Integration of VIS–NIR Spectroscopy and Multivariate Technique for Soils Discrimination Under Different Land Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Area
2.2. Remote Sensing Data
2.2.1. Pre-Processing of Satellite Image
2.2.2. Image Classification and Accuracy Assessment
2.3. Field and Laboratory Activities
2.4. Spectroscopic Analyses
2.5. Grouping Soil Profiles from Surface Reflectance
2.6. Generation of Thematic Maps
3. Results and Discussion
3.1. Land Use/Land Cover (LULC) of the Study Area
3.2. Soil Characteristics Within Study Area
3.2.1. Barren Soils
3.2.2. Recently Cultivated Soils
3.2.3. Old Cultivated Soils
3.3. Effects of Different Land Uses on Soil Reflectance
3.4. Grouping Soils Based on Surface Spectra
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Alarifi, S.S.; El-Sorogy, A.S.; Al-Kahtany, K.; Alotaibi, M. Contamination and environmental risk assessment of potentially toxic elements in soils of palm farms in Northwest Riyadh, Saudi Arabia. Sustainability 2022, 14, 15402. [Google Scholar] [CrossRef]
- Adamchuk, V.; Allred, B.; Doolittle, J.; Grote, K.; Viscarra Rossel, R. Tools for proximal soil sensing. In Soil Survey Manual: Soil Science Division Staff; United States Department of Agriculture: Washington, DC, USA, 2017; pp. 355–356. [Google Scholar]
- Gholizadeh, A.; Carmon, N.; Klement, A.; Ben-Dor, E.; Borůvka, L. Agricultural soil spectral response and properties assessment: Effects of measurement protocol and data mining technique. Remote Sens. 2017, 9, 1078. [Google Scholar] [CrossRef]
- Metzger, K.; Liebisch, F.; Herrera, J.M.; Guillaume, T.; Walder, F.; Bragazza, L. The use of visible and near–infrared spectroscopy for in–situ characterization of agricultural soil fertility: A proposition of best practice by comparing scanning positions and spectrometers. Soil Use Manag. 2024, 40, e12952. [Google Scholar] [CrossRef]
- Rossel, R.V.; Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 2010, 158, 46–54. [Google Scholar] [CrossRef]
- Khdery, G.; Gad, A.-A.; El-Zeiny, A.M. Spectroscopic Characterization of Plant Cover in El-Fayoum Governorate, Egypt. Egypt. J. Soil Sci. 2020, 60, 397–408. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; Noon, C.; van Wesemael, B. Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy. Geoderma 2013, 199, 37–42. [Google Scholar] [CrossRef]
- Gad, A. Qualitative and quantitative assessment of land degradation and desertification in egypt based on satellite remote sensing: Urbanization, salinization and wind erosion. In Environmental Remote Sensing in Egypt; Springer: Berlin/Heidelberg, Germany, 2020; pp. 443–497. [Google Scholar]
- El-Zeiny, A.M.; Khdery, G.; Gad, A.-A.; Science, S. Hyperspectral based approach to investigate topsoil characteristics of different taxonomic units of El-fayoum depression. Egypt. J. Remote Sens. 2022, 25, 405–415. [Google Scholar] [CrossRef]
- Mustafa, A.-r.A.; Abdelsamie, E.A.; Mohamed, E.S.; Rebouh, N.Y.; Shokr, M.S. Modeling of Soil Cation Exchange Capacity Based on Chemometrics, Various Spectral Transformations, and Multivariate Approaches in Some Soils of Arid Zones. Sustainability 2024, 16, 7002. [Google Scholar] [CrossRef]
- Lagacherie, P.; Baret, F.; Feret, J.-B.; Netto, J.M.; Robbez-Masson, J.M. Estimation of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral measurements. Remote Sens. Environ. 2008, 112, 825–835. [Google Scholar] [CrossRef]
- Liu, L.; Ji, M.; Buchroithner, M. Combining partial least squares and the gradient-boosting method for soil property retrieval using visible near-infrared shortwave infrared spectra. Remote Sens. 2017, 9, 1299. [Google Scholar] [CrossRef]
