Interplay between Network Position and Knowledge Production of Cities in China Based on Patent Measurement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conceptual Framework
2.2. Measuring the Network Position of Cities
2.3. Measuring the Knowledge Production of Cities
2.4. Estimation Methods
2.4.1. Econometric Models
2.4.2. Control Variables
3. Results and Discussion
3.1. Stylized Facts of Network Position and Knowledge Production
3.2. Benchmark Regression Analysis
3.3. Robustness Tests
3.4. Heterogeneity Analysis
3.5. Spatial Spillover Effects Analysis
4. Conclusions
- (1)
- A mutually reinforcing relationship is supported between the position characteristics of cities in the knowledge network and their knowledge production performance. Promotion of the network position significantly enhances the knowledge production of cities, and enhancement of the knowledge production also significantly promotes the network position of cities.
- (2)
- The interplay between the network position and knowledge production of cities exhibits heterogeneous characteristics. The positive effect of network position on knowledge production in the core block and the eastern region is significantly smaller than that in the periphery block and the central–western region, respectively, while the positive effect of knowledge production on network position in the core block and the eastern region is significantly greater than that in the periphery block and the central–western region, respectively.
- (3)
- The interplay between network position and knowledge production of cities exhibits spillover effects. The position characteristics of cities in the knowledge network are significantly affected by the knowledge production performance and network position characteristics of their neighboring cities, and the knowledge production performance of cities is also significantly dependent on the network position characteristics and knowledge production performance of their neighboring cities. In addition, the spillover effects of the interplay are accomplished by the synergistic interaction of the geographical proximity effect and the networked proximity effect.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, Z.; Peng, Z.; Derudder, B. Interurban Scientific Collaboration Networks across Chinese City-Regions. Environ. Plan. A Econ. Space 2021, 53, 6–8. [Google Scholar] [CrossRef]
- Mok, D.; Wellman, B.; Carrasco, J. Does Distance Matter in the Age of the Internet? Urban Stud. 2010, 47, 2747–2783. [Google Scholar] [CrossRef]
- Strambach, S.; Klement, B. Cumulative and Combinatorial Micro-Dynamics of Knowledge: The Role of Space and Place in Knowledge Integration. Eur. Plan. Stud. 2012, 20, 1843–1866. [Google Scholar] [CrossRef]
- Castells, M. The Rise of the Network Society; Blackwell Publishers: Oxford, UK, 1996. [Google Scholar]
- Camagni, R. From City Hierarchy to City Network: Reflections about an Emerging Paradigm. In Seminal Studies in Regional and Urban Economics; Capello, R., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 183–202. ISBN 978-3-319-57806-4. [Google Scholar]
- Derudder, B.; Neal, Z. Uncovering Links between Urban Studies and Network Science. Netw. Spat. Econ. 2018, 18, 441–446. [Google Scholar] [CrossRef]
- Hu, X.; Wang, C.; Wu, J.; Stanley, H.E. Understanding Interurban Networks from a Multiplexity Perspective. Cities 2020, 99, 102625. [Google Scholar] [CrossRef]
- Pan, F.; Bi, W.; Lenzer, J.; Zhao, S. Mapping Urban Networks through Inter-Firm Service Relationships: The Case of China. Urban Stud. 2017, 54, 3639–3654. [Google Scholar] [CrossRef]
- Pflieger, G.; Rozenblat, C. Introduction. Urban Networks and Network Theory: The City as the Connector of Multiple Networks. Urban Stud. 2010, 47, 2723–2735. [Google Scholar] [CrossRef]
- Sun, B.; Liu, P.; Zhang, W.; Zhang, T.; Li, W. Unpacking Urban Network as Formed by Client Service Relationships of Law Firms in China. Cities 2022, 122, 103546. [Google Scholar] [CrossRef]
- Wang, T.; Meijers, E.; Wang, H. The Multiplex Relations between Cities: A Lexicon-Based Approach to Detect Urban Systems. Reg. Stud. 2022, 57, 1592–1604. [Google Scholar] [CrossRef]
- Gui, Q.; Liu, C.; Du, D.; Duan, D. The Changing Geography of Global Science. Environ. Plan. A Econ. Space 2019, 51, 1615–1617. [Google Scholar] [CrossRef]
- Laperche, B. Knowledge Capital and Small Businesses. In Encyclopedia of Creativity, Invention, Innovation and Entrepreneurship; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1527–1532. [Google Scholar] [CrossRef]
