Unlocking the Power of Economic Agglomeration: How Digital Finance Enhances Urban Land Use Efficiency Through Innovation Ability and Rationalization of Industrial Structure in China
Abstract
:1. Introduction
2. Theoretical Analysis and Research Hypothesis
2.1. Digital Finance, Economic Agglomeration, and Urban Land Use Efficiency
2.2. Digital Finance, Innovation Ability, and Rationalization of Industrial Structure
3. Research Design
3.1. Data Sources and Data Cleaning
3.2. Model Setup
3.2.1. Existence Test Model
3.2.2. Moderated Effects Model with Mediation
3.3. Variable Definitions and Descriptions
3.3.1. Explained Variable: Urban Land Use Efficiency
3.3.2. Explanatory Variables: Economic Agglomeration
3.3.3. Moderating Variable: Digital Finance
3.3.4. Mechanistic Variables
3.3.5. Control Variables (Controls)
4. Empirical Results
4.1. Descriptive Statistics
4.2. Correlation Analysis
4.3. Benchmark Regression and Moderating Effects Tests for DF
4.4. Robustness Testing
4.4.1. Lagged Period Test
4.4.2. Replacement of Explanatory Variables
4.4.3. Reducing the Sample Period
4.4.4. Excluding the Sample of Xinjiang
5. Further Analysis
5.1. Mechanism Analysis
5.1.1. Improve IA
5.1.2. Promote the RIS
5.2. Heterogeneity Analysis
5.2.1. Heterogeneity in Geographic Locations
5.2.2. Heterogeneity in Internet Penetration
5.2.3. Heterogeneity in Innovation Emphasis
6. Conclusions and Policy Implications
6.1. Conclusions
6.2. Policy Suggestions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zeng, L.; Li, H.; Wang, X.; Yu, Z.; Hu, H.; Yuan, X.; Zhao, X.; Li, C.; Yuan, D.; Gao, Y.; et al. China’s Transport Land: Spatiotemporal Expansion Characteristics and Driving Mechanism. Land 2022, 11, 1147. [Google Scholar] [CrossRef]
- Wang, S.; Zhai, C.; Zhang, Y. Evaluating the Impact of Urban Digital Infrastructure on Land Use Efficiency Based on 279 Cities in China. Land 2024, 13, 404. [Google Scholar] [CrossRef]
- Koroso, N.H.; Lengoiboni, M.; Zevenbergen, J.A. Urbanization and urban land use efficiency: Evidence from regional and Addis Ababa satellite cities, Ethiopia. Habitat Int. 2021, 117, 102437. [Google Scholar] [CrossRef]
- Eskiev, I.B. Problems of Low efficiency of Land Use. Ѐkon. I Upr. Probl. RESHENIYA 2023, 4, 115–119. [Google Scholar] [CrossRef]
- Zitti, M.; Ferrara, C.; Perini, L.; Carlucci, M.; Salvati, L. Long-Term Urban Growth and Land Use Efficiency in Southern Europe: Implications for Sustainable Land Management. Sustainability 2015, 7, 3359–3385. [Google Scholar] [CrossRef]
- Ruan, L.; He, T.; Xiao, W.; Chen, W.; Lu, D.; Liu, S. Measuring the coupling of built-up land intensity and use efficiency: An example of the Yangtze River Delta urban agglomeration. Sustain. Cities Soc. 2022, 87, 104224. [Google Scholar] [CrossRef]
- Zeng, L.; Li, H.; Lao, X.; Hu, H.; Wei, Y.; Li, C.; Yuan, X.; Guo, D.; Liu, K. China’s Road Traffic Mortality Rate and Its Empirical Research from Socio-Economic Factors Based on the Tobit Model. Systems 2022, 10, 122. [Google Scholar] [CrossRef]
