the Global Fertilizer Trends and India’s Position in 2020. Miner. Econ. 2021, 34, 371–384. [Google Scholar] [CrossRef]
- Filippelli, G.M. Balancing the Global Distribution of Phosphorus with a View Toward Sustainability and Equity. Glob. Biogeochem. Cycles 2018, 32, 904–908. [Google Scholar] [CrossRef]
- Johan, P.D.; Ahmed, O.H.; Omar, L.; Hasbullah, N.A. Phosphorus Transformation in Soils Following Co-Application of Charcoal and Wood Ash. Agronomy 2021, 11, 2010. [Google Scholar] [CrossRef]
- Pierzynski, J.; Hettiarachchi, G.M. Reactions of Phosphorus Fertilizers with and without a Fertilizer Enhancer in Three Acidic Soils with High Phosphorus-Fixing Capacity. Soil Sci. Soc. Am. J. 2018, 82, 1124–1139. [Google Scholar] [CrossRef]
- Haque, S.E. How Effective Are Existing Phosphorus Management Strategies in Mitigating Surface Water Quality Problems in the U.S.? Sustainability 2021, 13, 6565. [Google Scholar] [CrossRef]
- Maharajan, T.; Ceasar, S.A.; Krishna, T.P.A.; Ignacimuthu, S. Management of Phosphorus Nutrient amid Climate Change for Sustainable Agriculture. J. Environ. Qual. 2021, 50, 1303–1324. [Google Scholar] [CrossRef]
- Tian, J.; Ge, F.; Zhang, D.; Deng, S.; Liu, X. Roles of Phosphate Solubilizing Microorganisms from Managing Soil Phosphorus Deficiency to Mediating Biogeochemical p Cycle. Biology 2021, 10, 158. [Google Scholar] [CrossRef]
- Ren, L.; Li, Y.; Wang, K.; Ding, K.; Sha, M.; Cao, Y.; Kong, F.; Wang, S. Recovery of Phosphorus from Eutrophic Water Using Nano Zero-Valent Iron-Modified Biochar and Its Utilization. Chemosphere 2021, 284, 131391. [Google Scholar] [CrossRef]
- Yang, L.; Wu, Y.; Wang, Y.; An, W.; Jin, J.; Sun, K.; Wang, X. Effects of Biochar Addition on the Abundance, Speciation, Availability, and Leaching Loss of Soil Phosphorus. Sci. Total Environ. 2021, 758, 143657. [Google Scholar] [CrossRef]
- Freitas, A.M.; Nair, V.D.; Harris, W.G. Biochar as Influenced by Feedstock Variability: Implications and Opportunities for Phosphorus Management. Front. Sustain. Food Syst. 2020, 4, 510982. [Google Scholar] [CrossRef]
- Li, F.; Liang, X.; Niyungeko, C.; Sun, T.; Liu, F.; Arai, Y. Effects of Biochar Amendments on Soil Phosphorus Transformation in Agricultural Soils. Adv. Agron. 2019, 158, 131–172. [Google Scholar]
- Anae, J.; Ahmad, N.; Kumar, V.; Thakur, V.K.; Gutierrez, T.; Yang, X.J.; Cai, C.; Yang, Z.; Coulon, F. Recent Advances in Biochar Engineering for Soil Contaminated with Complex Chemical Mixtures: Remediation Strategies and Future Perspectives. Sci. Total Environ. 2021, 767, 144351. [Google Scholar] [CrossRef]
- Almanassra, I.W.; Mckay, G.; Kochkodan, V.; Ali Atieh, M.; Al-Ansari, T. A State of the Art Review on Phosphate Removal from Water by Biochars. Chem. Eng. J. 2021, 409, 128211. [Google Scholar] [CrossRef]
- Vikrant, K.; Kim, K.H.; Ok, Y.S.; Tsang, D.C.W.; Tsang, Y.F.; Giri, B.S.; Singh, R.S. Engineered/Designer Biochar for the Removal of Phosphate in Water and Wastewater. Sci. Total Environ. 2018, 616–617, 1242–1260. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, M.; Wang, H.; Xue, J.; Lv, Q.; Pang, G. Efficient Recovery of Phosphate from Aqueous Solution Using Biochar Derived from Co-Pyrolysis of Sewage Sludge with Eggshell. J. Environ. Chem. Eng. 2021, 9, 105354. [Google Scholar] [CrossRef]
- Hong, C.; Lu, S. Does Biochar Affect the Availability and Chemical Fractionation of Phosphate in Soils? Environ. Sci. Pollut. Res. 2018, 25, 8725–8734. [Google Scholar] [CrossRef]
- Wen, Z.; Chen, Y.; Liu, Z.; Meng, J. Biochar and Arbuscular Mycorrhizal Fungi Stimulate Rice Root Growth Strategy and Soil Nutrient Availability. Eur. J. Soil Biol. 2022, 113, 103448. [Google Scholar] [CrossRef]
- DIssanayaka, D.M.S.B.; Ghahremani, M.; Siebers, M.; Wasaki, J.; Plaxton, W.C. Recent Insights into the Metabolic Adaptations of Phosphorus-Deprived Plants. J. Exp. Bot. 2021, 72, 199–223. [Google Scholar] [CrossRef]
- Ali, U.; Lu, S.; Fadlalla, T.; Iqbal, S.; Yue, H.; Yang, B.; Hong, Y.; Wang, X.; Guo, L. The Functions of Phospholipases and Their Hydrolysis Products in Plant Growth, Development and Stress Responses. Prog. Lipid Res. 2022, 86, 101158. [Google Scholar] [CrossRef]
- Bindraban, P.S.; Dimkpa, C.O.; Pandey, R. Exploring Phosphorus Fertilizers and Fertilization Strategies for Improved Human and Environmental Health. Biol. Fertil. Soils 2020, 56, 299–317. [Google Scholar] [CrossRef]