- Zeng, R.; Zhang, G.-L.; Li, D.-C.; Rossiter, D.G.; Zhao, Y.-G. How well can VNIR spectroscopy distinguish soil classes? Biosyst. Eng. 2016, 152, 117–125. [Google Scholar] [CrossRef]
- Poppiel, R.R.; Lacerda, M.P.C.; Oliveira, M.P.d.; Demattê, J.A.M.; Romero, D.J.; Sato, M.V.; Almeida, L.R.d.; Cassol, L.F.M. Surface spectroscopy of Oxisols, Entisols and Inceptisol and relationships with selected soil properties. Rev. Bras. De Ciência Do Solo 2018, 42, e0160519. [Google Scholar] [CrossRef]
- Lazaar, A.; Mahyou, H.; Gholizadeh, A.; Elhammouti, K.; Bilal, M.; Andich, K.; Roger, J.M.; Monir, A.; Kouotou, D. Potential of VIS-NIR spectroscopy to characterize and discriminate topsoils of different soil types in the Triffa plain (Morocco). Soil Sci. Annu. 2019, 70, 54–63. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Terra, F.d.S.; Quartaroli, C.F. Spectral behavior of some modal soil profiles from São Paulo State, Brazil. Bragantia 2012, 71, 413–423. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; van Wesemael, B.; Aitkenhead, M.; Bachmann, M.; Barthès, B.; Dor, E.B.; Brown, D.J.; Clairotte, M.; Csorba, A. Soil spectroscopy: An alternative to wet chemistry for soil monitoring. Adv. Agron. 2015, 132, 139–159. [Google Scholar]
- Mouazen, A.; Kuang, B.; De Baerdemaeker, J.; Ramon, H. Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma 2010, 158, 23–31. [Google Scholar] [CrossRef]
- Stenberg, B.; Rossel, R.A.V.; Mouazen, A.M.; Wetterlind, J. Visible and near infrared spectroscopy in soil science. Adv. Agron. 2010, 107, 163–215. [Google Scholar]
- Mohamed, E.; Saleh, A.; Belal, A.; Gad, A.A.; Science, S. Application of near-infrared reflectance for quantitative assessment of soil properties. Egypt. J. Remote Sens. 2018, 21, 1–14. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.; Webster, R. Discrimination of Australian soil horizons and classes from their visible–near infrared spectra. Eur. J. Soil Sci. 2011, 62, 637–647. [Google Scholar] [CrossRef]
- Nanni, M.R.; Demattê, J.A.M.; Chicati, M.L.; Oliveira, R.d.; Cézar, E. Spectroradiometric data as support to soil classification. Int. Res. J. Agric. Sci. Soil Sci. 2011, 1, 109–117. [Google Scholar]
- Nanni, M.R.; Demattê, J.A.M.; Chicati, M.L.; Fiorio, P.R.; Cézar, E.; Oliveira, R.B.d. Informações espectrais de imagens landsat da superfície do solo como indicativo na discriminação de classes de solos. Acta Scientiarum. Agronomy 2012, 34, 103–112. [Google Scholar]
- Cezar, E.; Nanni, M.R.; Chicati, M.L.; de Oliveira, R.B.; Demattê, J.A.M. Discriminação entre solos formados em região transicional por meio de sua resposta espectral. Biosci. J. 2013, 29, 644–654. [Google Scholar]
- Vasques, G.; Demattê, J.A.M.; Rossel, R.A.V.; Ramírez-López, L.; Terra, F. Soil classification using visible/near-infrared diffuse reflectance spectra from multiple depths. Geoderma 2014, 223, 73–78. [Google Scholar] [CrossRef]
- Chicati, M.; Nanni, M.; Cézar, E.; Oliveira, R.; Chicati, M. Diffuse reflectance spectroscopy to estimate soil properties of Brazilian wetlands. Int. J. Environ. Agric. Res. 2016, 2, 62–66. [Google Scholar]
- Workman Jr, J.; Weyer, L. Practical Guide to Interpretive Near-Infrared Spectroscopy; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Quemada, M.; Daughtry, C.S. Spectral indices to improve crop residue cover estimation under varying moisture conditions. Remote Sens. 2016, 8, 660. [Google Scholar] [CrossRef]
