Integrating Multi-Source Urban Data with Interpretable Machine Learning for Uncovering the Multidimensional Drivers of Urban Vitality
Abstract
:1. Introduction
2. Related Works
2.1. Definition and Quantification of Urban Street Vitality
2.2. Relationship Between Multi-Source Urban Data and Urban Street Vitality
2.3. Machine Learning Methods for Revealing Nonlinear Relationships and Interactions
3. Methods and Datasets
3.1. Datasets and Variables
3.1.1. Dependent Variable: Urban Street Vitality Index
3.1.2. Independent Variables: Multi-Source Urban Data
3.2. Modeling Approaches
3.2.1. XGBoost Model
3.2.2. SHAP Model
4. Results
4.1. Model Performance Comparison
4.2. Nonlinear Explanations
4.2.1. Relative Importance of Urban Multi-Source Data Across Different Dimensions of Urban Street Vitality
4.2.2. Nonlinear Associations Between Urban Multi-Source Data and Urban Street Vitality
4.3. Spatial Heterogeneity and Distribution of Urban Street Vitality
4.4. Interactive Effects of Key Variables in Urban Multi-Source Data
5. Discussion
5.1. Interpretable Machine Learning Framework
5.2. Comprehensive Explanation of Urban Street Vitality
5.3. Significance of This Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | https://lbsyun.baidu.com/, accessed on 2 August 2024. |
2 | https://huiyan.baidu.com/, accessed on 2 August 2024. |
3 | https://eogdata.mines.edu/products/vnl/, accessed on 2 August 2024. |
4 | See note 1 above. |
5 | https://www.gscloud.cn/home, accessed on 2 August 2024. |
6 | https://www.resdc.cn/, accessed on 2 August 2024. |
7 | https://bj.lianjia.com/, accessed on 4 August 2024. |
8 | https://www.worldpop.org/, accessed on 4 August 2024. |
9 | https://www.resdc.cn/, accessed on 4 August 2024. |
10 | http://gisrs.cn/index.html, accessed on 4 August 2024. |
11 | https://www.openstreetmap.org/, accessed on 5 August 2024. |
12 | https://www.cityscapes-dataset.com/, accessed on5 August 2024. |
13 | https://www.webmap.cn/, accessed on 5 August 2024. |
References
- Jacobs, J. The Death and Life of Great American Cities; Vintage: New York City, NY, USA, 1961. [Google Scholar]
- Gehl, J. Life Between Buildings: Using Public Space; Island Press: Washington, DC, USA, 2011; ISBN 978-1-59726-827-1. [Google Scholar]
- Maas, P.R. Towards a Theory of Urban Vitality. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 1984. [Google Scholar]
- Zijderveld, A. A Theory of Urbanity: The Economic and Civic Culture of Cities; Routledge: New York, NY, USA, 2017. [Google Scholar]
- Marcus, L. Spatial Capital. J. Space Syntax 2010, 1, 30–40. [Google Scholar]
- Azmi, D.I.; Karim, H.A. Implications of Walkability towards Promoting Sustainable Urban Neighbourhood. Procedia-Soc. Behav. Sci. 2012, 50, 204–213. [Google Scholar] [CrossRef]
- Li, Y.; Yabuki, N.; Fukuda, T. Exploring the Association between Street Built Environment and Street Vitality Using Deep Learning Methods. Sustain. Cities Soc. 2022, 79, 103656. [Google Scholar] [CrossRef]
- Ye, Y.; Li, D.; Liu, X. How Block Density and Typology Affect Urban Vitality: An Exploratory Analysis in Shenzhen, China. Urban Geogr. 2018, 39, 631–652. [Google Scholar] [CrossRef]
- Meng, Y.; Xing, H. Exploring the Relationship between Landscape Characteristics and Urban Vibrancy: A Case Study Using Morphology and Review Data. Cities 2019, 95, 102389. [Google Scholar] [CrossRef]
- Pambuku, A.; Elia, M.; Gardelli, A.; Giannico, V.; Sanesi, G.; Stefania Bergantino, A.; Intini, M.; Lafortezza, R. Assessing Urbanization Dynamics Using a Pixel-Based Nighttime Light Indicator. Ecol. Indic. 2024, 166, 112486. [Google Scholar] [CrossRef]