- Zhang, J.; Choi, S.; Fan, J.; Kim, H.J. Biomass and Phosphorus Accumulation and Partitioning of Geranium and Coleus in Response to Phosphorus Availability and Growth Phase. Agronomy 2019, 9, 813. [Google Scholar] [CrossRef]
- Aslam, M.M.; Karanja, J.K.; Yuan, W.; Zhang, Q.; Zhang, J.; Xu, W. Phosphorus Uptake Is Associated with the Rhizosheath Formation of Mature Cluster Roots in White Lupin under Soil Drying and Phosphorus Deficiency. Plant Physiol. Biochem. 2021, 166, 531–539. [Google Scholar] [CrossRef]
- Gong, H.; Meng, F.; Wang, G.; Hartmann, T.E.; Feng, G.; Wu, J.; Jiao, X.; Zhang, F. Toward the Sustainable Use of Mineral Phosphorus Fertilizers for Crop Production in China: From Primary Resource Demand to Final Agricultural Use. Sci. Total Environ. 2022, 804, 150183. [Google Scholar] [CrossRef]
- Kishore, A.; Alvi, M.; Krupnik, T.J. Development of Balanced Nutrient Management Innovations in South Asia: Perspectives from Bangladesh, India, Nepal, and Sri Lanka. Glob. Food Secur. 2021, 28, 100464. [Google Scholar] [CrossRef]
- Rashmi, I.; Roy, T.; Kartika, K.S.; Pal, R.; Coumar, V.; Kala, S.; Shinoji, K.C. Organic and Inorganic Fertilizer Contaminants in Agriculture: Impact on Soil and Water Resources. In Contaminants in Agriculture: Sources, Impacts and Management; Springer Nature: Cham, Switzerland, 2020; pp. 3–41. [Google Scholar]
- Langhans, C.; Beusen, A.H.W.; Mogollón, J.M.; Bouwman, A.F. Phosphorus for Sustainable Development Goal Target of Doubling Smallholder Productivity. Nat. Sustain. 2022, 5, 57–63. [Google Scholar] [CrossRef]
- Pahalvi, H.N.; Rafiya, L.; Rashid, S.; Nisar, B.; Kamili, A.N. Chemical Fertilizers and Their Impact on Soil Health. In Microbiota and Biofertilizers, Vol. 2: Ecofriendly Tools for Reclamation of Degraded Soil Environs; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Dincă, L.C.; Grenni, P.; Onet, C.; Onet, A. Fertilization and Soil Microbial Community: A Review. Appl. Sci. 2022, 12, 1198. [Google Scholar] [CrossRef]
- Tu, P.; Zhang, G.; Cen, Y.; Huang, B.; Li, J.; Li, Y.; Deng, L.; Yuan, H. Phosphate Adsorption and Desorption Characteristics of Mgo-Modified Biochars from Different Raw Materials. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
- Tusar, H.M.; Uddin, M.K.; Mia, S.; Suhi, A.A.; Bin, S.; Wahid, A.; Kasim, S.; Sairi, N.A.; Alam, Z.; Anwar, F. Biochar-Acid Soil Interactions—A Review. Sustainability 2023, 15, 13366. [Google Scholar] [CrossRef]
- Wang, C.; Luo, D.; Zhang, X.; Huang, R.; Cao, Y.; Liu, G.; Zhang, Y.; Wang, H. Biochar-Based Slow-Release of Fertilizers for Sustainable Agriculture: A Mini Review. Environ. Sci. Ecotechnol. 2022, 10, 100167. [Google Scholar] [CrossRef]
- Conz, R.F.; Abbruzzini, T.F.; de Andrade, C.A.; Milori, D.M.B.P.; Cerri, C.E.P. Effect of Pyrolysis Temperature and Feedstock Type on Agricultural Properties and Stability of Biochars. Agric. Sci. 2017, 8, 914–933. [Google Scholar] [CrossRef]
- Pan, S.Y.; Dong, C.D.; Su, J.F.; Wang, P.Y.; Chen, C.W.; Chang, J.S.; Kim, H.; Huang, C.P.; Hung, C.M. The Role of Biochar in Regulating the Carbon, Phosphorus, and Nitrogen Cycles Exemplified by Soil Systems. Sustainability 2021, 13, 5612. [Google Scholar] [CrossRef]
- Jha, P.; Neenu, S.; Rashmi, I.; Meena, B.P.; Jatav, R.C.; Lakaria, B.L.; Biswas, A.K.; Singh, M.; Patra, A.K. Ameliorating Effects of Leucaena Biochar on Soil Acidity and Exchangeable Ions. Commun. Soil Sci. Plant Anal. 2016, 47, 1252–1262. [Google Scholar] [CrossRef]
- Hou, L.; Liang, Q.; Wang, F. Mechanisms That Control the Adsorption–Desorption Behavior of Phosphate on Magnetite Nanoparticles: The Role of Particle Size and Surface Chemistry Characteristics. RSC Adv. 2020, 10, 2378–2388. [Google Scholar] [CrossRef] [PubMed]
- Haddad, K.; Jellali, S.; Jeguirim, M.; Trabelsi, A.B.H.; Limousy, L. Investigations on Phosphorus Recovery from Aqueous Solutions by Biochars Derived from Magnesium-Pretreated Cypress Sawdust. J. Environ. Manag. 2018, 216, 305–314. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, S.; Wang, J.; Ding, X. Phosphorus Retention Using Iron (II/III) Modified Biochar in Saline-Alkaline Soils: Adsorption, Column and Field Tests. Environ. Pollut. 2020, 261, 114223. [Google Scholar] [CrossRef]