- Kawamura, K.; Nishigaki, T.; Andriamananjara, A.; Rakotonindrina, H.; Tsujimoto, Y.; Moritsuka, N.; Rabenarivo, M.; Razafimbelo, T. Using a one-dimensional convolutional neural network on visible and near-infrared spectroscopy to improve soil phosphorus prediction in Madagascar. Remote Sens. 2021, 13, 1519. [Google Scholar] [CrossRef]
- Wang, L.; Wang, R.; Spectroscopy, B. Determination of soil pH from Vis-NIR spectroscopy by extreme learning machine and variable selection: A case study in lime concretion black soil. Spectrochim. Acta Part A Mol. 2022, 283, 121707. [Google Scholar] [CrossRef]
- Jiang, C.; Zhao, J.; Li, G. Integration of Vis–NIR Spectroscopy and Machine Learning Techniques to Predict Eight Soil Parameters in Alpine Regions. Agronomy 2023, 13, 2816. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Ji, R.; Wang, M.; Zheng, L. Comparison of soil total nitrogen content prediction models based on Vis-NIR spectroscopy. Sensors 2020, 20, 7078. [Google Scholar] [CrossRef]
- Zhong, H.; Li, X.; Zhai, H.; Zhou, Y. Hyper-spectral indirect estimation model of soil organic matter content in plough layer. J. Geomat. Sci. Technol. 2019, 36, 74–78. [Google Scholar]
- Morellos, A.; Pantazi, X.-E.; Moshou, D.; Alexandridis, T.; Whetton, R.; Tziotzios, G.; Wiebensohn, J.; Bill, R.; Mouazen, A.M. Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosyst. Eng. 2016, 152, 104–116. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, T.; Xie, S.; Liu, Z.; Lin, C.; Hu, Y.; Wang, J.; Mao, X. Estimation of Soil Cations Based on Visible and Near-Infrared Spectroscopy and Machine Learning. Agriculture 2023, 13, 1237. [Google Scholar] [CrossRef]
- Akter, S.; de Jonge, L.W.; Møldrup, P.; Greve, M.H.; Nørgaard, T.; Weber, P.L.; Hermansen, C.; Mouazen, A.M.; Knadel, M. Visible Near-Infrared Spectroscopy and Pedotransfer Function Well Predict Soil Sorption Coefficient of Glyphosate. Remote Sens. 2023, 15, 1712. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, Q.; Xiong, S.; Shi, L.; Ma, X.; Du, P.; Guo, J. A spectral parameter for the estimation of soil total nitrogen and nitrate nitrogen of winter wheat growth period. Soil Use Manag. 2021, 37, 698–711. [Google Scholar] [CrossRef]
- Wang, X.; Liu, G.; Xiang, A.; Xiao, S.; Lin, D.; Lin, Y.; Lu, Y. Terrain gradient response of landscape ecological environment to land use and land cover change in the hilly watershed in South China. Ecol. Indic. 2023, 146, 109797. [Google Scholar] [CrossRef]
- El-Sayed, M.A.; Abd-Elazem, A.H.; Moursy, A.R.; Mohamed, E.S.; Kucher, D.E.; Fadl, M.E. Integration vis-NIR spectroscopy and artificial intelligence to predict some soil parameters in arid region: A case study of Wadi Elkobaneyya, South Egypt. Agronomy 2023, 13, 935. [Google Scholar] [CrossRef]
- Zhou, P.; Sudduth, K.A.; Veum, K.S.; Li, M. Extraction of reflectance spectra features for estimation of surface, subsurface, and profile soil properties. Comput. Electron. Agric. 2022, 196, 106845. [Google Scholar] [CrossRef]
- Yuh, Y.G.; Tracz, W.; Matthews, H.D.; Turner, S.E. Application of machine learning approaches for land cover monitoring in northern Cameroon. Ecol. Inform. 2023, 74, 101955. [Google Scholar] [CrossRef]
- MPWWR (Ministry of Public Works and Water Resources). Rehabilitation and improvement of water delivery systems in old lands. Proj. No. EGY/85/012. Final Report. 1988. Available online: https://eprints.soas.ac.uk/9235/1/water_control_in_egypts_canal_irrigation_a_discus-wageningen_university_and_research_76386.pdf (accessed on 1 January 2024).