- Liu, S.; Ye, Y.; Li, L. Spatial–Temporal Analysis of Urban Land-Use Efficiency: An Analytical Framework in Terms of Economic Transition and Spatiality. Sustainability 2019, 11, 1839. [Google Scholar] [CrossRef]
- Höjer, M.; Mjörnell, K. Measures and Steps for More Efficient Use of Buildings. Sustainability 2018, 10, 1949. [Google Scholar] [CrossRef]
- Shi, Y.; Li, S. Research on Rational Urban Growth and Land-Use Issues. J. Urban Plan. Dev. 2007, 133, 91–94. [Google Scholar] [CrossRef]
- Soria, K.Y.; Palacios, M.R.; Gomez, C.A.M. Governance and policy limitations for sustainable urban land planning. The case of Mexico. J. Environ. Manag. 2020, 259, 109575. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.; Ottaviano, G.I.P. Growth and Agglomeration. Int. Econ. Rev. 2001, 42, 947–968. [Google Scholar] [CrossRef]
- Kyriakopoulou, E.; Anastasios, X. Environmental Policy, Spatial Spillovers and the Emergence of Economic Agglomerations; Fondazione Eni Enrico Mattei: Milan, Italy, 2009. [Google Scholar] [CrossRef]
- Rosenthal, S.S.; Strange, W.C. The Micro-Empirics of Agglomeration Economies. In A Companion to Urban Economics; Wiley: Hoboken, NJ, USA, 2006; pp. 7–23. [Google Scholar]
- Wei, T.; Wu, H. Multi-Level Advances in Innovation: Competition and Cooperation Among Chinese Enterprises. SSRN. 2021. Available online: https://ssrn.com/abstract=3808270 (accessed on 24 September 2024).
- Guo, X.; Guo, K.; Zheng, H. Industrial Agglomeration and Enterprise Innovation Sustainability: Empirical Evidence from the Chinese A-Share Market. Sustainability 2023, 15, 11660. [Google Scholar] [CrossRef]
- Covarrubias, M.; Gutiérrez, G.; Philippon, T. From Good to Bad Concentration? US Industries over the Past 30 Years. NBER Macroecon. Annu. 2020, 34, 1–46. [Google Scholar] [CrossRef]
- Hasan, M.; Yajuan, L.; Khan, S. Promoting China’s Inclusive Finance Through Digital Financial Services. Glob. Bus. Rev. 2022, 23, 984–1006. [Google Scholar] [CrossRef]
- Marshall, A. Principles of Economics; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Miguelez, E.; Moreno, R. Networks, Diffusion of Knowledge, and Regional Innovative Performance. Int. Reg. Sci. Rev. 2017, 40, 331–336. [Google Scholar] [CrossRef]
- Fan, C.C.; Scott, A.J. Industrial Agglomeration and Development: A Survey of Spatial Economic Issues in East Asia and a Statistical Analysis of Chinese Regions. Econ. Geogr. 2003, 79, 295–319. [Google Scholar] [CrossRef]
- Kim, Y.R.; Williams, A.M.; Park, S.; Chen, J.L. Spatial spillovers of agglomeration economies and productivity in the tourism industry: The case of the UK. Tour. Manag. 2021, 82, 104201. [Google Scholar] [CrossRef]
- Majewska, J.; Truskolaski, S. Spatial concentration of economic activity and competitiveness of Central European regions. In Challenges for International Business in Central and Eastern Europe; (Przedsiębiorczość Międzynarodowa); Cracow University of Economics: Krakow, Poland, 2017; Volume 3, pp. 47–64. Available online: https://ssrn.com/abstract=2940690 (accessed on 24 September 2024).