- Cui, Q.; Xu, J.; Wang, W.; Tan, L.; Cui, Y.; Wang, T.; Li, G.; She, D.; Zheng, J. Phosphorus Recovery by Core-Shell γ-Al2O3/Fe3O4 Biochar Composite from Aqueous Phosphate Solutions. Sci. Total Environ. 2020, 729, 138892. [Google Scholar] [CrossRef]
- Feng, Y.; Luo, Y.; He, Q.; Zhao, D.; Zhang, K.; Shen, S.; Wang, F. Performance and Mechanism of a Biochar-Based Ca-La Composite for the Adsorption of Phosphate from Water. J. Environ. Chem. Eng. 2021, 9, 105267. [Google Scholar] [CrossRef]
- Yang, F.; Chen, Y.; Nan, H.; Pei, L.; Huang, Y.; Cao, X.; Xu, X.; Zhao, L. Metal Chloride-Loaded Biochar for Phosphorus Recovery: Noteworthy Roles of Inherent Minerals in Precursor. Chemosphere 2021, 266, 128991. [Google Scholar] [CrossRef] [PubMed]
- Reyhanitabar, A.; Farhadi, E.; Ramezanzadeh, H.; Oustan, S. Effect of Pyrolysis Temperature and Feedstock Sources on Physicochemical Characteristics of Biochar. J. Agric. Sci. Technol. 2020, 22, 547–561. [Google Scholar]
- Zhou, L.; Xu, D.; Li, Y.; Pan, Q.; Wang, J.; Xue, L.; Howard, A. Phosphorus and Nitrogen Adsorption Capacities of Biochars Derived from Feedstocks at Different Pyrolysis Temperatures. Water 2019, 11, 1559. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar Physicochemical Properties: Pyrolysis Temperature and Feedstock Kind Effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Rodriguez-Franco, C.; Page-Dumroese, D.S. Woody Biochar Potential for Abandoned Mine Land Restoration in the U.S.: A Review. Biochar 2021, 3, 7–22. [Google Scholar] [CrossRef]
- Jellali, S.; Hadroug, S.; Al-Wardy, M.; Al-Nadabi, H.; Nassr, N.; Jeguirim, M. Recent Developments in Metallic-Nanoparticles-Loaded Biochars Synthesis and Use for Phosphorus Recovery from Aqueous Solutions. A Critical Review. J. Environ. Manag. 2023, 342, 118307. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.A.; Paul, N.A.; Dworjanyn, S.A.; Bird, M.I.; De Nys, R. Biochar from Commercially Cultivated Seaweed for Soil Amelioration. Sci. Rep. 2015, 5, 9665. [Google Scholar] [CrossRef]
- Wondmagegn, S.; Esubalew, M.; Balemual, A.; Mhriet, S.; Nigusu, T.; Adane, W.; Tesfaw, M. Design and Development of a Modified Biomass Charcoal Production Kiln. Ethiop. Int. J. Eng. Technol. 2023, 1, 12–22. [Google Scholar] [CrossRef]
- Garcia-Nunez, J.A.; Pelaez-Samaniego, M.R.; Garcia-Perez, M.E.; Fonts, I.; Abrego, J.; Westerhof, R.J.M.; Garcia-Perez, M. Historical Developments of Pyrolysis Reactors: A Review. Energy Fuels 2017, 31, 5751–5775. [Google Scholar] [CrossRef]
- Tan, H.; Lee, C.T.; Ong, P.Y.; Wong, K.Y.; Bong, C.P.C.; Li, C.; Gao, Y. A Review on the Comparison between Slow Pyrolysis and Fast Pyrolysis on the Quality of Lignocellulosic and Lignin-Based Biochar. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1051, 012075. [Google Scholar] [CrossRef]
- Ercan, B.; Alper, K.; Ucar, S.; Karagoz, S. Comparative Studies of Hydrochars and Biochars Produced from Lignocellulosic Biomass via Hydrothermal Carbonization, Torrefaction and Pyrolysis. J. Energy Inst. 2023, 109, 101298. [Google Scholar] [CrossRef]
- Tenic, E.; Ghogare, R.; Dhingra, A. Biochar—A Panacea for Agriculture or Just Carbon? Horticulturae 2020, 6, 37. [Google Scholar] [CrossRef]
- Sun, D.; Hale, L.; Kar, G.; Soolanayakanahally, R.; Adl, S. Phosphorus Recovery and Reuse by Pyrolysis: Applications for Agriculture and Environment. Chemosphere 2018, 194, 682–691. [Google Scholar] [CrossRef]
- Kumar, A.V.; Muninathan, K.; Arivazhagan, S.; Monish, N.; Ramanan, M.V.; Rao, V.S.; Baskar, G. Investigations on Carbonization Operating Conditions of ANSYS Customized Kiln for Charcoal Production from Prosopis Juliflora Biomass and ANN Model Prediction for Optimized Operating Conditions. Fuel 2023, 350, 128838. [Google Scholar] [CrossRef]
- Akanji, M.A.; Al-Swadi, H.A.; Mousa Mousa, M.A.; Usama, M.; Ahmad, M.; Lubis, N.M.A.; Al-Farraj, A.S.F.; Al-Wabel, M.I. Synthesis and Characterization of Clay-Biochar Composites. In Environmental Applications; Springer Nature: Singapore, 2023; pp. 91–112. [Google Scholar] [CrossRef]
- Shen, Q.; Wu, H. Rapid Pyrolysis of Biochar Prepared from Slow and Fast Pyrolysis: The Effects of Particle Residence Time on Char Properties. Proc. Combust. Inst. 2023, 39, 3371–3378. [Google Scholar] [CrossRef]
- Yang, F.; Sui, L.; Tang, C.; Li, J.; Cheng, K.; Xue, Q. Sustainable Advances on Phosphorus Utilization in Soil via Addition of Biochar and Humic Substances. Sci. Total Environ. 2021, 768, 145106. [Google Scholar] [CrossRef]
