Mapping Agricultural Greenhouse Gas Emissions via Multi-National Supply Chains: Evidence from Asia and the Pacific Countries
Abstract
:1. Introduction
2. Literature Review
2.1. Multi-Regional Agricultural GHG Emissions Accounting
2.2. Agricultural GHG Emission Accounting Methods
3. Methods and Materials
3.1. Multi-Regional Input–Output Modeling
3.2. Complex Network Analysis
3.3. Data Sources
4. Results
4.1. Direct and Embodied Agricultural GHG Emissions
4.2. Agricultural GHG Emission Network Evolution
4.3. Agricultural GHG Emission Network Characteristics
4.4. Agricultural GHG Emission Network Clusters
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Climate Watch; World Resources Institute: Washington, DC, USA, 2022; Available online: https://www.climatewatchdata.org (accessed on 21 November 2023).
- Norse, D. Low carbon agriculture: Objectives and policy pathways. Environ. Dev. 2012, 1, 25–39. [Google Scholar] [CrossRef]
- Zang, D.G.; Hu, Z.J.; Yang, Y.Q.; He, S.Y. Research on the relationship between agricultural carbon emission intensity, agricultural economic development and agricultural trade in China. Sustainability 2022, 14, 11694. [Google Scholar] [CrossRef]
- De Pinto, A.; Li, M.; Haruna, A.; Hyman, G.G.; Martinez, M.A.L.; Creamer, B.; Kwon, H.-Y.; Garcia, J.B.V.; Tapasco, J.; Martinez, J.D. Low Emission Development Strategies in Agriculture. An Agriculture, Forestry, and Other Land Uses (AFOLU) Perspective. World Dev. 2016, 87, 180–203. [Google Scholar] [CrossRef]
- Lee, J.H.; Woo, J. Green New Deal Policy of South Korea: Policy Innovation for a Sustainability Transition. Sustainability 2020, 12, 10191. [Google Scholar] [CrossRef]
- Kim, C.G. The Impact of Climate Change on the Agricultural Sector: Implications of the Agro-Industry for Low Carbon, Green Growth Strategy and Roadmap for the East Asian Region. Low Carbon Green Growth Roadmap for Asia and the Pacific. 2012. Available online: https://hdl.handle.net/20.500.12870/4032 (accessed on 21 June 2024).
- Piwowar, A. Low-carbon agriculture in Poland: Theoretical and practical challenges. Pol. J. Environ. Stud. 2019, 28, 2785–2792. [Google Scholar] [CrossRef]
- Gołasa, P.; Wysokiński, M.; Bieńkowska-Gołasa, W.; Gradziuk, P.; Golonko, M.; Gradziuk, B.; Siedlecka, A.; Gromada, A. Sources of Greenhouse Gas Emissions in Agriculture, with Particular Emphasis on Emissions from Energy Used. Energies 2021, 14, 3784. [Google Scholar] [CrossRef]
- Rebolledo-Leiva, R.; Angulo-Meza, L.; Iriarte, A.; Gonzalez-Araya, M.C. Joint carbon footprint assessment and data envelopment analysis for the reduction of greenhouse gas emissions in agriculture production. Sci. Total Environ. 2017, 593, 36–46. [Google Scholar] [CrossRef]
- Drabo, A. Climate change mitigation and agricultural development models: Primary commodity exports or local consumption production? Ecol. Econ. 2017, 137, 110–125. [Google Scholar] [CrossRef]
- Yu, Y.; Jiang, T.Y.; Li, S.Q.; Li, X.L.; Gao, D.C. Energy-related CO2 emissions and structural emissions’ reduction in China’s agriculture: An input-output perspective. J. Clean. Prod. 2020, 276, 124169. [Google Scholar] [CrossRef]