- Liu, S.; Li, Y.; Shen, Z.; Yu, J.; Xu, Z. The impact of population agglomeration on economic resilience: Evidence from 280 cities in China. Int. Rev. Econ. Finance 2024, 94, 103429. [Google Scholar] [CrossRef]
- Shoufu, Y.; Dan, M.; Zuiyi, S.; Lin, W.; Li, D. The impact of artificial intelligence industry agglomeration on economic complexity. Econ. Res. Istraz. 2023, 36, 1420–1448. [Google Scholar] [CrossRef]
- Guo, J.; Sun, Z. How does manufacturing agglomeration affect high-quality economic development in China? Econ. Anal. Policy 2023, 78, 673–691. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, B.; Wang, J.; Wu, Q.; Wei, Y.D. How does industrial agglomeration affect urban land use efficiency? A spatial analysis of Chinese cities. Land Use Policy 2022, 119, 106178. [Google Scholar] [CrossRef]
- Gomber, P.; Koch, J.-A.; Siering, M. Digital Finance and FinTech: Current research and future research directions. J. Bus. Econ. 2017, 87, 537–580. [Google Scholar] [CrossRef]
- Chang, K.; Zhang, H.; Li, B. The Impact of Digital Economy and Industrial Agglomeration on the Changes of Industrial Structure in the Yangtze River Delta. J. Knowl. Econ. 2024, 15, 9207–9227. [Google Scholar] [CrossRef]
- Li, S.; Fu, M.; Tian, Y.; Xiong, Y.; Wei, C. Relationship between Urban Land Use Efficiency and Economic Development Level in the Beijing–Tianjin–Hebei Region. Land 2022, 11, 976. [Google Scholar] [CrossRef]
- Gu, H.; Guo, G.; Li, C. Treating the Symptoms as Well as the Root Causes: How the Digital Economy Can Mitigate the Negative Impacts of Land Resource Mismatches on Urban Ecological Resilience. Land 2024, 13, 1463. [Google Scholar] [CrossRef]
- Liu, S.; Xiao, W.; Li, L.; Ye, Y.; Song, X. Urban land use efficiency and improvement potential in China: A stochastic frontier analysis. Land Use Policy 2020, 99, 105046. [Google Scholar] [CrossRef]
- Shang, Y.; Xu, J.; Zhao, X. Urban intensive land use and enterprise emission reduction: New micro-evidence from China towards COP26 targets. Resour. Policy 2022, 79, 103158. [Google Scholar] [CrossRef]
- Yi, Z.; Zhou, W.; Razzaq, A.; Yang, Y. Land resource management and sustainable development: Evidence from China’s regional data. Resour. Policy 2023, 84, 103732. [Google Scholar] [CrossRef]
- Wu, H.; Fang, S.; Zhang, C.; Hu, S.; Nan, D.; Yang, Y. Exploring the impact of urban form on urban land use efficiency under low-carbon emission constraints: A case study in China’s Yellow River Basin. J. Environ. Manag. 2022, 311, 114866. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, H.; Liu, H.; Liao, C. Urban development sustainability, industrial structure adjustment, and land use efficiency in China. Sustain. Cities Soc. 2023, 89, 104338. [Google Scholar] [CrossRef]
- Kong, T.; Sun, R.; Sun, G.; Song, Y. Effects of Digital Finance on Green Innovation considering Information Asymmetry: An Empirical Study Based on Chinese Listed Firms. Emerg. Mark. Finance Trade 2022, 58, 4399–4411. [Google Scholar] [CrossRef]
- Xue, Q.; Feng, S.; Li, M. The Impact of Digital Finance on Industrial Structure: Evidence from China. SAGE Open 2024, 14, 21582440241239387. [Google Scholar] [CrossRef]
- Donner, H.; Eriksson, K.; Steep, M. Digital Cities: Real Estate Development Driven by Big Data. Technical Report, Working Paper. 2018. Available online: https://www.researchgate.net/profile/Herman-Donner/publication/325253311_Digital_Cities_Real_Estate_Development_Driven_by_Big_Data/links/5cdbac94458515712eac2286/Digital-Cities-Real-Estate-Development-Driven-by-Big-Data.pdf (accessed on 24 September 2024).
