Landslide Displacement Prediction Using Kernel Extreme Learning Machine with Harris Hawk Optimization Based on Variational Mode Decomposition
Abstract
:1. Introduction
2. Theory and Methodology
2.1. Variational Mode Decomposition
2.2. Harris Hawk Optimization
2.3. Kernel Extreme Learning Machine
2.4. Prediction Procedure
2.5. Evaluation Indexes
3. Case Study
3.1. Landslide Information
3.2. Deformation Characteristic Analysis
3.3. Data Processing
3.3.1. Data Decomposition
3.3.2. Selection of Influencing Factors and Data Decomposition
3.3.3. Correlation Analysis of the Decomposition Components and Influencing Factors
4. Results and Analysis
4.1. Trend Term Prediction
4.2. Periodic Term Prediction
4.3. Random Term Prediction
4.4. Total Displacement Prediction
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wen, H.; Xiao, J.; Xiang, X.; Wang, X.; Zhang, W. Singular spectrum analysis-based hybrid PSO-GSA-SVR model for predicting displacement of step-like landslides: A case of Jiuxianping landslide. Acta Geotech. 2024, 19, 1835–1852. [Google Scholar] [CrossRef]
- Zhu, X.; Xu, Q.; Tang, M.; Nie, W.; Ma, S.; Xu, Z. Comparison of two optimized machine learning models for predicting displacement of rainfall-induced landslide: A case study in Sichuan Province, China. Eng. Geol. 2017, 218, 213–222. [Google Scholar] [CrossRef]
- Lian, C.; Zeng, Z.; Yao, W.; Tang, H. Extreme learning machine for the displacement prediction of landslide under rainfall and reservoir level. Stoch. Environ. Res. Risk Assess. 2014, 28, 1957–1972. [Google Scholar] [CrossRef]
- Du, H.; Song, D.; Chen, Z.; Shu, H.; Guo, Z. Prediction model oriented for landslide displacement with step-like curve by applying ensemble empirical mode decomposition and the PSO-ELM method. J. Clean. Prod. 2020, 270, 122248. [Google Scholar] [CrossRef]
- Segoni, S.; Piciullo, L.; Gariano, S.L. A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 2018, 15, 1483–1501. [Google Scholar] [CrossRef]
- Zhang, W.; Li, H.; Han, L.; Chen, L.; Wang, L. Slope stability prediction using ensemble learning techniques: A case study in Yunyang County, Chongqing, China. J. Rock Mech. Geotech. Eng. 2022, 14, 1089–1099. [Google Scholar] [CrossRef]
- Bai, D.; Lu, G.; Zhu, Z.; Tang, J.; Fang, J.; Wen, A. Using time series analysis and dual-stage attention-based recurrent neural network to predict landslide displacement. Environ. Earth Sci. 2022, 81, 509. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, J.; Cheng, Y.; Huang, L.; Guo, F.; Yin, X.; Li, N. Prediction of landslide displacement with dynamic features using intelligent approaches. Int. J. Min. Sci. Technol. 2022, 32, 539–549. [Google Scholar] [CrossRef]
- Wang, C.; Lin, G.; Guo, W.; Meng, Q.; Yang, K.; Ji, J. Landslide displacement prediction based on CEEMDAN and grey wolf optimized-support vector regression model. Front. Earth Sci. 2022, 10, 961528. [Google Scholar] [CrossRef]
- Du, J.; Yin, K.; Lacasse, S. Displacement prediction in colluvial landslides, Three Gorges Reservoir, China. Landslides 2012, 10, 203–218. [Google Scholar] [CrossRef]
- Cao, Y.; Yin, K.; Alexander, D.E.; Zhou, C. Using an extreme learning machine to predict the displacement of step-like landslides in relation to controlling factors. Landslides 2015, 13, 725–736. [Google Scholar] [CrossRef]
- Zhang, W.; Li, H.; Li, Y.; Liu, H.; Chen, Y.; Ding, X. Application of deep learning algorithms in geotechnical engineering: A short critical review. Artif. Intell. Rev. 2021, 54, 5633–5673. [Google Scholar] [CrossRef]
- Miao, S.; Hao, X.; Guo, X.; Wang, Z.; Liang, M. Displacement and landslide forecast based on an improved version of Saito’s method together with the Verhulst-Grey model. Arab. J. Geosci. 2017, 10, 53. [Google Scholar] [CrossRef]