- Han, M.Y.; Lao, J.M.; Yao, Q.H.; Zhang, B.; Meng, J. Carbon Inequality and Economic Development Across the Belt and Road Regions. J. Environ. Manag. 2020, 262, 110250. Available online: https://www.sciencedirect.com/science/article/pii/S0301479720301857 (accessed on 15 August 2024). [CrossRef]
- Niu, B.B.; Peng, S.; Li, C.; Liang, Q.; Li, X.J.; Wang, Z. Nexus of embodied land use and greenhouse gas emissions in global agricultural trade: A quasi-input-output analysis. J. Clean. Prod. 2020, 267, 122067. [Google Scholar] [CrossRef]
- Bajan, B.; Mrówczyńska-Kamińska, A. Carbon footprint and environmental performance of agribusiness production in selected countries around the world. J. Clean. Prod. 2020, 276, 123389. [Google Scholar] [CrossRef]
- Dace, E.; Blumberga, D. How do 28 European Union Member States perform in agricultural greenhouse gas emissions? It depends on what we look at: Application of the multi-criteria analysis. Ecol. Indic. 2016, 71, 352–358. [Google Scholar] [CrossRef]
- Flysjö, A.; Henriksson, M.; Cederberg, C.; Ledgard, S.; Englund, J.E. The impact of various parameters on the carbon footprint of milk production in New Zealand and Sweden. Agric. Syst. 2011, 104, 459–469. [Google Scholar] [CrossRef]
- Thoma, G.; Popp, J.; Nutter, D.; Shonnard, D.; Ulrich, R.; Matlock, M.; Kim, D.S.; Neiderman, Z.; Kemper, N.; East, C.; et al. Greenhouse gas emissions from milk production and consumption in the United States: A cradle-to-grave life cycle assessment circa 2008. Int. Dairy J. 2013, 31, S3–S14. [Google Scholar] [CrossRef]
- Wojcik-Gront, E.; Bloch-Michalik, M. Assessment of greenhouse gas emission from life cycle of basic cereals production in Poland. Zemdirb.-Agric. 2016, 103, 259–266. [Google Scholar] [CrossRef]
- Zhang, G.S.; Wang, S.S. China’s agricultural carbon emission: Structure, efficiency and its determinants. Issues Agric. Econ. 2014, 35, 18–26+110. (In Chinese) [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Henry Janzen, H.; Little, S.M.; McAllister, T.A.; McGinn, S.M. Life cycle assessment of greenhouse gas emissions from beef production in western Canada: A case study. Agric. Syst. 2010, 103, 371–379. [Google Scholar] [CrossRef]
- da Silva, V.P.; van der Werf, H.M.G.; Spies, A.; Soares, S.R. Variability in environmental impacts of Brazilian soybean according to crop production and transport scenarios. J. Environ. Manag. 2010, 91, 1831–1839. [Google Scholar] [CrossRef]
- Farag, A.A.; Abd-Elrahman, S.H. Greenhouse gas emission from cauliflower grown under different nitrogen rates and mulches. Int. J. Soil Sci. 2016, 9, 1–10. [Google Scholar] [CrossRef]
- Huang, X.Q.; Xu, X.C.; Wang, Q.Q.; Zhang, L.; Gao, X.; Chen, L.H. Assessment of agricultural carbon emissions and their spatiotemporal changes in China, 1997-2016. Int. J. Environ. Res. Public Health 2019, 16, 3105. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.J.; Jin, H.M.; Gao, N.; Xun, X.; Zhu, J.H.; Li, Q.; Wang, Z.Q.; Xun, Y.J.; Shen, W.S. Temporal characteristics and trend prediction of agricultural carbon emission in Jiangsu Province, China. J. Agro-Environ. Sci. 2022, 41, 658–669. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, S.Y.; Xi, F.M.; Yin, Y.; Bing, L.F.; Wang, J.Y.; Ma, M.J.; Zhang, W.F. Accounting and drivers of carbon emission from cultivated land utilization in Northeast China. Chin. J. Appl. Ecol. 2021, 32, 3865–3871. (In Chinese) [Google Scholar] [CrossRef]