- Li, T.; Tong, Z.; Gao, B.; Li, Y.C.; Smyth, A.; Bayabil, H.K. Polyethyleneimine-Modified Biochar for Enhanced Phosphate Adsorption. Environ. Sci. Pollut. Res. 2020, 27, 7420–7429. [Google Scholar] [CrossRef]
- Jung, K.W.; Ahn, K.H. Fabrication of Porosity-Enhanced MgO/Biochar for Removal of Phosphate from Aqueous Solution: Application of a Novel Combined Electrochemical Modification Method. Bioresour. Technol. 2016, 200, 1029–1032. [Google Scholar] [CrossRef]
- Zheng, Q.; Yang, L.; Song, D.; Zhang, S.; Wu, H.; Li, S.; Wang, X. High Adsorption Capacity of Mg–Al-Modified Biochar for Phosphate and Its Potential for Phosphate Interception in Soil. Chemosphere 2020, 259, 127469. [Google Scholar] [CrossRef] [PubMed]
- Biswas, B.; Rahman, T.; Sakhakarmy, M.; Jahromi, H.; Eisa, M.; Baltrusaitis, J.; Lamba, J.; Torbert, A.; Adhikari, S. Phosphorus Adsorption Using Chemical and Metal Chloride Activated Biochars: Isotherms, Kinetics and Mechanism Study. Heliyon 2023, 9, e19830. [Google Scholar] [CrossRef] [PubMed]
- Oginni, O.; Yakaboylu, G.A.; Singh, K.; Sabolsky, E.M.; Unal-Tosun, G.; Jaisi, D.; Khanal, S.; Shah, A. Phosphorus Adsorption Behaviors of MgO Modified Biochars Derived from Waste Woody Biomass Resources. J. Environ. Chem. Eng. 2020, 8, 103723. [Google Scholar] [CrossRef]
- Sachdeva, V.; Hussain, N.; Husk, B.R.; Whalen, J.K. Biochar-Induced Soil Stability Influences Phosphorus Retention in a Temperate Agricultural Soil. Geoderma 2019, 351, 71–75. [Google Scholar] [CrossRef]
- Hafeez, A.; Pan, T.; Tian, J.; Cai, K. Modified Biochars and Their Effects on Soil Quality: A Review. Environments 2022, 9, 60. [Google Scholar] [CrossRef]
- Deng, Y.; Li, M.; Zhang, Z.; Liu, Q.; Jiang, K.; Tian, J.; Zhang, Y.; Ni, F. Comparative Study on Characteristics and Mechanism of Phosphate Adsorption on Mg/Al Modified Biochar. J. Environ. Chem. Eng. 2021, 9, 105079. [Google Scholar] [CrossRef]
- Qin, Y.; Wu, X.; Huang, Q.; Beiyuan, J.; Wang, J.; Liu, J.; Yuan, W.; Nie, C.; Wang, H. Phosphate Removal Mechanisms in Aqueous Solutions by Three Different Fe-Modified Biochars. Int. J. Environ. Res. Public Health 2023, 20, 326. [Google Scholar] [CrossRef]
- Zhang, P.; Xue, B.; Jiao, L.; Meng, X.; Zhang, L.; Li, B.; Sun, H. Preparation of Ball-Milled Phosphorus-Loaded Biochar and Its Highly Effective Remediation for Cd- and Pb-Contaminated Alkaline Soil. Sci. Total Environ. 2022, 813, 152648. [Google Scholar] [CrossRef]
- Yang, Y.; Piao, Y.; Wang, R.; Su, Y.; Qiu, J.; Liu, N. Mechanism of Biochar Functional Groups in the Catalytic Reduction of Tetrachloroethylene by Sulfides. Environ. Pollut. 2022, 300, 118921. [Google Scholar] [CrossRef]
- Aktar, S.; Hossain, M.A.; Rathnayake, N.; Patel, S.; Gasco, G.; Mendez, A.; de Figueiredo, C.; Surapaneni, A.; Shah, K.; Paz-Ferreiro, J. Effects of Temperature and Carrier Gas on Physico-Chemical Properties of Biochar Derived from Biosolids. J. Anal. Appl. Pyrolysis 2022, 164, 105542. [Google Scholar] [CrossRef]
- Han, L.; Zhang, E.; Yang, Y.; Sun, K.; Fang, L. Highly Efficient U(VI) Removal by Chemically Modified Hydrochar and Pyrochar Derived from Animal Manure. J. Clean. Prod. 2020, 264, 121542. [Google Scholar] [CrossRef]
- Zhang, P.; Bing, X.; Jiao, L.; Xiao, H.; Li, B.; Sun, H. Amelioration Effects of Coastal Saline-Alkali Soil by Ball-Milled Red Phosphorus-Loaded Biochar. Chem. Eng. J. 2022, 431, 133904. [Google Scholar] [CrossRef]
- Dai, L.; Lu, Q.; Zhou, H.; Shen, F.; Liu, Z.; Zhu, W.; Huang, H. Tuning Oxygenated Functional Groups on Biochar for Water Pollution Control: A Critical Review. J. Hazard. Mater. 2021, 420, 126547. [Google Scholar] [CrossRef]
- Arbelaez Breton, L.; Mahdi, Z.; Pratt, C.; El Hanandeh, A. Modification of Hardwood Derived Biochar to Improve Phosphorus Adsorption. Environments 2021, 8, 41. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Fan, S. Preparation of KOH and H3PO4 Modified Biochar and Its Application in Methylene Blue Removal from Aqueous Solution. Processes 2019, 7, 891. [Google Scholar] [CrossRef]
- Deng, W.; Zhang, D.; Zheng, X.; Ye, X.; Niu, X.; Lin, Z.; Fu, M.; Zhou, S. Adsorption Recovery of Phosphate from Waste Streams by Ca/Mg-Biochar Synthesis from Marble Waste, Calcium-Rich Sepiolite and Bagasse. J. Clean. Prod. 2021, 288, 125638. [Google Scholar] [CrossRef]