- Wang, S.; Wu, W.; Wang, J.; Yin, Z.; Cui, D.; Xiang, W. Residual-state creep of clastic soil in a reactivated slow-moving landslide in the Three Gorges Reservoir Region, China. Landslides 2018, 15, 2413–2422. [Google Scholar] [CrossRef]
- Lian, C.; Zeng, Z.; Yao, W.; Tang, H. Multiple neural networks switched prediction for landslide displacement. Eng. Geol. 2015, 186, 91–99. [Google Scholar] [CrossRef]
- Guo, Z.; Yin, K.; Gui, L.; Liu, Q.; Huang, F.; Wang, T. Regional Rainfall Warning System for Landslides with Creep Deformation in Three Gorges using a Statistical Black Box Model. Sci. Rep. 2019, 9, 8962. [Google Scholar] [CrossRef]
- Carlà, T.; Intrieri, E.; Di Traglia, F.; Casagli, N. A statistical-based approach for determining the intensity of unrest phases at Stromboli volcano (Southern Italy) using one-step-ahead forecasts of displacement time series. Nat. Hazards 2016, 84, 669–683. [Google Scholar] [CrossRef]
- Zhang, W.; Gu, X.; Tang, L.; Yin, Y.; Liu, D.; Zhang, Y. Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: Comprehensive review and future challenge. Gondwana Res. 2022, 109, 1–17. [Google Scholar] [CrossRef]
- Intrieri, E.; Gigli, G.; Mugnai, F.; Fanti, R.; Casagli, N. Design and implementation of a landslide early warning system. Eng. Geol. 2012, 147–148, 124–136. [Google Scholar] [CrossRef]
- Corominas, J.; Moya, J.; Ledesma, A.; Lloret, A.; Gili, J.A. Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain). Landslides 2005, 2, 83–96. [Google Scholar] [CrossRef]
- Zhou, C.; Yin, K.L.; Huang, F.M. Application of the chaotic sequence WA-ELM coupling model in landslide displacement prediction. Rock Soil Mech. 2015, 36, 2674–2680. [Google Scholar]
- Zhang, W.; Li, H.; Tang, L.; Gu, X.; Wang, L.; Wang, L. Displacement prediction of Jiuxianping landslide using gated recurrent unit (GRU) networks. Acta Geotech. 2022, 17, 1367–1382. [Google Scholar] [CrossRef]
- Wang, L.; Xiao, T.; Liu, S.; Zhang, W.; Yang, B.; Chen, L. Quantification of model uncertainty and variability for landslide displacement prediction based on Monte Carlo simulation. Gondwana Res. 2023, 123, 27–40. [Google Scholar] [CrossRef]
- Yonggang, Z.; Lining, Y. A novel dynamic predictive method of water inrush from coal floor based on gated recurrent unit model. Nat. Hazards 2021, 105, 2027–2043. [Google Scholar] [CrossRef]
- Zhou, C.; Yin, K.; Cao, Y.; Intrieri, E.; Ahmed, B.; Catani, F. Displacement prediction of step-like landslide by applying a novel kernel extreme learning machine method. Landslides 2018, 15, 2211–2225. [Google Scholar] [CrossRef]
- Liu, Q.; Lu, G.; Dong, J. Prediction of landslide displacement with step-like curve using variational mode decomposition and periodic neural network. Bull. Eng. Geol. Environ. 2021, 80, 3783–3799. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Xue, S.; Wang, R.; Xiao, M. Stability analysis of a typical landslide mass in the Three Gorges Reservoir under varying reservoir water levels. Environ. Earth Sci. 2020, 79, 42. [Google Scholar] [CrossRef]
- Ling, Q.; Zhang, Q.; Zhang, J.; Kong, L.; Zhang, W.; Zhu, L. Prediction of landslide displacement using multi-kernel extreme learning machine and maximum information coefficient based on variational mode decomposition: A case study in Shaanxi, China. Nat. Hazards 2021, 108, 925–946. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, L.; Gui, L.; Du, J.; Yin, K.; Do, H.M. Landslide displacement prediction based on variational mode decomposition and WA-GWO-BP model. Landslides 2019, 17, 567–583. [Google Scholar] [CrossRef]