- Mustafa, A. Utilizing of principal component analysis and geographic information system approach for assessing soil quality index under different land uses: Case study. SVU-Int. J. Agric. Sci. 2023, 5, 41–53. [Google Scholar] [CrossRef]
- Mustafa, A.; Engineering, A. Incorporate the Fertility Capability Classification and Geo-informatics for Assessing Soil: A Case Study on Some Soils of Sohag Governorate, Egypt. J. Soil Sci. 2023, 14, 187–193. [Google Scholar] [CrossRef]
- Mustafa, A.-R.A.-W.; Nutrition, P. Integration of TOPSIS and Geostatistical Technique for Soil Quality Assessment under Different Land Uses: A Case Study. Asian J. Soil Sci. 2023, 9, 16–32. [Google Scholar] [CrossRef]
- Hansen, M.C.; DeFries, R.S.; Townshend, J.R.; Sohlberg, R. Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Pickens, A.H.; Tyukavina, A.; Hernandez-Serna, A.; Zalles, V.; Turubanova, S.; Kommareddy, I.; Stehman, S.V.; Song, X.-P. Global land use extent and dispersion within natural land cover using Landsat data. Environ. Res. Lett. 2022, 17, 034050. [Google Scholar] [CrossRef]
- Alharbi, T.; El-Sorogy, A.S. Risk assessment of potentially toxic elements in Agricultural soils of Al-Ahsa Oasis, Saudi Arabia. Sustainability 2022, 15, 659. [Google Scholar] [CrossRef]
- ENVI 4.8 Exelis Visual Information Solutions. 2010. Available online: https://www.nv5geospatialsoftware.com/portals/0/pdfs/envi/10-10_ENVI48_Slick.pdf (accessed on 1 January 2024).
- Liping, C.; Yujun, S.; Saeed, S. Monitoring and predicting land use and land cover changes using remote sensing and GIS techniques—A case study of a hilly area, Jiangle, China. PLoS ONE 2018, 13, e0200493. [Google Scholar] [CrossRef]
- Jensen, J.R. Introductory Digital Image Processing, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Lin, C.; Wu, C.-C.; Tsogt, K.; Ouyang, Y.-C.; Chang, C.-I. Effects of atmospheric correction and pansharpening on LULC classification accuracy using WorldView-2 imagery. Inf. Process. Agric. 2015, 2, 25–36. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data; CRC Press: Boca Raton, FL, USA, 2009; ISBN 0-87-37198-67. [Google Scholar]
- FAO. Guidelines for Soil Description, Fourth edition; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006. [Google Scholar]
- Piper, C. Soil and Plant Analysis; Hassel Press: Adelaide, Australia, 1950; 368p. [Google Scholar]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils; US Government Printing Office: Washington, DC, USA, 1954. [Google Scholar]
- Black, C.A.; Evans, D.; Ensminger, L.; White, J.; CLARK, F. Methods of Soil Analysis; ASA: Monroe, MI, USA, 1983. [Google Scholar]
- Jackson, M. Soil Chemical Analysis. Pentice Hall India 1973, 498, 151–154. [Google Scholar]
- Asgari, N.; Ayoubi, S.; Demattê, J.A.; Jafari, A.; Safanelli, J.L.; Da Silveira, A.F.D. Digital mapping of soil drainage using remote sensing, DEM and soil color in a semiarid region of Central Iran. Geoderma Reg. 2020, 22, e00302. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Galdos, M.; Guimarães, R.; Genú, A.; Nanni, M.; Zullo, J., Jr. Quantification of tropical soil attributes from ETM+/LANDSAT-7 data. Int. J. Remote Sens. 2007, 28, 3813–3829. [Google Scholar] [CrossRef]
- Demattê, J.A.; Huete, A.R.; Ferreira, L.G.; Nanni, M.R.; Alves, M.C.; Fiorio, P.R. Methodology for bare soil detection and discrimination by Landsat TM Image. Open Remote Sens. J. 2009, 2, 24–35. [Google Scholar] [CrossRef]
- Demattê, J.A.; Ramirez-Lopez, L.; Rizzo, R.; Nanni, M.R.; Fiorio, P.R.; Fongaro, C.T.; Medeiros Neto, L.G.; Safanelli, J.L.; da S. Barros, P.P. Remote sensing from ground to space platforms associated with terrain attributes as a hybrid strategy on the development of a pedological map. Remote Sens. 2016, 8, 826. [Google Scholar] [CrossRef]