- Arshadi, N. Blockchain, corporate structure, and financial intermediation. In Technology & Innovation; National Academy of Inventors: Tampa, FL, USA, 2023. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, Y.; Wang, R.; Wang, T. Digital finance and corporate innovation: Evidence from China. Appl. Econ. 2024, 56, 615–638. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Zhou, Z.; Wang, Z.; Mardani, A. Digital finance and enterprise financing constraints: Structural characteristics and mechanism identification. J. Bus. Res. 2023, 165, 114074. [Google Scholar] [CrossRef]
- Ren, X.; Zeng, G.; Gozgor, G. How does digital finance affect industrial structure upgrading? Evidence from Chinese prefecture-level cities. J. Environ. Manag. 2023, 330, 117125. [Google Scholar] [CrossRef]
- Shen, L.; Zhang, L.; Bao, H.; Wong, S.; Du, X.; Wei, X. An Empirical Study on the Mismatch Phenomenon in Utilizing Urban Land Resources in China. Land 2023, 12, 1196. [Google Scholar] [CrossRef]
- Corden, W.M. Economies of Scale and Customs Union Theory. J. Political Econ. 1972, 80, 465–475. [Google Scholar] [CrossRef]
- Wood, G.A.; Parr, J.B. Transaction Costs, Agglomeration Economies, and Industrial Location. Growth Chang. 2005, 36, 1–15. [Google Scholar] [CrossRef]
- Han, W.; Zhang, Y.; Cai, J.; Ma, E. Does Urban Industrial Agglomeration Lead to the Improvement of Land Use Efficiency in China? An Empirical Study from a Spatial Perspective. Sustainability 2019, 11, 986. [Google Scholar] [CrossRef]
- Smith, A. An Inquiry into the Nature and Causes of the Wealth of Nations. In Readings in Economic Sociology; Blackwell Publishers Ltd.: Hoboken, NJ, USA, 2002; pp. 6–17. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Xiang, D.; Worthington, A.C. Digitalization, financial inclusion, and small and medium-sized enterprise financing: Evidence from China. Econ. Model. 2023, 126, 106410. [Google Scholar] [CrossRef]
- Baldwin, R.E.; Okubo, T. Heterogeneous firms, agglomeration and economic geography: Spatial selection and sorting. J. Econ. Geogr. 2006, 6, 323–346. [Google Scholar] [CrossRef]
- Antle, R.; Eppen, G.D. Capital Rationing and Organizational Slack in Capital Budgeting. Manag. Sci. 1985, 31, 163–174. [Google Scholar] [CrossRef]
- Cheng, M.; Wang, J.; Yang, S.; Li, Q. The driving effect of technological innovation on green development: From the perspective of efficiency. Energy Policy 2024, 188, 114089. [Google Scholar] [CrossRef]
- Fang, L. Do Clusters Encourage Innovation? A Meta-analysis. J. Plan. Lit. 2015, 30, 239–260. [Google Scholar] [CrossRef]
- Li, C.; He, S.; Tian, Y.; Sun, S.; Ning, L. Does the bank’s FinTech innovation reduce its risk-taking? Evidence from China’s banking industry. J. Innov. Knowl. 2022, 7, 100219. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Yu, H. Digitalization and the “Too Big to Fail” Dilemma: Mechanisms and asymmetric effects of banks’ fintech innovation on total factor productivity. Technol. Econ. Dev. Econ. 2024, 30, 464–488. [Google Scholar] [CrossRef]
- Wang, Z. Digital finance, financing constraint and enterprise financial risk. J. Math. 2022, 2022, 2882113. [Google Scholar] [CrossRef]
- Ting, J. Mediating and moderating effects in empirical studies of causal inference. China Ind. Econ. 2022, 5, 100–120. (In Chinese) [Google Scholar] [CrossRef]
- Bateman, I.J.; Harwood, A.R.; Mace, G.M.; Watson, R.T.; Abson, D.J.; Andrews, B.; Binner, A.; Crowe, A.; Day, B.H.; Dugdale, S.; et al. Bringing Ecosystem Services into Economic Decision-Making: Land Use in the United Kingdom. Science 2013, 341, 45–50. [Google Scholar] [CrossRef]
- Wheaton, W.C.; Shishido, H. Urban Concentration, Agglomeration Economies, and the Level of Economic Development. Econ. Dev. Cult. Chang. 1981, 30, 17–30. [Google Scholar] [CrossRef]
- Yu, C.; Jia, N.; Li, W.; Wu, R. Digital inclusive finance and rural consumption structure—Evidence from Peking University digital inclusive financial index and China household finance survey. China Agric. Econ. Rev. 2022, 14, 165–183. [Google Scholar] [CrossRef]
- Li, J.; Wu, Y.; Xiao, J.J. The impact of digital finance on household consumption: Evidence from China. Econ. Model. 2019, 86, 317–326. [Google Scholar] [CrossRef]
- Clark, J.B. The Distribution of Wealth: A Theory of Wages, Interest and Profits; Macmillan: New York, NY, USA, 1908. [Google Scholar]
- Yang, J.; Liu, C.; Liu, K. Land marketization and industrial restructuring in China. Land Use Policy 2023, 131, 106737. [Google Scholar] [CrossRef]
- Fu, X. Foreign Direct Investment, Absorptive Capacity and Regional Innovation Capabilities: Evidence from China. Oxf. Dev. Stud. 2008, 36, 89–110. [Google Scholar] [CrossRef]
- Pakes, A.; Schankerman, M. The rate of obsolescence of patents, research gestation lags, and the private rate of return to research resources. In R&D, Patents, and Productivity; University of Chicago Press: Chicago, IL, USA, 1984; pp. 73–88. Available online: https://www.nber.org/system/files/chapters/c10045/c10045.pdf (accessed on 24 September 2024).