- Abd Elaziz, M.; Yang, H.; Lu, S. A multi-leader Harris hawk optimization based on differential evolution for feature selection and prediction influenza viruses H1N1. Artif. Intell. Rev. 2022, 55, 2675–2732. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Al-Wajih, R.; Abdulkadir, S.J.; Aziz, N.; Al-Tashi, Q.; Talpur, N. Hybrid Binary Grey Wolf With Harris Hawks Optimizer for Feature Selection. IEEE Access 2021, 9, 31662–31677. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhou, H.; Ding, X.; Zhang, R. Extreme Learning Machine for Regression and Multiclass Classification. IEEE Trans. Syst. Man Cybern. Part B 2012, 42, 513–529. [Google Scholar] [CrossRef] [PubMed]
- Liao, K.; Wu, Y.; Miao, F.; Li, L.; Xue, Y. Using a kernel extreme learning machine with grey wolf optimization to predict the displacement of step-like landslide. Bull. Eng. Geol. Environ. 2019, 79, 673–685. [Google Scholar] [CrossRef]
- Yuan, X.; Fan, Y.; Zhou, C.; Wang, X.; Zhang, G. Fault Diagnosis of Check Valve Based on KPLS Optimal Feature Selection and Kernel Extreme Learning Machine. Coatings 2022, 12, 1320. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.; Zhang, Y.; Wu, F.; Chen, F.; Wang, W.; Guo, F. Application of GWO-ELM model to prediction of caojiatuo landslide displacement in the Three Gorge Reservoir area. Water 2020, 12, 1860. [Google Scholar] [CrossRef]
- Zhou, C.; Yin, K.; Cao, Y.; Ahmed, B. Application of time series analysis and PSO–SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir, China. Eng. Geol. 2016, 204, 108–120. [Google Scholar] [CrossRef]
- Guo, W.; Meng, Q.; Wang, X.; Zhang, Z.; Yang, K.; Wang, C. Landslide Displacement Prediction Based on Variational Mode Decomposition and GA-Elman Model. Appl. Sci. 2023, 13, 450. [Google Scholar] [CrossRef]
- Wang, C.; Guo, W. Prediction of Landslide Displacement Based on the Variational Mode Decomposition and GWO-SVR Model. Sustainability 2023, 15, 5470. [Google Scholar] [CrossRef]
Displacement | Fluctuation Displacement | Precipitation | Reservoir Water Level | |||||
---|---|---|---|---|---|---|---|---|
Symbol | D1 | D2 | D3 | P1 | P2 | L1 | L2 | L3 |
Periodic component | 0.7512 | 0.7512 | 0.7510 | 0.7511 | 0.7511 | 0.7513 | 0.7523 | 0.7526 |
Random component | 0.9966 | 0.9966 | 0.9966 | 0.9957 | 0.9961 | 0.6635 | 0.9963 | 0.9964 |
Models | MAE | MAPE (%) | RMSE | R2 |
---|---|---|---|---|
HHO-KELM | 0.2410 | 0.7565 | 0.2734 | 0.9952 |
PSO-KELM | 0.2730 | 0.3087 | 0.3092 | 0.9939 |
KELM | 0.7053 | 6.3479 | 0.8239 | 0.9565 |
ELM | 0.6278 | 36.3613 | 0.8029 | 0.9587 |
Models | MAE | MAPE (%) | RMSE | R2 |
---|---|---|---|---|
HHO-KELM | 0.3208 | 0.0773 | 0.3680 | 0.9979 |
PSO-KELM | 0.5542 | 0.1342 | 0.6324 | 0.9939 |
KELM | 0.9008 | 0.2178 | 1.0338 | 0.9837 |
ELM | 1.4183 | 0.3390 | 1.6995 | 0.9559 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Lin, G.; Zhou, C.; Guo, W.; Meng, Q. Landslide Displacement Prediction Using Kernel Extreme Learning Machine with Harris Hawk Optimization Based on Variational Mode Decomposition. Land 2024, 13, 1724. https://doi.org/10.3390/land13101724
Wang C, Lin G, Zhou C, Guo W, Meng Q. Landslide Displacement Prediction Using Kernel Extreme Learning Machine with Harris Hawk Optimization Based on Variational Mode Decomposition. Land. 2024; 13(10):1724. https://doi.org/10.3390/land13101724
Chicago/Turabian StyleWang, Chenhui, Gaocong Lin, Cuiqiong Zhou, Wei Guo, and Qingjia Meng. 2024. "Landslide Displacement Prediction Using Kernel Extreme Learning Machine with Harris Hawk Optimization Based on Variational Mode Decomposition" Land 13, no. 10: 1724. https://doi.org/10.3390/land13101724
APA StyleWang, C., Lin, G., Zhou, C., Guo, W., & Meng, Q. (2024). Landslide Displacement Prediction Using Kernel Extreme Learning Machine with Harris Hawk Optimization Based on Variational Mode Decomposition. Land, 13(10), 1724. https://doi.org/10.3390/land13101724