- Tu, P.; Zhang, G.; Cen, Y.; Huang, B.; Li, J.; Li, Y.; Deng, L.; Yuan, H. Enhanced Phosphate Adsorption and Desorption Characteristics of MgO-Modified Biochars Prepared via Direct Co-Pyrolysis of MgO and Raw Materials. Bioresour. Bioprocess. 2023, 10, 49. [Google Scholar] [CrossRef]
- Li, C.; Xie, S.; Wang, Y.; Jiang, R.; Wang, X.; Lv, N.; Pan, X.; Cai, G.; Yu, G.; Wang, Y. Multi-Functional Biochar Preparation and Heavy Metal Immobilization by Co-Pyrolysis of Livestock Feces and Biomass Waste. Waste Manag. 2021, 134, 241–250. [Google Scholar] [CrossRef]
- Sun, J.; Norouzi, O.; Mašek, O. A State-of-the-Art Review on Algae Pyrolysis for Bioenergy and Biochar Production. Bioresour. Technol. 2022, 346, 126258. [Google Scholar] [CrossRef]
- Yadav, A.; Yadav, K.; Ahmad, R.; Abd-Elsalam, K.A. Emerging Frontiers in Nanotechnology for Precision Agriculture: Advancements, Hurdles and Prospects. Agrochemicals 2023, 2, 220–256. [Google Scholar] [CrossRef]
- Kamali, N.; Mehrabadi, A.R.; Mirabi, M.; Zahed, M.A. Synthesis of Vinasse-Dolomite Nanocomposite Biochar via a Novel Developed Functionalization Method to Recover Phosphate as a Potential Fertilizer Substitute. Front. Environ. Sci. Eng. 2020, 14, 70. [Google Scholar] [CrossRef]
- Yuan, J.; Wen, Y.; Ruiz, G.; Sun, W.; Ma, X. Enhanced Phosphorus Removal and Recovery by Metallic Nanoparticles-Modified Biochar. Nanotechnol. Environ. Eng. 2020, 5, 26. [Google Scholar] [CrossRef]
- Sun, E.; Qian, Y.; Jin, H.; Huang, H.; Wu, G.; Chang, Z.; Huang, H. Structure of Straw Biochar/Amino Resin Doping NanoSiO2 and Its Phosphorus Removal Characteristic. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2017, 33, 211–218. [Google Scholar] [CrossRef]
- Cui, R.; Ma, J.; Jiao, G.; Sun, R. Efficient Removal of Phosphate from Aqueous Media Using Magnetic Bimetallic Lanthanum-iron-Modified Sulfonylmethylated Lignin Biochar. Int. J. Biol. Macromol. 2023, 247, 125809. [Google Scholar] [CrossRef]
- Yin, Q.; Wang, R.; Zhao, Z. Application of Mg–Al-Modified Biochar for Simultaneous Removal of Ammonium, Nitrate, and Phosphate from Eutrophic Water. J. Clean. Prod. 2018, 176, 230–240. [Google Scholar] [CrossRef]
- Peng, Y.; Chen, Q.; Guan, C.Y.; Yang, X.; Jiang, X.; Wei, M.; Tan, J.; Li, X. Metal Oxide Modified Biochars for Fertile Soil Management: Effects on Soil Phosphorus Transformation, Enzyme Activity, Microbe Community, and Plant Growth. Environ. Res. 2023, 231, 116258. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Zhang, H.; He, D. Nano-Zero-Valent Zinc-Modified Municipal Sludge Biochar for Phosphorus Removal. Molecules 2023, 28, 3231. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, X.; Chen, X.; Huang, C.; Yang, S. Biochar-Loaded Ce3+-Enriched Ultra-Fine Ceria Nanoparticles for Phosphate Adsorption. J. Hazard. Mater. 2020, 396, 122626. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, E.; El Baroudy, A.; Ali, N.; Sleem, M. Spectroscopic Studies on the Phosphorus Adsorption in Salt-Affected Soils with or without Nano-Biochar Additions. Environ. Res. 2020, 184, 109277. [Google Scholar] [CrossRef]
- Zhu, D.; Yang, H.; Chen, X.; Chen, W.; Cai, N.; Chen, Y.; Zhang, S.; Chen, H. Temperature-Dependent Magnesium Citrate Modified Formation of MgO Nanoparticles Biochar Composites with Efficient Phosphate Removal. Chemosphere 2021, 274, 129904. [Google Scholar] [CrossRef] [PubMed]
- Bahuguna, A.; Sharma, S.; Dadarwal, B.K. Biochar as Carbon Sequestration Potential. Marumegh 2021, 6, 12–14. [Google Scholar]
- Sheng, Y.; Zhan, Y.; Zhu, L. Reduced Carbon Sequestration Potential of Biochar in Acidic Soil. Sci. Total Environ. 2016, 572, 129–137. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, S.; Ju, M.; Liu, L. Preparation and Modification of Biochar Materials and Their Application in Soil Remediation. Appl. Sci. 2019, 9, 1365. [Google Scholar] [CrossRef]
- Nan, H.; Yang, F.; Zhao, L.; Mašek, O.; Cao, X.; Xiao, Z. Interaction of Inherent Minerals with Carbon during Biomass Pyrolysis Weakens Biochar Carbon Sequestration Potential. ACS Sustain. Chem. Eng. 2019, 7, 1591–1599. [Google Scholar] [CrossRef]
- Jabborova, D.; Annapurna, K.; Azimov, A.; Tyagi, S.; Pengani, K.R.; Sharma, P.; Vikram, K.V.; Poczai, P.; Nasif, O.; Ansari, M.J.; et al. Co-Inoculation of Biochar and Arbuscular Mycorrhizae for Growth Promotion and Nutrient Fortification in Soybean under Drought Conditions. Front. Plant Sci. 2022, 13, 947547. [Google Scholar] [CrossRef]