- Liu, J.; Fang, Y.; Ma, Y.; Chi, Y. Digital economy, industrial agglomeration, and green innovation efficiency: Empirical analysis based on Chinese data. J. Appl. Econ. 2024, 27, 2289723. [Google Scholar] [CrossRef]
- Liu, J.; Feng, H.; Wang, K. The Low-Carbon City Pilot Policy and Urban Land Use Efficiency: A Policy Assessment from China. Land 2022, 11, 604. [Google Scholar] [CrossRef]
- Shen, Y.; Huang, Y. Introduction to the special issue: Internet finance in China. China Econ. J. 2016, 9, 221–224. [Google Scholar] [CrossRef]
- Maket, I.; Kanó, I.S.; Vas, Z. Urban agglomeration and regional economic performance connectedness: Thin ice in developing regions. Res. Glob. 2024, 8, 100211. [Google Scholar] [CrossRef]
- Shrestha, N. Detecting Multicollinearity in Regression Analysis. Am. J. Appl. Math. Stat. 2020, 8, 39–42. [Google Scholar] [CrossRef]
- Qiu, H.; Li, X.; Zhang, L. Influential Effect and Mechanism of Digital Finance on Urban Land Use Efficiency in China. Sustainability 2023, 15, 14726. [Google Scholar] [CrossRef]
- Wang, J.; Ma, J. Evaluation and driving factors of land use economic efficiency in China’s urban agglomerations under the impact of COVID-19 epidemic. Front. Public Health 2022, 10, 1016701. [Google Scholar] [CrossRef] [PubMed]
Variable Type | Variable Name | Variable Symbol | Variable Construction |
---|---|---|---|
Explained variable | Urban land use efficiency | ULUE | Non-farm economic output per unit of urban construction land. |
Explanatory variable | Economic agglomeration | EA | Urban employment per unit of urban construction land. |
Mechanism variable | Digital finance | DF | Digital inclusive financial index/100. |
The interaction term between DF and EA | DFEA | The interaction term between DF and EA. | |
Rationalization of industrial structure | RIS | Tyrell’s Index. The smaller the Tyrell’s Index, the more even the industry is. | |
Innovation ability (number of patent perspectives) | IA1 | The logarithm of the number of inventions awarded in the year. | |
Innovation ability (innovative value perspective) | IA2 | The number of patents is weighted using a value weighting factor. | |
Control variables | Level of economic development | PGDP | Logarithm of GDP per capital. |
Level of opening up | OL | Foreign capital in use/gross regional product. | |
Size of population | PDEN | The logarithm of total population at the end of the year. | |
Government expenditure | GOV | General government expenditure/gross regional product. | |
Level of human capital | HCL | Number of students enrolled in general undergraduate programs/total population at the end of the year. | |
Infrastructure level | INFR | Road area per capita. |
Variable | N | SD | Mean | Min | p25 | Median | p75 | Max | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|---|---|