- Song, K.H.; Baiocchi, G.; Feng, K.S.; Hubacek, K.; Sun, L.X.; Wang, D.P.; Guan, D.B. Can U.S. multi-state climate mitigation agreements work? A perspective from embedded emission flows. Global Environ. Change 2022, 77, 102596. [Google Scholar] [CrossRef]
- Yun, T.; Zhang, J.B.; He, Y.Y. Research on Spatial-Temporal Characteristics and Driving Factor of Agricultural Carbon Emissions in China. J. Integr. Agric. 2014, 13, 1393–1403. [Google Scholar] [CrossRef]
- Garnier, J.; Le Noe, J.; Marescaux, A.; Sanz-Cobena, A.; Lassaletta, L.; Silvestre, M.; Thieu, V.; Billen, G. Long-term changes in greenhouse gas emissions from French agriculture and livestock (1852–2014): From traditional agriculture to conventional intensive systems. Sci. Total Environ. 2019, 660, 1486–1501. [Google Scholar] [CrossRef]
- Hellweg, S.; Milà i Canals, L. Emerging approaches, challenges and opportunities in life cycle assessment. Science 2014, 344, 1109–1113. [Google Scholar] [CrossRef]
- Rebitzer, G.; Ekvall, T.; Frischknecht, R.; Hunkeler, D.; Norris, G.; Rydberg, T.; Schmidt, W.-P.; Suh, S.; Weidema, B.P.; Pennington, D.W. Life cycle assessment part 1: Framework, goal and scope definition, inventory analysis, and applications. Environ. Int. 2004, 30, 701–720. [Google Scholar] [CrossRef]
- Du, J.; Luo, J.; Wang, R.; Wang, X.H. The estimation and analysis of spatio-temporal change patterns of carbon functions in major grain producing area. J. Ecol. Rural. Environ. 2019, 35, 1242–1251. (In Chinese) [Google Scholar] [CrossRef]
- Xia, L.L.; Ti, C.P.; Li, B.L.; Xia, Y.Q.; Yan, X.Y. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential. Sci. Total Environ. 2016, 556, 116–125. [Google Scholar] [CrossRef]
- Wang, X.Z.; Liu, B.; Wu, G.; Sun, Y.X.; Guo, X.S.; Jin, Z.H.; Xu, W.N.; Zhao, Y.Z.; Zhang, F.S.; Zou, C.Q.; et al. Environmental costs and mitigation potential in plastic-greenhouse pepper production system in China: A life cycle assessment. Agric. Syst. 2018, 167, 186–194. [Google Scholar] [CrossRef]
- Matthews, H.S.; Hendrickson, C.T.; Weber, C.L. The importance of carbon footprint estimation boundaries. Environ. Sci. Technol. 2008, 42, 5839–5842. [Google Scholar] [CrossRef] [PubMed]
- Pandey, D.; Agrawal, M. Carbon Footprint Estimation in the Agriculture Sector. In Assessment of Carbon Footprint in Different Industrial Sectors; Muthu, S.S., Ed.; Springer: Singapore, 2014; Volume 1, pp. 25–47. [Google Scholar]
- Sheng, X.R.; Chen, L.P.; Liu, M.Y.; Wang, Q.S.; Ma, Q.; Zuo, J.; Yuan, X.L. Input-output models for carbon accounting: A multi-perspective analysis. Renew. Sustain. Energy Rev. 2025, 207, 114950. [Google Scholar] [CrossRef]
- Cicas, G.; Hendrickson, C.T.; Horvath, A.; Matthews, H.S. A regional version of a US economic input-output life-cycle assessment model. Int. J. Life Cycle Assess. 2007, 12, 365–372. [Google Scholar] [CrossRef]
- Wiedmann, T. A review of recent multi-region input–output models used for consumption-based emission and resource accounting. Ecol. Econ. 2009, 69, 211–222. [Google Scholar] [CrossRef]
- Wiedmann, T.; Wilting, H.C.; Lenzen, M.; Lutter, S.; Palm, V. Quo Vadis MRIO? Methodological, data and institutional requirements for multi-region input–output analysis. Ecol. Econ. 2011, 70, 1937–1945. [Google Scholar] [CrossRef]