- Tu, W.; Zhu, T.; Xia, J.; Zhou, Y.; Lai, Y.; Jiang, J.; Li, Q. Portraying the Spatial Dynamics of Urban Vibrancy Using Multisource Urban Big Data. Comput. Environ. Urban Syst. 2020, 80, 101428. [Google Scholar] [CrossRef]
- Xu, J.; Xiong, Q.; Jing, Y.; Xing, L.; An, R.; Tong, Z.; Liu, Y.; Liu, Y. Understanding the Nonlinear Effects of the Street Canyon Characteristics on Human Perceptions with Street View Images. Ecol. Indic. 2023, 154, 110756. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, L.; Xiao, Y.; Lu, Y. Investigating the Spatiotemporal Pattern between the Built Environment and Urban Vibrancy Using Big Data in Shenzhen, China. Comput. Environ. Urban Syst. 2022, 95, 101827. [Google Scholar] [CrossRef]
- Doan, Q.C.; Ma, J.; Chen, S.; Zhang, X. Exploring the Nonlinear Threshold Effects of the Built Environment, Road Vehicles, and Air Pollution on Urban Vitality Using Explainable Artificial Intelligence. Landsc. Urban Plan. 2025, 253, 105204. [Google Scholar] [CrossRef]
- Han, Y.; Qin, C.; Xiao, L.; Ye, Y. The Nonlinear Relationships between Built Environment Features and Urban Street Vitality: A Data-Driven Exploration. Environ. Plan. B Urban Anal. City Sci. 2024, 51, 195–215. [Google Scholar] [CrossRef]
- Long, Y.; Huang, C.C. Does Block Size Matter? The Impact of Urban Design on Economic Vitality for Chinese Cities. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 406–422. [Google Scholar] [CrossRef]
- Ma, Z. Deep Exploration of Street View Features for Identifying Urban Vitality: A Case Study of Qingdao City. Int. J. Appl. Earth Obs. Geo-Inf. 2023, 123, 103476. [Google Scholar] [CrossRef]
- Tu, W.; Zhu, T.; Zhong, C.; Zhang, X.; Xu, Y.; Li, Q. Exploring Metro Vibrancy and Its Relationship with Built Environment: A Cross-City Comparison Using Multi-Source Urban Data. Geo-Spat. Inf. Sci. 2022, 25, 182–196. [Google Scholar] [CrossRef]
- Lynch, K. Good City Form; MIT Press: Cambridge, MA, USA, 1984; ISBN 978-0-262-62046-8. [Google Scholar]
- Montgomery, J. Making a City: Urbanity, Vitality and Urban Design. J. Urban Des. 1998, 3, 93–116. [Google Scholar] [CrossRef]
- Fan, Z.; Zhang, F.; Loo, B.P.Y.; Ratti, C. Urban Visual Intelligence: Uncovering Hidden City Profiles with Street View Images. Proc. Natl. Acad. Sci. USA 2023, 120, e2220417120. [Google Scholar] [CrossRef]
- Wu, J.; Ta, N.; Song, Y.; Lin, J.; Chai, Y. Urban Form Breeds Neighborhood Vibrancy: A Case Study Using a GPS-Based Activity Survey in Suburban Beijing. Cities 2018, 74, 100–108. [Google Scholar] [CrossRef]
- Liu, C.; Song, W. Mapping Property Redevelopment via GeoAI: Integrating Computer Vision and Socioenvironmental Patterns and Processes. Cities 2024, 144, 104644. [Google Scholar] [CrossRef]
- Xiao, L. Nonlinear and Synergistic Effects of TOD on Urban Vibrancy: Applying Local Explanations for Gradient Boosting Decision Tree. Sustain. Cities Soc. 2021, 72, 103063. [Google Scholar] [CrossRef]
- Yang, J.; Cao, J.; Zhou, Y. Elaborating Non-Linear Associations and Synergies of Subway Access and Land Uses with Urban Vitality in Shenzhen. Transp. Res. Part Policy Pract. 2021, 144, 74–88. [Google Scholar]
- Jin, A.; Ge, Y.; Zhang, S. Spatial Characteristics of Multidimensional Urban Vitality and Its Impact Mechanisms by the Built Environment. Land 2024, 13, 991. [Google Scholar] [CrossRef]
- Huang, B.; Zhou, Y.; Li, Z.; Song, Y.; Cai, J.; Tu, W. Evaluating and Characterizing Urban Vibrancy Using Spatial Big Data: Shanghai as a Case Study. Environ. Plan. B-Urban Anal. City Sci. 2020, 47, 1543–1559. [Google Scholar] [CrossRef]