ULUE | 2178 | 0.9139 | 1.7954 | 0.0906 | 1.1375 | 1.6503 | 2.2361 | 5.0075 | 1.0716 | 4.2968 |
EA | 2178 | 2.8282 | 1.7488 | 0.0704 | 0.4267 | 0.8830 | 1.8239 | 21.9332 | 4.5272 | 28.5562 |
DF | 2178 | 0.4965 | 2.4426 | 0.9554 | 2.2457 | 2.5995 | 2.8096 | 3.2921 | −0.7729 | 2.416372 |
IA1 | 2178 | 1.6934 | 5.1075 | 0.6931 | 3.9318 | 4.8675 | 6.2086 | 9.3071 | 0.3585 | 2.7248 |
IA2 | 2178 | 38.6505 | 17.3533 | 0.0276 | 1.2906 | 3.3820 | 12.0642 | 227.1568 | 3.7676 | 18.1516 |
RIS | 2178 | 0.1977 | 0.2848 | 0.0032 | 0.1230 | 0.2449 | 0.4131 | 0.9084 | 0.7426 | 2.9376 |
PGDP | 2178 | 0.5277 | 10.7876 | 9.2193 | 10.3985 | 10.7567 | 11.1512 | 11.9703 | 0.1932 | 2.5650 |
OL | 2178 | 0.0167 | 0.0160 | 0.0000 | 0.0032 | 0.0110 | 0.0230 | 0.1038 | 1.7180 | 6.7691 |
PDEN | 2178 | 0.6642 | 5.8822 | 3.8286 | 5.4943 | 5.9417 | 6.3750 | 7.1682 | −0.5932 | 3.2652 |
GOV | 2178 | 0.0909 | 0.2037 | 0.0564 | 0.1379 | 0.1799 | 0.2438 | 0.5815 | 1.3313 | 4.8856 |
HCL | 2178 | 0.0253 | 0.0198 | 0.0003 | 0.0057 | 0.0104 | 0.0212 | 0.1272 | 2.4688 | 8.8552 |
INFR | 2178 | 7.0623 | 18.3009 | 6.2300 | 12.9489 | 16.8930 | 22.9600 | 40.2102 | 0.7394 | 3.1727 |
(1) | (2) | (3) | |
---|---|---|---|
Variable | ULUE | ULUE | ULUE |
DFEA | 0.020 *** | ||
(4.505) | |||
DF | 0.029 | ||
(0.778) | |||
EA | 0.035 *** | 0.039 *** | −0.015 |
(2.801) | (3.554) | (−0.925) | |
PGDP | 0.870 *** | 0.889 *** | |
(15.418) | (15.701) | ||
OL | 0.097 | 0.342 | |
(0.124) | (0.440) | ||
PDEN | 0.350 ** | 0.047 | |
(2.239) | (0.279) | ||
GOV | −1.444 *** | −1.294 *** | |
(−5.710) | (−5.113) | ||
HCL | −1.268 | −1.415 | |
(−0.746) | (−0.838) | ||
INFR | −0.005 ** | −0.004 * | |
(−2.247) | (−1.904) | ||
Year FE | YES | YES | YES |
City FE | YES | YES | YES |
Constant | 1.735 *** | −9.300 *** | −7.835 *** |
(76.296) | (−7.707) | (−6.337) | |
Observations | 2178 | 2178 | 2178 |
R2 | 0.890 | 0.913 | 0.915 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variable | ULUE | ULUE (SBM) | ULUE | ULUE |
L.DFEA | 0.011 ** | |||
(2.267) | ||||
L.DF | 0.102 *** | |||
(2.796) | ||||
L.EA | −0.019 | |||
(−1.138) | ||||
DFEA | 0.006 *** | 0.013 *** | 0.017 *** | |
(8.323) | (2.746) | (3.700) | ||
DF | 0.081 ** | −0.027 *** | 0.060 | 0.048 |
(2.137) | (−4.452) | (1.514) | (1.153) | |
EA | 0.014 | −0.023 *** | −0.022 | −0.005 |
(0.770) | (−8.834) | (−0.954) | (−0.334) | |
Controls | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES |
City FE | YES | YES | YES | YES |
Observations | 1902 | 1872 | 1907 | 1954 |
R2 | 0.927 | 0.872 | 0.927 | 0.917 |
(1) | (2) | (2) | |
---|---|---|---|
Variable | IA1 | IA2 | RIS |
DFEA | 0.013 ** | 3.982 *** | −0.004 *** |
(2.488) | (21.193) | (−3.358) | |
DF | 0.073 * | 7.346 *** | −0.021 ** |