- Han, M.Y.; Zhang, B.; Zhang, Y.Q.; Guan, C.H. Agricultural CH4 and N2O Emissions of Major Economies: Consumption-vs. Production-Based Perspectives. J. Clean. Prod. 2019, 210, 276–286. Available online: https://www.sciencedirect.com/science/article/pii/S0959652618334188 (accessed on 21 May 2024). [CrossRef]
- Sun, X.D.; Li, Z.Y.; Cheng, X.L.; Guan, C.H.; Han, M.Y.; Zhang, B. Global Anthropogenic CH4 Emissions from 1970 to 2018: Gravity Movement and Decoupling Evolution. Resour. Conserv. Recycl. 2022, 182, 106335. Available online: https://www.sciencedirect.com/science/article/pii/S0921344922001811 (accessed on 18 May 2024). [CrossRef]
- Yan, C.H.; Han, M.Y.; Liu, Y.; Zhang, B. Household CH4 and N2O Footprints of Major Economies. Earth’s Future 2021, 9, e2021EF002143. Available online: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021EF002143 (accessed on 1 June 2024). [CrossRef]
- Guo, J.; Zhang, Y.J.; Zhang, K.B. The key sectors for energy conservation and carbon emissions reduction in China: Evidence from the input-output method. J. Clean. Prod. 2018, 179, 180–190. [Google Scholar] [CrossRef]
- Su, B.; Ang, B.W.; Li, Y.Z. Input-output and structural decomposition analysis of Singapore’s carbon emissions. Energy Policy 2017, 105, 484–492. [Google Scholar] [CrossRef]
- Zhang, Q.F.; Fang, K.; Xu, M.; Liu, Q.Y. Review of carbon footprint research based on input-output analysis. J. Nat. Resour. 2018, 33, 696–708. (In Chinese) [Google Scholar] [CrossRef]
- Ji, X.; Han, M.Y.; Ulgiati, S. Optimal Allocation of Direct and Embodied Arable Land Associated to Urban Economy: Understanding the Options Deriving from Economic Globalization. Land Use Policy 2020, 91, 104392. Available online: https://www.sciencedirect.com/science/article/pii/S0264837719312463 (accessed on 21 June 2024). [CrossRef]
- Song, Z.Y.; Zhu, Q.L.; Han, M.Y. Tele-Connection of Global Crude Oil Network: Comparisons Between Direct Trade and Embodied Flows. Energy 2021, 217, 119359. Available online: https://www.sciencedirect.com/science/article/pii/S036054422032466X (accessed on 21 June 2024). [CrossRef]
- Zhang, X.L.; Tang, D.C.; Kong, S.Y.; Wang, X.L.; Xu, T.; Boamah, V. The carbon effects of the evolution of node status in the world trade network. Front. Environ. Sci. 2022, 10, 2027. [Google Scholar] [CrossRef]
- Tabassum, S.; Pereira, F.S.F.; Fernandes, S.; Gama, J. Social network analysis: An overview. WIREs Data Min. Knowl. Discov. 2018, 8, e1256. [Google Scholar] [CrossRef]
- Pace, M.L.; Gephart, J.A. Trade: A Driver of Present and Future Ecosystems. Ecosystems 2017, 20, 44–53. [Google Scholar] [CrossRef]
- Verburg, R.; Stehfest, E.; Woltjer, G.; Eickhout, B. The effect of agricultural trade liberalisation on land-use related greenhouse gas emissions. Glob. Environ. Chang. 2009, 19, 434–446. [Google Scholar] [CrossRef]
- He, Y.Q.; Lan, X.; Zhou, Z.A.; Wang, F. Analyzing the spatial network structure of agricultural greenhouse gases in China. Environ. Sci. Pollut. Res. 2021, 28, 7929–7944. [Google Scholar] [CrossRef]
- Qu, J.S.; Han, J.Y.; Liu, L.N.; Xu, L.; Li, H.J.; Fan, Y.J. Inter-provincial correlations of agricultural GHG emissions in China based on social network analysis methods. China Agric. Econ. Rev. 2020, 13, 229–246. [Google Scholar] [CrossRef]