- Qi, X.; Yin, H.; Zhu, M.; Yu, X.; Shao, P.; Dang, Z. MgO-Loaded Nitrogen and Phosphorus Self-Doped Biochar: High-Efficient Adsorption of Aquatic Cu2+, Cd2+, and Pb2+ and Its Remediation Efficiency on Heavy Metal Contaminated Soil. Chemosphere 2022, 294, 133733. [Google Scholar] [CrossRef]
- Liu, M.; Almatrafi, E.; Zhang, Y.; Xu, P.; Song, B.; Zhou, C.; Zeng, G.; Zhu, Y. A Critical Review of Biochar-Based Materials for the Remediation of Heavy Metal Contaminated Environment: Applications and Practical Evaluations. Sci. Total Environ. 2022, 806, 150531. [Google Scholar] [CrossRef]
- Gu, W.; Wang, Y.; Feng, Z.; Wu, D.; Zhang, H.; Yuan, H.; Sun, Y.; Xiu, L.; Chen, W.; Zhang, W. Long-Term Effects of Biochar Application with Reduced Chemical Fertilizer on Paddy Soil Properties and Japonica Rice Production System. Front. Environ. Sci. 2022, 10, 902752. [Google Scholar] [CrossRef]
- Yin, Q.; Liu, M.; Li, Y.; Li, H.; Wen, Z. Computational Study of Phosphate Adsorption on Mg/Ca Modified Biochar Structure in Aqueous Solution. Chemosphere 2021, 269, 129374. [Google Scholar] [CrossRef] [PubMed]
- Bolton, L.; Joseph, S.; Greenway, M.; Donne, S.; Munroe, P.; Marjo, C.E. Phosphorus Adsorption onto an Enriched Biochar Substrate in Constructed Wetlands Treating Wastewater. Ecol. Eng. X 2019, 1, 100005. [Google Scholar] [CrossRef]
- Liu, L.Y.; Zhang, C.H.; Chen, S.R.; Ma, L.; Li, Y.M.; Lu, Y.F. Phosphate Adsorption Characteristics of La(OH)3-Modified, Canna-Derived Biochar. Chemosphere 2022, 286, 131773. [Google Scholar] [CrossRef]
- Shin, H.; Tiwari, D.; Kim, D.J. Phosphate Adsorption/Desorption Kinetics and P Bioavailability of Mg-Biochar from Ground Coffee Waste. J. Water Process Eng. 2020, 37, 101484. [Google Scholar] [CrossRef]
- Amin, F.R.; Huang, Y.; He, Y.; Zhang, R.; Liu, G.; Chen, C. Biochar Applications and Modern Techniques for Characterization. Clean. Technol. Environ. Policy 2016, 18, 1457–1473. [Google Scholar] [CrossRef]
- Sacko, O.; Whiteman, R.; Kharel, G.; Kumar, S.; Lee, J.W. Sustainable Chemistry: Solubilization of Phosphorus from Insoluble Phosphate Material Hydroxyapatite with Ozonized Biochar. ACS Sustain. Chem. Eng. 2020, 8, 7068–7077. [Google Scholar] [CrossRef]
- Xu, D.Y.; Jin, J.; Yan, Y.; Han, L.F.; Kang, M.J.; Wang, Z.Y.; Zhao, Y.; Sun, K. Characterization of Biochar by X-ray Photoelectron Spectroscopy and 13C Nuclear Magnetic Resonance. Guang Pu Xue Yu Guang Pu Fen Xi/Spectrosc. Spectr. Anal. 2014, 34, 3415–3418. [Google Scholar] [CrossRef]
- Gondim, R.S.; Muniz, C.R.; Lima, C.E.P.; Dos Santos, C.L.A. Explaining the Water-Holding Capacity of Biochar by Scanning Electron Microscope Images. Rev. Caatinga 2018, 31, 972–979. [Google Scholar] [CrossRef]
- Lago, B.C.; Silva, C.A.; Melo, L.C.A.; de Morais, E.G. Predicting Biochar Cation Exchange Capacity Using Fourier Transform Infrared Spectroscopy Combined with Partial Least Square Regression. Sci. Total Environ. 2021, 794, 148762. [Google Scholar] [CrossRef]
- Park, J.; Yoo, S.; Lim, K.H.; Rojas, O.J.; Hubbe, M.A.; Park, S. Impact of Oxidative Carbonization on Structure Development of Loblolly Pine-Derived Biochar Investigated by Nuclear Magnetic Resonance Spectroscopy and X-ray Photoelectron Spectroscopy. Diam. Relat. Mater. 2019, 96, 140–147. [Google Scholar] [CrossRef]
- Malucelli, L.C.; Silvestre, G.F.; Carneiro, J.; Vasconcelos, E.C.; Guiotoku, M.; Maia, C.M.B.F.; Carvalho Filho, M.A.S. Biochar Higher Heating Value Estimative Using Thermogravimetric Analysis. J. Therm. Anal. Calorim. 2020, 139, 2215–2220. [Google Scholar] [CrossRef]
- Pradana, Y.S.; Rochim, N.; Mukaffa, H.S.; Satriawan, H.B.; Hidayat, A.; Budiman, A. Activation of Coconut Shell—Randu Wood Biochar and Its Use as Heterogeneous Catalyst Support for Biodiesel Production. IOP Conf. Ser. Mater. Sci. Eng. 2019, 543, 012064. [Google Scholar] [CrossRef]
- Ukoba, K.; Jen, T.-C. Biochar and Application of Machine Learning: A Review. In Biochar—Productive Technologies, Properties and Applications; BoD—Books on Demand: Norderstedt, Germany, 2023. [Google Scholar]