(1.714) | (4.710) | (−1.978) | |
EA | −0.011 | −7.359 *** | 0.006 |
(−0.588) | (−10.929) | (1.281) | |
Controls | YES | YES | YES |
Year FE | YES | YES | YES |
City FE | YES | YES | YES |
Observations | 2178 | 2178 | 2178 |
R2 | 0.967 | 0.917 | 0.857 |
(1) Eastern | (2) Central | (3) Western | (4) Northeastern | |
---|---|---|---|---|
Variable | ULUE | ULUE | ULUE | ULUE |
DFEA | 0.027 *** | 0.037 ** | 0.009 | −0.018 |
(2.785) | (2.448) | (0.596) | (−0.490) | |
DF | 0.138 | −0.021 | −0.061 | 0.047 |
(1.049) | (−0.260) | (−1.194) | (0.752) | |
EA | −0.023 | −0.068 | −0.023 | 0.167 |
(−0.839) | (−1.366) | (−0.397) | (1.301) | |
Controls | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES |
City FE | YES | YES | YES | YES |
Observations | 649 | 632 | 622 | 267 |
R2 | 0.885 | 0.908 | 0.920 | 0.932 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Regions with High Internet Penetration | Regions with Low Internet Penetration | Regions with High S&T Expenditures | Regions with Low S&T Expenditures | |
Variable | ULUE | ULUE | ULUE | ULUE |
DFEA | 0.013 ** | 0.016 | 0.010 * | 0.016 |
(2.141) | (1.156) | (1.834) | (0.720) | |
DF | 0.102 | 0.022 | 0.091 | −0.057 |
(1.451) | (0.506) | (1.274) | (−1.314) | |
EA | −0.012 | −0.008 | 0.002 | −0.015 |
(−0.627) | (−0.207) | (0.101) | (−0.216) | |
Controls | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES |
City FE | YES | YES | YES | YES |
Observations | 1099 | 1040 | 1066 | 1072 |
R2 | 0.936 | 0.934 | 0.901 | 0.945 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Li, B.; Guo, G.; Tian, Y.; Zhang, Y.; Li, C. Unlocking the Power of Economic Agglomeration: How Digital Finance Enhances Urban Land Use Efficiency Through Innovation Ability and Rationalization of Industrial Structure in China. Land 2024, 13, 1805. https://doi.org/10.3390/land13111805
Hu Z, Li B, Guo G, Tian Y, Zhang Y, Li C. Unlocking the Power of Economic Agglomeration: How Digital Finance Enhances Urban Land Use Efficiency Through Innovation Ability and Rationalization of Industrial Structure in China. Land. 2024; 13(11):1805. https://doi.org/10.3390/land13111805
Chicago/Turabian StyleHu, Zijing, Bowen Li, Guanyu Guo, Yuan Tian, Yue Zhang, and Chengming Li. 2024. "Unlocking the Power of Economic Agglomeration: How Digital Finance Enhances Urban Land Use Efficiency Through Innovation Ability and Rationalization of Industrial Structure in China" Land 13, no. 11: 1805. https://doi.org/10.3390/land13111805
APA StyleHu, Z., Li, B., Guo, G., Tian, Y., Zhang, Y., & Li, C. (2024). Unlocking the Power of Economic Agglomeration: How Digital Finance Enhances Urban Land Use Efficiency Through Innovation Ability and Rationalization of Industrial Structure in China. Land, 13(11), 1805. https://doi.org/10.3390/land13111805