- Yang, Z.F.; Mao, X.F.; Zhao, X.; Chen, B. Ecological network analysis on global virtual water trade. Environ. Sci. Technol. 2012, 46, 1796–1803. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Song, Z.Y.; Liu, W.D. Change of the global grain trade network and its driving factors. Prog. Geogr. 2022, 41, 755–769. (In Chinese) [Google Scholar] [CrossRef]
- Li, Z.L.; Sun, L.; Geng, Y.; Dong, H.J.; Ren, J.Z.; Liu, Z.; Tian, X.; Yabar, H.; Higano, Y. Examining industrial structure changes and corresponding carbon emission reduction effect by combining input-output analysis and social network analysis: A comparison study of China and Japan. J. Clean. Prod. 2017, 162, 61–70. [Google Scholar] [CrossRef]
- He, Z.; Yang, Y.; Liu, Y.; Jin, F.J. Characteristics of evolution of global energy trading network and relationships between major countries. Prog. Geogr. 2019, 38, 1621–1632. (In Chinese) [Google Scholar] [CrossRef]
- FAO. FAOSTAT—Food and Agriculture Data. 2021. Available online: https://www.fao.org/faostat/en/#data/GT (accessed on 28 July 2023).
- Asian Development Bank. Input-Output Tables for Asia and the Pacific. Available online: https://www.adb.org/what-we-do/data/regional-input-output-tables (accessed on 12 November 2023).
- World Bank. World Bank Open Data 2022. Available online: https://data.worldbank.org.cn/indicator/SP.POP.TOTL (accessed on 12 November 2023).
- Huisingh, D.; Zhang, Z.H.; Moore, J.C.; Qiao, Q.; Li, Q. Recent advances in carbon emissions reduction: Policies, technologies, monitoring, assessment and modeling. J. Clean. Prod. 2015, 103, 1–12. [Google Scholar] [CrossRef]
- Fekete, H.; Kuramochi, T.; Roelfsema, M.; Den Elzen, M.; Forsell, N.; Höhne, N.; Luna, L.; Hans, F.; Sterl, S.; Olivier, J.; et al. A review of successful climate change mitigation policies in major emitting economies and the potential of global replication. Renew. Sustain. Energy Rev. 2021, 137, 110602. [Google Scholar] [CrossRef]
- Lamb, W.F.; Grubb, M.; Diluiso, F.; Minx, J.C. Countries with sustained greenhouse gas emissions reductions: An analysis of trends and progress by sector. Clim. Policy 2022, 22, 1–17. [Google Scholar] [CrossRef]
- Zhao, X.L.; Wu, X.F.; Guan, C.H.; Ma, R.; Nielsen, C.P.; Zhang, B. Linking Agricultural GHG Emissions to Global Trade Network. Earth’s Future 2020, 8, e2019EF001361. [Google Scholar] [CrossRef]
- Kolasa-Więcek, A. Neural Modeling of Greenhouse Gas Emission from Agricultural Sector in European Union Member Countries. Water Air Soil Pollut. 2018, 229, 1–12. [Google Scholar] [CrossRef]
- Pradhan, P.; Reusser, D.E.; Kropp, J.P. Embodied greenhouse gas emissions in diets. PLoS ONE 2013, 8, e62228. [Google Scholar] [CrossRef]
- Ghanbari, S.; Mansouri Daneshvar, M.R. Urban and rural contribution to the GHG emissions in the MECA countries. Environ. Dev. Sustain. 2021, 23, 6418–6452. [Google Scholar] [CrossRef]
- Osborn, D.; Cutter, A.; Ullah, F. Universal sustainable development goals: Understanding the transformational challenge for developed countries. Stakehold. Forum 2015, 2, 1–25. [Google Scholar]
- Vanderheiden, S. Common but differentiated responsibilities. In Essential Concepts of Global Environmental Governance; Routledge: London, UK, 2020; pp. 41–43. [Google Scholar]