- Xia, C.; Yeh, A.G.-O.; Zhang, A. Analyzing Spatial Relationships between Urban Land Use Intensity and Urban Vitality at Street Block Level: A Case Study of Five Chinese Megacities. Landsc. Urban Plan. 2020, 193, 103669. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, Y.; Chan, T.O.; Huang, Y.; Zheng, A.; Liu, Z. Exploring Impact of Surrounding Service Facilities on Urban Vibrancy Using Tencent Location-Aware Data: A Case of Guangzhou. Sustainability 2021, 13, 444. [Google Scholar] [CrossRef]
- Jia, C.; Liu, Y.; Du, Y.; Huang, J.; Fei, T. Evaluation of Urban Vibrancy and Its Relationship with the Economic Landscape: A Case Study of Beijing. ISPRS Int. J. Geo-Inf. 2021, 10, 72. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, Y.; Wang, Y.; Zhou, C.; Haynie, S.; Xu, T. Diverse Relationships between Suomi-NPP VIIRS Night-Time Light and Multi-Scale Socioeconomic Activity. Remote Sens. Lett. 2014, 5, 652–661. [Google Scholar] [CrossRef]
- He, Q.; He, W.; Song, Y.; Wu, J.; Yin, C.; Mou, Y. The Impact of Urban Growth Patterns on Urban Vitality in Newly Built-up Areas Based on an Association Rules Analysis Using Geographical ‘Big Data’. Land Use Policy 2018, 78, 726–738. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, B.; Shu, B.; Yang, L.; Wang, R. Exploring the Spatiotemporal Patterns and Correlates of Urban Vitality: Temporal and Spatial Heterogeneity. Sustain. Cities Soc. 2023, 91, 104440. [Google Scholar] [CrossRef]
- Xia, C.; Zhang, A.; Yeh, A.G.O. The Varying Relationships between Multidimensional Urban Form and Urban Vitality in Chinese Megacities: Insights from a Comparative Analysis. Ann. Am. Assoc. Geogr. 2022, 112, 141–166. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Lu, R.; Wu, L.; Chu, D. Portraying the Influence Factor of Urban Vibrancy at Street Level Using Multisource Urban Data. ISPRS Int. J. Geo-Inf. 2023, 12, 402. [Google Scholar] [CrossRef]
- Xu, Y.; Belyi, A.; Bojic, I.; Ratti, C. How Friends Share Urban Space: An Exploratory Spatiotemporal Analysis Using Mobile Phone Data. Trans. GIS 2017, 21, 468–487. [Google Scholar] [CrossRef]
- Yue, Y.; Zhuang, Y.; Yeh, A.G.O.; Xie, J.-Y.; Ma, C.-L.; Li, Q.-Q. Measurements of POI-Based Mixed Use and Their Relationships with Neighbourhood Vibrancy. Int. J. Geogr. Inf. Sci. 2017, 31, 658–675. [Google Scholar] [CrossRef]
- Natekin, A.; Knoll, A. Gradient Boosting Machines, a Tutorial. Front. Neuro-Robot. 2013, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Hu, Y.; Liang, C.; Wan, Q.; Dai, Q.; Yang, H. Understanding Nonlinear and Synergistic Effects of the Built Environment on Urban Vibrancy in Metro Station Areas. J. Eng. Appl. Sci. 2023, 70, 18. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13 August 2016; pp. 785–794. [Google Scholar]
- Chang, I.; Park, H.; Hong, E.; Lee, J.; Kwon, N. Predicting Effects of Built Environment on Fatal Pedestrian Accidents at Location-Specific Level: Application of XGBoost and SHAP. Accid. Anal. Prev. 2022, 166, 106545. [Google Scholar] [CrossRef]
- Xiao, Z.; Wang, Y.; Fu, K.; Wu, F. Identifying Different Transportation Modes from Trajectory Data Using Tree-Based Ensemble Classifiers. ISPRS Int. J. Geo-Inf. 2017, 6, 57. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From Local Explanations to Global Understanding with Explainable AI for Trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Sit, K.Y.; Chen, W.Y.; Ng, K.Y.; Koh, K.; Zhang, H. Unveiling Environmental Inequalities in High-Density Asian City: City-Scaled Comparative Analysis of Green Space Coverage within 10-Minute Walk from Private, Public, and Rural Housing. Landsc. Urban Plan. 2025, 253, 105225. [Google Scholar] [CrossRef]