- Ke, B.; Nguyen, H.; Bui, X.N.; Bui, H.B.; Nguyen-Thoi, T. Prediction of the Sorption Efficiency of Heavy Metal onto Biochar Using a Robust Combination of Fuzzy C-Means Clustering and Back-Propagation Neural Network. J. Environ. Manag. 2021, 293, 112808. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.I.; Zhang, Y.; Lai, Z.Y.; Rashwan, A.K.; Farghali, M.; Ahmed, A.A.; Liu, Y.; Fang, B.; Chen, Z.; Al-Fatesh, A. Machine Learning and Computational Chemistry to Improve Biochar Fertilizers: A Review. Environ. Chem. Lett. 2023, 6, 3159–3244. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Z.; Nairat, S.; Zhou, J.; He, Z. Artificial Intelligence-Assisted Prediction of Effluent Phosphorus in a Full-Scale Wastewater Treatment Plant with Missing Phosphorus Input and Removal Data. ACS ES T Water 2022, 3, 880–889. [Google Scholar] [CrossRef]
- Liu, J.; Xu, Z.; Zhang, W. Unraveling the Role of Fe in As(III & V) Removal by Biochar via Machine Learning Exploration. Sep. Purif. Technol. 2023, 311, 123245. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Jiang, Z.; Xu, Z.; Yang, M.; Ding, J.; Zhang, C. Machine Learning Prediction of Phosphate Adsorption on Six Different Metal-Containing Adsorbents. ACS ES T Eng. 2023, 3, 1135–1146. [Google Scholar] [CrossRef]
- Haq, Z.U.; Ullah, H.; Khan, M.N.A.; Naqvi, S.R.; Ahad, A.; Amin, N.A.S. Comparative Study of Machine Learning Methods Integrated with Genetic Algorithm and Particle Swarm Optimization for Bio-Char Yield Prediction. Bioresour. Technol. 2022, 363, 128008. [Google Scholar] [CrossRef]
- Wong, Y.J.; Arumugasamy, S.K.; Chung, C.H.; Selvarajoo, A.; Sethu, V. Comparative Study of Artificial Neural Network (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Multiple Linear Regression (MLR) for Modeling of Cu (II) Adsorption from Aqueous Solution Using Biochar Derived from Rambutan (Nephelium lappaceum) Peel. Environ. Monit. Assess. 2020, 192, 31085–31101. [Google Scholar] [CrossRef] [PubMed]
- Sultana, S.; Awal, S.; Shaika, N.A.; Khan, S. Cyanobacterial Blooms in Earthen Aquaculture Ponds and Their Impact on Fisheries and Human Health in Bangladesh. Aquac. Res. 2022, 15, 5129–5141. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, X.; Wu, L.; Rensing, C.; Xing, S. Short-Term Application of Magnesium Fertilizer Affected Soil Microbial Biomass, Activity, and Community Structure. J. Soil Sci. Plant Nutr. 2021, 21, 675–689. [Google Scholar] [CrossRef]
- Novais, S.V.; Zenero, M.D.O.; Barreto, M.S.C.; Montes, C.R.; Cerri, C.E.P. Phosphorus Removal from Eutrophic Water Using Modified Biochar. Sci. Total Environ. 2018, 633, 825–835. [Google Scholar] [CrossRef]
- Walling, E.; Vaneeckhaute, C. Greenhouse Gas Emissions from Inorganic and Organic Fertilizer Production and Use: A Review of Emission Factors and Their Variability. J. Environ. Manag. 2020, 276, 111211. [Google Scholar] [CrossRef]
- Li, H.; Yan, T.; Fu, T.; Hao, Y.; Li, J.; Tan, Y.; Li, Z.; Peng, Y.; Chen, X.; Chang, J.; et al. Biochar Combined with Magnesium Fertilizer Improves Cabbage (Brassica oleraceae L.) Yield by Modulating Physicochemical Characteristics and the Bacterial Community in Acidic Soil. Soil Use Manag. 2023, 4, 1422–1436. [Google Scholar] [CrossRef]
- Rogers, P.M.; Fridahl, M.; Yanda, P.; Hansson, A.; Pauline, N.; Haikola, S. Socio-Economic Determinants for Biochar Deployment in the Southern Highlands of Tanzania. Energies 2022, 15, 144. [Google Scholar] [CrossRef]
- Antonious, G.F.; Chiluwal, A.; Nepal, A. Chitin, Biochar, and Animal Manures Impact on Eggplant and Green Pepper Yield and Quality. Agric. Sci. 2023, 14, 368–383. [Google Scholar] [CrossRef]
- Bista, P.; Ghimire, R.; Machado, S.; Pritchett, L. Biochar Effects on Soil Properties and Wheat Biomass Vary with Fertility Management. Agronomy 2019, 9, 623. [Google Scholar] [CrossRef]
- Wali, F.; Naveed, M.; Bashir, M.A.; Asif, M.; Ahmad, Z.; Alkahtani, J.; Alwahibi, M.S.; Elshikh, M.S. Formulation of Biochar-Based Phosphorus Fertilizer and Its Impact on Both Soil Properties and Chickpea Growth Performance. Sustainability 2020, 12, 9528. [Google Scholar] [CrossRef]
- Khan, A.A.; Gul, J.; Naqvi, S.R.; Ali, I.; Farooq, W.; Liaqat, R.; AlMohamadi, H.; Štěpanec, L.; Juchelková, D. Recent Progress in Microalgae-Derived Biochar for the Treatment of Textile Industry Wastewater. Chemosphere 2022, 306, 135565. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, J.; Chen, D.; Xiao, W.; Zhao, S.; Ye, X.; Li, H. In Situ Formation of Ca(OH)2 Coating Shell to Extend the Longevity of Zero-Valent Iron Biochar Composite Derived from Fe-Rich Sludge for Aqueous Phosphorus Removal. Sci. Total Environ. 2023, 854, 158794. [Google Scholar] [CrossRef]