- Zurek, M.; Hebinck, A.; Selomane, O. Climate Change and the Urgency to Transform Food Systems. Science 2022, 376, 1416–1421. Available online: https://www.science.org/doi/10.1126/science.abo2364 (accessed on 18 June 2024). [CrossRef] [PubMed]
Indicator | Definition | Equation |
---|---|---|
Network density | The closeness of connections among nodes | |
Degree centrality | The degree to which nodes occupy the core position of the network | |
Degree centralization | The centrality of the network as a whole, that is, the degree to which the network tends to concentrate to a certain point | |
Betweenness centrality | The probability that one node is on the shortcut between other node pairs, reflecting the control ability of the node to other node connections | |
Betweenness centralization | The possibility that a specific node appears in the shortest path between other point pairs, which reflects the ability of the agents to control network resources | |
Eigenvector centralization | The degree of centralization within the network towards its essential cores |
Reference | Content | Method | Cluster |
---|---|---|---|
Zhao et al. [64] | Embodied agricultural GHG emissions of 188 economies from 1990 to 2015 | Communities were partitioned employing the Girvan–Newman algorithmic approach | Six final-trade subgroups and four intermediate-trade subgroups are identified |
Kolasa-Więcek [65] | GHG emissions in 28 EU countries from 2000 to 2014 | Ward’s Method and K-means Algorithm; Multi-layer perceptron neural network and sensitivity analysis | Countries with different levels of agricultural GHG emissions are separated into 5 clusters |
Pradhan et al. [66] | Embodied GHG emissions of dietary patterns from 1961 to 2007 | Self-organizing neural network | Nations with diets high in calories tend to have a production system that relies heavily on the use of fossil fuels, while diets that are low to moderately caloric generally correspond to higher non-CO2 GHG emission intensities. |
Ghanbari and Mansouri Daneshvar [67] | Urban and rural GHG emissions of Middle East and Central Asia for the period spanning 1994 to 2014 | Hierarchical clustering analysis | These countries, Iran, Saudi Arabia, and Turkey, dominate in GHG emissions, with urban and rural regions accounting for 48.2% and 28.6% of the overall emissions, respectively. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Z.; Guan, J.; Han, M. Mapping Agricultural Greenhouse Gas Emissions via Multi-National Supply Chains: Evidence from Asia and the Pacific Countries. Land 2024, 13, 2106. https://doi.org/10.3390/land13122106
Song Z, Guan J, Han M. Mapping Agricultural Greenhouse Gas Emissions via Multi-National Supply Chains: Evidence from Asia and the Pacific Countries. Land. 2024; 13(12):2106. https://doi.org/10.3390/land13122106
Chicago/Turabian StyleSong, Zhouying, Jing Guan, and Mengyao Han. 2024. "Mapping Agricultural Greenhouse Gas Emissions via Multi-National Supply Chains: Evidence from Asia and the Pacific Countries" Land 13, no. 12: 2106. https://doi.org/10.3390/land13122106
APA StyleSong, Z., Guan, J., & Han, M. (2024). Mapping Agricultural Greenhouse Gas Emissions via Multi-National Supply Chains: Evidence from Asia and the Pacific Countries. Land, 13(12), 2106. https://doi.org/10.3390/land13122106