- Hou, Y.; Quintana, M.; Khomiakov, M.; Yap, W. Global Streetscapes—A Comprehensive Dataset of 10 Million Street-Level Images across 688 Cities for Urban Science and Analytics. ISPRS J. Photogramm. Remote Sens. 2024, 215, 216–238. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, J.; Li, Y. Exploring the Spatial and Temporal Driving Mechanisms of Landscape Patterns on Habitat Quality in a City Undergoing Rapid Urbanization Based on GTWR and MGWR: The Case of Nanjing, China. Ecol. Indic. 2022, 143, 109333. [Google Scholar] [CrossRef]
- Dubey, A.; Naik, N.; Parikh, D.; Raskar, R.; Hidalgo, C.A. Deep Learning the City: Quantifying Urban Perception at a Global Scale. In Computer Vision—ECCV 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 196–212. [Google Scholar]
- Wang, Z.; Ito, K.; Biljecki, F. Assessing the Equity and Evolution of Urban Visual Perceptual Quality with Time Series Street View Imagery. Cities 2024, 145, 104704. [Google Scholar] [CrossRef]
- Zhao, X.; Lu, Y.; Lin, G. An Integrated Deep Learning Approach for Assessing the Visual Qualities of Built Environments Utilizing Street View Images. Eng. Appl. Artif. Intell. 2024, 130, 107805. [Google Scholar] [CrossRef]
- Zhong, J.; Li, Z.; Sun, Z.; Tian, Y.; Yang, F. The Spatial Equilibrium Analysis of Urban Green Space and Human Activity in Chengdu, China. J. Clean. Prod. 2020, 259, 120754. [Google Scholar] [CrossRef]
- Gan, X.; Huang, L.; Wang, H.; Mou, Y.; Wang, D.; Hu, A. Optimal Block Size for Improving Urban Vitality: An Exploratory Analysis with Multiple Vitality Indicators. J. Urban Plan. Dev. 2021, 147, 04021027. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Yang, W.; Hu, J. Exploring Nonlinear Effects of Built Environment on Jogging Behavior Using Random Forest. Appl. Geogr. 2023, 156, 102990. [Google Scholar] [CrossRef]
Variables (Abbr., Unit) | Description | Mean | Std. Dev. | Data Type/Resolution |
---|---|---|---|---|
Independent variables | ||||
Natural elements variables | ||||
Elevation (EL) | Distance from a point in the direction of the plumb line to the absolute base plane | 18.065 | 9.928 | Raster/30 m |
Slope (Slope) | The ratio of the vertical height h to the horizontal width l of the slope | 2.615 | 1.967 | Raster/30 m |
Normalized difference vegetation index (NDVI) | One of the important parameters reflecting crop growth and nutritional information | 4576 | 1948 | Raster/30 m |
Distance to park, green space (DistPark&GreenSpace) | Euclidean distance from parks and green spaces | 2195 | 2192 | Raster/30 m |
Distance to waterbody (DistWaterbody) | Euclidean distance to water bodies | 773 | 768 | Raster/30 m |
Density variables | ||||
Building height (BldHeight) | Building height | 6.087 | 13.139 | Vector |
Building density (BldDens) | Total building base area divided by total area | 0.073 | 0.116 | Raster/30 m |
Distance to transit variables | ||||
Density of public transportation station (PubTransStnDens) | Kernel density of public transportation station | 0.179 | 0.204 | Raster/30 m |
Density of public transportation line (PubTransLineDens) | Kernel density of public transportation Line | 0.251 | 0.110 | Raster/30 m |
Density of road network (RoadNetDens) | Kernel density of road network | 1.221 | 0.906 | Raster/30 m |
Destination accessibility variables | ||||
Walking accessibility (WalkAcc) | 0.302 | 0.283 | Vector | |
Vehicular accessibility (VehAcc) | 9.116 | 5.522 | Vector | |
Diversity variables | ||||
Land use mix (LUM) | SHDI Shannon Diversity Index for land use | 0.519 | 0.532 | Raster/30 m |