- El-Sorogy, A.S.; Al Khathlan, M.H. Assessment of potentially toxic elements and health risks of agricultural soil in Southwest Riyadh, Saudi Arabia. Open Chem. 2024, 22, 20240017. [Google Scholar] [CrossRef]
- Mohamed, E.S.; Jalhoum, M.E.; Hendawy, E.; El-Adly, A.M.; Nawar, S.; Rebouh, N.Y.; Saleh, A.; Shokr, M.S. Geospatial evaluation and bio-remediation of heavy metal-contaminated soils in arid zones. Front. Environ. Sci. 2024, 12, 1381409. [Google Scholar] [CrossRef]
- Jalhoum, M.E.; Abdellatif, M.A.; Mohamed, E.S.; Kucher, D.E.; Shokr, M. Multivariate analysis and GIS approaches for modeling and mapping soil quality and land suitability in arid zones. Heliyon 2024, 10, e27577. [Google Scholar] [CrossRef]
- Hammam, A.A.; Mohamed, W.S.; Sayed, S.E.-E.; Kucher, D.E.; Mohamed, E.S. Assessment of soil contamination using gis and multi-variate analysis: A case study in El-Minia Governorate, Egypt. Agronomy 2022, 12, 1197. [Google Scholar] [CrossRef]
- Ward, J.H., Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- De Amorim, R.C.; Hennig, C. Recovering the number of clusters in data sets with noise features using feature rescaling factors. Inf. Sci. 2015, 324, 126–145. [Google Scholar] [CrossRef]
- Abd El-Hamid, H.T.; El-Alfy, M.A.; Elnaggar, A.A. Prediction of future situation of land use/cover change and modeling sensitivity to pollution in Edku Lake, Egypt based on geospatial analyses. GeoJournal 2021, 86, 1895–1913. [Google Scholar] [CrossRef]
- Abd El-Kawy, O.; Rød, J.K.; Ismail, H.; Suliman, A.S. Land use and land cover change detection in the western Nile delta of Egypt using remote sensing data. Appl. Geogr. 2011, 31, 483–494. [Google Scholar] [CrossRef]
- Elagouz, M.; Abou-Shleel, S.; Belal, A.; El-Mohandes, M.; Science, S. Detection of land use/cover change in Egyptian Nile Delta using remote sensing. Egypt. J. Remote Sens. 2020, 23, 57–62. [Google Scholar] [CrossRef]
- El-Zeiny, A.M.; Effat, H.A. Environmental monitoring of spatiotemporal change in land use/land cover and its impact on land surface temperature in El-Fayoum governorate, Egypt. Remote Sens. Appl. Soc. Environ. 2017, 8, 266–277. [Google Scholar] [CrossRef]
- Said, M.E.S.; Ali, A.M.; Borin, M.; Abd-Elmabod, S.K.; Aldosari, A.A.; Khalil, M.M.; Abdel-Fattah, M.K. On the use of multivariate analysis and land evaluation for potential agricultural development of the northwestern coast of Egypt. Agronomy 2020, 10, 1318. [Google Scholar] [CrossRef]
- Cohen, J. Coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- George, E.; Horst, W.J.; Neumann, E. Adaptation of plants to adverse chemical soil conditions. In Marschner’s Mineral Nutrition of Higher Plants; Elsevier: Amsterdam, The Netherlands, 2012; pp. 409–472. [Google Scholar]
- Zewd, I.; Siban, M. The effects of alkalinity on physical and chemical properties of soil. J. Plant Biol. Agric. Sci 2021, 3, 1–5. [Google Scholar]
- Al Otaibi, F.A.; Alghamdi, S.A.; Abo-Elyousr, K.A. The Influence of Salinity on Plant Growth and Amendment Strategies. Sohag J. Sci. 2024, 9, 261–267. [Google Scholar] [CrossRef]
- Von Wandruszka, R. Phosphorus retention in calcareous soils and the effect of organic matter on its mobility. Geochem. Trans. 2006, 7, 6. [Google Scholar] [CrossRef]
- Abdel-Fattah, M.K.; Mohamed, E.S.; Wagdi, E.M.; Shahin, S.A.; Aldosari, A.A.; Lasaponara, R.; Alnaimy, M.A. Quantitative evaluation of soil quality using Principal Component Analysis: The case study of El-Fayoum depression Egypt. Sustainability 2021, 13, 1824. [Google Scholar] [CrossRef]