- Elkhlifi, Z.; Iftikhar, J.; Sarraf, M.; Ali, B.; Saleem, M.H.; Ibranshahib, I.; Bispo, M.D.; Meili, L.; Ercisli, S.; Torun Kayabasi, E.; et al. Potential Role of Biochar on Capturing Soil Nutrients, Carbon Sequestration and Managing Environmental Challenges: A Review. Sustainability 2023, 15, 2527. [Google Scholar] [CrossRef]
- Gillingham, M.D.; Gomes, R.L.; Ferrari, R.; West, H.M. Sorption, Separation and Recycling of Ammonium in Agricultural Soils: A Viable Application for Magnetic Biochar? Sci. Total Environ. 2022, 812, 151440. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Narayanan, M.; Huong, D.T.T.; Ito, N.; Unpaprom, Y.; Pugazhendhi, A.; Chi, N.T.L.; Liu, J. A Perspective on the Interaction between Biochar and Soil Microbes: A Way to Regain Soil Eminence. Environ. Res. 2022, 214, 113832. [Google Scholar] [CrossRef]
- Heidarian Dehkordi, R.; Pelgrum, H.; Meersmans, J. High Spatio-Temporal Monitoring of Century-Old Biochar Effects on Evapotranspiration through the ETLook Model: A Case Study with UAV and Satellite Image Fusion Based on Additive Wavelet Transform (AWT). GISci. Remote Sens. 2022, 59, 111–141. [Google Scholar] [CrossRef]
- Shaikh, T.A.; Rasool, T.; Lone, F.R. Towards Leveraging the Role of Machine Learning and Artificial Intelligence in Precision Agriculture and Smart Farming. Comput. Electron. Agric. 2022, 198, 107119. [Google Scholar] [CrossRef]
- Yang, Q.; Mašek, O.; Zhao, L.; Nan, H.; Yu, S.; Yin, J.; Li, Z.; Cao, X. Country-Level Potential of Carbon Sequestration and Environmental Benefits by Utilizing Crop Residues for Biochar Implementation. Appl. Energy 2021, 282, 116275. [Google Scholar] [CrossRef]
- Kumar, A.; Bhattacharya, T.; Mukherjee, S.; Sarkar, B. A Perspective on Biochar for Repairing Damages in the Soil–Plant System Caused by Climate Change-Driven Extreme Weather Events. Biochar 2022, 4, 22. [Google Scholar] [CrossRef]
- Song, F.; Li, T.; Shi, Q.; Guo, F.; Bai, Y.; Wu, F.; Xing, B. Novel Insights into the Molecular-Level Mechanism Linking the Chemical Diversity and Copper Binding Heterogeneity of Biochar-Derived Dissolved Black Carbon and Dissolved Organic Matter. Environ. Sci. Technol. 2021, 55, 1624–11636. [Google Scholar] [CrossRef]
- Das, S.K.; Ghosh, G.K.; Avasthe, R.K.; Sinha, K. Compositional Heterogeneity of Different Biochar: Effect of Pyrolysis Temperature and Feedstocks. J. Environ. Manag. 2021, 278, 111501. [Google Scholar] [CrossRef]
- Zilberman, D.; Laird, D.; Rainey, C.; Song, J.; Kahn, G. Biochar Supply-Chain and Challenges to Commercialization. GCB Bioenergy 2023, 15, 7–23. [Google Scholar] [CrossRef]
- Xiang, L.; Liu, S.; Ye, S.; Yang, H.; Song, B.; Qin, F.; Shen, M.; Tan, C.; Zeng, G.; Tan, X. Potential Hazards of Biochar: The Negative Environmental Impacts of Biochar Applications. J. Hazard. Mater. 2021, 420, 126611. [Google Scholar] [CrossRef]
- El-Naggar, A.; El-Naggar, A.H.; Shaheen, S.M.; Sarkar, B.; Chang, S.X.; Tsang, D.C.W.; Rinklebe, J.; Ok, Y.S. Biochar Composition-Dependent Impacts on Soil Nutrient Release, Carbon Mineralization, and Potential Environmental Risk: A Review. J. Environ. Manag. 2019, 241, 458–467. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, N.; Deng, L.; Wang, C.; Shah, Z.-u.-H.; Deng, L.; Li, Y.; Li, J.; Chachar, S.; Chachar, Z.; Hayat, F.; et al. Advancements in Biochar Modification for Enhanced Phosphorus Utilization in Agriculture. Land 2024, 13, 644. https://doi.org/10.3390/land13050644
Ahmed N, Deng L, Wang C, Shah Z-u-H, Deng L, Li Y, Li J, Chachar S, Chachar Z, Hayat F, et al. Advancements in Biochar Modification for Enhanced Phosphorus Utilization in Agriculture. Land. 2024; 13(5):644. https://doi.org/10.3390/land13050644
Chicago/Turabian StyleAhmed, Nazir, Lifang Deng, Chuan Wang, Zia-ul-Hassan Shah, Lansheng Deng, Yongquan Li, Juan Li, Sadaruddin Chachar, Zaid Chachar, Faisal Hayat, and et al. 2024. "Advancements in Biochar Modification for Enhanced Phosphorus Utilization in Agriculture" Land 13, no. 5: 644. https://doi.org/10.3390/land13050644
APA StyleAhmed, N., Deng, L., Wang, C., Shah, Z.-u.-H., Deng, L., Li, Y., Li, J., Chachar, S., Chachar, Z., Hayat, F., Bozdar, B., Ansari, F., Ali, R., Gong, L., & Tu, P. (2024). Advancements in Biochar Modification for Enhanced Phosphorus Utilization in Agriculture. Land, 13(5), 644. https://doi.org/10.3390/land13050644