Design variables | ||||
Greening view index (GVI) | 0.178 | 0.155 | Vector | |
Sky openness index (SOI) | 0.522 | 0.166 | Vector | |
Visual enclosure index (VEI) | 0.287 | 0.171 | Vector | |
Visual walkability index (VWI) | 0.031 | 0.018 | Vector | |
Visual motorization index (VMI) | 0.128 | 0.047 | Vector | |
Sociodemographic and economic indicators variables | ||||
Population density (PopDens) | Population index of 0.1 km grid size | 6701 | 10,669 | Raster/0.1 k m |
GDP density (GDPDens) | GDP index for 1 km grid size | 38,115 | 56,739 | Raster/1 k m |
Housing price (HousingPrice) | Average house price in the region | 11,533 | 3805 | Vector |
Dependent variables | ||||
Perceived vitality variables | 0.076 | 0.025 | ||
Wealth, beauty, safety, and liveliness | Positive perceived score | 39.848 | 8.259 | Vector |
Boring, depression | Negative perceived score | 55.788 | 6.396 | Vector |
Social vitality variables | 0.058 | 0.051 | Vector | |
Baidu WiseEye Big Data (BWBD) | Number of users in areas where cellular base stations are located (weekdays: from 7:00 a.m. to 12:00 p.m., 1:00 p.m. to 6:00 p.m., and 7:00 p.m. to 11:00 p.m.) | 940 | 1030 | Raster/30 m |
Number of users in areas where cellular base stations are located (holidays: from 7:00 a.m. to 12:00 p.m., 1:00 p.m. to 6:00 p.m., and 7:00 p.m. to 11:00 p.m.) | 926 | 1052 | Raster/30 m | |
Nighttime lighting data (NightLight) | Nighttime lighting index at 1 km grid size | 26.222 | 15.088 | Raster/30 m |
Economic vitality variables | 0.187 | 0.199 | Raster/30 m | |
Density of commercial service (ComServDens) | Kernel density of commercial service facility | 1.386 | 1.915 | Raster/30 m |
Density of residential (ResDens) | Kernel density of residential facility | 8.726 | 8.259 | Raster/30 m |
Density of culture and sport (Cultural&SportDens) | Kernel density of cultural facility and sports facility | 0.505 | 0.531 | Raster/30 m |
Density of education and medicine (Edu&MedDens) | Kernel density of educational facility and medical facility | 1.245 | 1.626 | Raster/30 m |
Unbran street vitality variables | Urban street vitality is the essence of a street’s liveliness and engagement, reflecting the dynamic interaction of people, businesses, and the built environment. | 0.47 | 1.00 |
Cumulative Explained Variance Ratio | ||
---|---|---|
Types of Urban Street Vitality | Principal Components 1 | Principal Components 2 |
Perceptual vitality | 0.761 | 0.864 |
Social vitality | 0.893 | 0.960 |
Economic vitality | 0.870 | 0.942 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Zhang, J.; Li, Y.; Zhu, Z.; Deng, J.; Li, Z. Integrating Multi-Source Urban Data with Interpretable Machine Learning for Uncovering the Multidimensional Drivers of Urban Vitality. Land 2024, 13, 2028. https://doi.org/10.3390/land13122028
Xie Y, Zhang J, Li Y, Zhu Z, Deng J, Li Z. Integrating Multi-Source Urban Data with Interpretable Machine Learning for Uncovering the Multidimensional Drivers of Urban Vitality. Land. 2024; 13(12):2028. https://doi.org/10.3390/land13122028
Chicago/Turabian StyleXie, Yuchen, Jiaxin Zhang, Yunqin Li, Zehong Zhu, Junye Deng, and Zhixiu Li. 2024. "Integrating Multi-Source Urban Data with Interpretable Machine Learning for Uncovering the Multidimensional Drivers of Urban Vitality" Land 13, no. 12: 2028. https://doi.org/10.3390/land13122028
APA StyleXie, Y., Zhang, J., Li, Y., Zhu, Z., Deng, J., & Li, Z. (2024). Integrating Multi-Source Urban Data with Interpretable Machine Learning for Uncovering the Multidimensional Drivers of Urban Vitality. Land, 13(12), 2028. https://doi.org/10.3390/land13122028