- Abo-Baker, A.; Sciences, A. Successive application impact of some organic amendments combined with acid producing bacteria on soil properties, NPK availability and uptake by some plants. Int. J. Curr. Microbiol. 2017, 6, 2394–2413. [Google Scholar] [CrossRef]
- Aboukila, E.F.; Nassar, I.N.; Rashad, M.; Hafez, M.; Norton, J.B. Reclamation of calcareous soil and improvement of squash growth using brewers’ spent grain and compost. J. Saudi Soc. Agric. Sci. 2018, 17, 390–397. [Google Scholar] [CrossRef]
- Ibáñez-Asensio, S.; Marques-Mateu, A.; Moreno-Ramón, H.; Balasch, S. Statistical relationships between soil colour and soil attributes in semiarid areas. Biosyst. Eng. 2013, 116, 120–129. [Google Scholar] [CrossRef]
- Drewnik, M.; Skiba, M.; Szymański, W.; Żyła, M. Mineral composition vs. soil forming processes in loess soils—A case study from Kraków (Southern Poland). Catena 2014, 119, 166–173. [Google Scholar] [CrossRef]
- Sarkar, P.K.; Haque, M.S.; Karim, M.A. Growth analysis of soybean as influenced by GA3 and IAA and their frequency of application. Pak. J. Agronomy 2002, 1, 123–126. [Google Scholar]
- Chauhan, R.; Singh, A.; Bisen, J.; Singh, M.; Bera, B. Establishment and bringing up of replanted tea: An organic approach to improve productivity and fertility of soil. Int. J. Agric. Sci. 2016, 7, 43–51. [Google Scholar]
- Pakhre, D.; Karthikeyan, K.; Kumar, N.; Tiwary, P.; Chandran, P. Characterization and Evaluation of Cotton-growing Soils of Ghatanji Tehsil, Yavatmal District, Maharashtra. Agropedology 2021, 31, 1–11. [Google Scholar] [CrossRef]
- Conant, R.T.; Ryan, M.G.; Ågren, G.I.; Birge, H.E.; Davidson, E.A.; Eliasson, P.E.; Evans, S.E.; Frey, S.D.; Giardina, C.P.; Hopkins, F.M. Temperature and soil organic matter decomposition rates–synthesis of current knowledge and a way forward. Glob. Change Biol. 2011, 17, 3392–3404. [Google Scholar] [CrossRef]
- Moinet, G.Y.; Moinet, M.; Hunt, J.E.; Rumpel, C.; Chabbi, A.; Millard, P. Temperature sensitivity of decomposition decreases with increasing soil organic matter stability. Sci. Total Environ. 2020, 704, 135460. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Chabrillat, S.; Demattê, J.A.M.; Taylor, G.; Hill, J.; Whiting, M.; Sommer, S. Using imaging spectroscopy to study soil properties. Remote Sens. Environ. 2009, 113, S38–S55. [Google Scholar] [CrossRef]
- Conforti, M.; Froio, R.; Matteucci, G.; Buttafuoco, G. Visible and near infrared spectroscopy for predicting texture in forest soil: An application in southern Italy. Iforest-Biogeosci. For. 2015, 8, 339. [Google Scholar] [CrossRef]
- Mitran, T.; Ravisankar, T.; Fyzee, M.; Suresh, J.R.; Sujatha, G.; Sreenivas, K. Retrieval of soil physicochemical properties towards assessing salt-affected soils using Hyperspectral Data. Geocarto Int. 2015, 30, 701–721. [Google Scholar] [CrossRef]
- Rossel, R.V.; Walvoort, D.; McBratney, A.; Janik, L.J.; Skjemstad, J. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Tiruneh, G.A.; Meshesha, D.T.; Adgo, E.; Tsunekawa, A.; Haregeweyn, N.; Fenta, A.A.; Belay, A.W.; Tadesse, N.; Fekadu, G.; Reichert, J.M. Use of soil spectral reflectance to estimate texture and fertility affected by land management practices in Ethiopian tropical highland. PLoS ONE 2022, 17, e0270629. [Google Scholar] [CrossRef] [PubMed]
- Weidong, L.; Baret, F.; Xingfa, G.; Qingxi, T.; Lanfen, Z.; Bing, Z. Relating soil surface moisture to reflectance. Remote Sens. Environ. 2002, 81, 238–246. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Heller, D.; Chudnovsky, A. A novel method of classifying soil profiles in the field using optical means. Soil Sci. Soc. Am. J. 2008, 72, 1113–1123. [Google Scholar] [CrossRef]
- Demattê, J.A.; Morgan, C.L.; Chabrillat, S.; Rizzo, R.; Franceschini, M.H.; Terra, F.d.S.; Vasques, G.M.; Wetterlind, J. Spectral sensing from ground to space in soil science: State of the art, applications, potential, and perspectives. In Land Resources Monitoring, Modeling, and Mapping with Remote Sensing, 1st ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Al-Jubouri, A.K.; Wheib, K.A. Effect of soil salinity on spectral reflectance of red and NIR wavelengths in AL-Salamiyat project. Plant Arch. 2020, 20, 1359–1365. [Google Scholar]
- Cierniewski, J.; Kuśnierek, K. Influence of several size properties on soil surface reflectance. Quaest. Geogr. 2010, 29, 13–25. [Google Scholar] [CrossRef]
- Rossel, R.V.; Cattle, S.; Ortega, A.; Fouad, Y. In situ measurements of soil colour, mineral composition and clay content by vis–NIR spectroscopy. Geoderma 2009, 150, 253–266. [Google Scholar] [CrossRef]
- Shahrayini, E.; Noroozi, A.; Eghbal, M.K. Prediction of soil properties by visible and near-infrared reflectance spectroscopy. Eurasian Soil Sci. 2020, 53, 1760–1772. [Google Scholar] [CrossRef]
- Zeng, R.; Rossiter, D.G.; Yang, F.; Li, D.-C.; Zhao, Y.-G.; Zhang, G.-L. How accurately can soil classes be allocated based on spectrally predicted physio-chemical properties? Geoderma 2017, 303, 78–84. [Google Scholar] [CrossRef]
- Xie, H.; Zhao, J.; Wang, Q.; Sui, Y.; Wang, J.; Yang, X.; Zhang, X.; Liang, C. Soil type recognition as improved by genetic algorithm-based variable selection using near infrared spectroscopy and partial least squares discriminant analysis. Sci. Rep. 2015, 5, 10930. [Google Scholar] [CrossRef]
SN | Satellite Image | Year of Acquisition | Path/Row | Resolution (m) | Image Type |
---|---|---|---|---|---|
4 | Landsat 9 (OLI) | 2024 | 175/42, 176/42 and 176/41 | 15–30 | Level-1 |
Land Use | 2024 Areas | |
---|---|---|
km2 | % | |
Nile River | 12.3 | 1.72 |
Barren soils | 226.18 | 31.63 |
Cultivated soils | 403.15 | 56.37 |
Urban Areas | 73.51 | 10.28 |
Total | 715.14 | 100.0 |
LULC/Classes | Landsat OLI 2024 | |
---|---|---|
Producer’s Accuracy (%) | User’s Accuracy (%) | |
Old cultivated soils | 99.41 | 98.92 |
Recently cultivated soils | 97.76 | 99.23 |
Barren soils | 91.71 | 86.37 |
Urban Areas | 96.87 | 57.34 |
Overall accuracy | 95.49 | |
Kappa coefficient | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shokr, M.S.; Mustafa, A.-r.A.; Alharbi, T.; Meroño de Larriva, J.E.; El-Sorogy, A.S.; Al-Kahtany, K.; Abdelsamie, E.A. Integration of VIS–NIR Spectroscopy and Multivariate Technique for Soils Discrimination Under Different Land Management. Land 2024, 13, 2056. https://doi.org/10.3390/land13122056
Shokr MS, Mustafa A-rA, Alharbi T, Meroño de Larriva JE, El-Sorogy AS, Al-Kahtany K, Abdelsamie EA. Integration of VIS–NIR Spectroscopy and Multivariate Technique for Soils Discrimination Under Different Land Management. Land. 2024; 13(12):2056. https://doi.org/10.3390/land13122056
Chicago/Turabian StyleShokr, Mohamed S., Abdel-rahman A. Mustafa, Talal Alharbi, Jose Emilio Meroño de Larriva, Abdelbaset S. El-Sorogy, Khaled Al-Kahtany, and Elsayed A. Abdelsamie. 2024. "Integration of VIS–NIR Spectroscopy and Multivariate Technique for Soils Discrimination Under Different Land Management" Land 13, no. 12: 2056. https://doi.org/10.3390/land13122056
APA StyleShokr, M. S., Mustafa, A.-r. A., Alharbi, T., Meroño de Larriva, J. E., El-Sorogy, A. S., Al-Kahtany, K., & Abdelsamie, E. A. (2024). Integration of VIS–NIR Spectroscopy and Multivariate Technique for Soils Discrimination Under Different Land Management. Land, 13(12), 2056. https://doi.org/10.3390/land13122056