- Lucas, R.E. On the Mechanics of Economic Development. J. Monet. Econ. 1988, 22, 3–42. [Google Scholar] [CrossRef]
- Nelson, R.R. The Sources of Economic Growth; Harvard University Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Romer, P.M. Increasing Returns and Long-Run Growth. J. Polit. Econ. 1986, 94, 1002–1037. [Google Scholar] [CrossRef]
- Dahlman, C.J.; Aubert, J.E. China and the Knowledge Economy: Seizing the 21st Century; World Bank Publications: Chicago, IL, USA, 2001. [Google Scholar]
- Shie, V.H.; Meer, C.D.; Shin, N.-F. Locating China in the Twenty-First-Century Knowledge-Based Economy. J. Contemp. China 2012, 21, 113–130. [Google Scholar] [CrossRef]
- Cao, Z.; Derudder, B.; Dai, L.; Peng, Z. ‘Buzz-and-Pipeline’ Dynamics in Chinese Science: The Impact of Interurban Collaboration Linkages on Cities’ Innovation Capacity. Reg. Stud. 2022, 56, 290–306. [Google Scholar] [CrossRef]
- Cooke, P. Regional Innovation Systems, Clusters, and the Knowledge Economy. Ind. Corp. Chang. 2001, 10, 945–974. [Google Scholar] [CrossRef]
- Florida, R.; Adler, P.; Mellander, C. The City as Innovation Machine. Reg. Stud. 2017, 51, 86–96. [Google Scholar] [CrossRef]
- Shearmur, R. Are Cities the Font of Innovation? A Critical Review of the Literature on Cities and Innovation. Cities 2012, 29, S9–S18. [Google Scholar] [CrossRef]
- Owen-Smith, J.; Powell, W.W. Knowledge Networks as Channels and Conduits: The Effects of Spillovers in the Boston Biotechnology Community. Organ. Sci. 2004, 15, 5–21. [Google Scholar] [CrossRef]
- Tsai, W. Knowledge Transfer in Intraorganizational Networks: Effects of Network Position and Absorptive Capacity on Business Unit Innovation and Performance. Acad. Manag. J. 2001, 44, 996–1004. [Google Scholar] [CrossRef]
- Liefner, I.; Hennemann, S. Structural Holes and New Dimensions of Distance: The Spatial Configuration of the Scientific Knowledge Network of China’s Optical Technology Sector. Environ. Plan. A Econ. Space 2011, 43, 810–829. [Google Scholar] [CrossRef]
- Breschi, S.; Lenzi, C. Co-Invention Networks and Inventive Productivity in US Cities. J. Urban Econ. 2016, 92, 66–75. [Google Scholar] [CrossRef]
- Broekel, T.; Brachert, M.; Duschl, M.; Brenner, T. Joint R&D Subsidies, Related Variety, and Regional Innovation. Int. Reg. Sci. Rev. 2017, 40, 297–326. [Google Scholar] [CrossRef]
- Capone, F.; Lazzeretti, L.; Innocenti, N. Innovation and Diversity: The Role of Knowledge Networks in the Inventive Capacity of Cities. Small Bus. Econ. 2021, 56, 773–788. [Google Scholar] [CrossRef]
- Coffano, M.; Foray, D.; Pezzoni, M. Does Inventor Centrality Foster Regional Innovation? The Case of the Swiss Medical Devices Sector. Reg. Stud. 2017, 51, 1206–1218. [Google Scholar] [CrossRef]
- Guan, J.; Zhang, J.; Yan, Y. The Impact of Multilevel Networks on Innovation. Res. Pol. 2015, 44, 545–559. [Google Scholar] [CrossRef]
- Gui, Q.; Liu, C.; Du, D. Does Network Position Foster Knowledge Production? Evidence from International Scientific Collaboration Network. Growth Chang. 2018, 49, 594–611. [Google Scholar] [CrossRef]
- Han, M.; Sun, B.; Su, X. Can a Region’s Network Location Characteristics Affect Its Innovation Capability? Empirical Evidence from China. Chin. Manag. Stud. 2020, 15, 328–349. [Google Scholar] [CrossRef]
- Hazır, C.S.; LeSage, J.; Autant-Bernard, C. The Role of R&D Collaboration Networks on Regional Knowledge Creation: Evidence from Information and Communication Technologies: Collaboration Networks and Regional Knowledge Creation. Pap. Reg. Sci. 2018, 97, 549–567. [Google Scholar] [CrossRef]
- Innocenti, N.; Capone, F.; Lazzeretti, L. Knowledge Networks and Industrial Structure for Regional Innovation: An Analysis of Patents Collaborations in Italy. Pap. Reg. Sci. 2020, 99, 55–72. [Google Scholar] [CrossRef]
- Cassi, L.; Morrison, A.; Rabellotti, R. Proximity and Scientific Collaboration: Evidence from the Global Wine Industry: Proximity and Scientific Collaboration. Tijdschr. Voor Econ. En Soc. Geogr. 2015, 106, 205–219. [Google Scholar] [CrossRef]
- Gui, Q.; Liu, C.; Du, D. International Knowledge Flows and the Role of Proximity: International Knowledge Flows and Proximity. Growth Chang. 2018, 49, 532–547. [Google Scholar] [CrossRef]
- Hoekman, J.; Frenken, K.; Van Oort, F. The Geography of Collaborative Knowledge Production in Europe. Ann. Reg. Sci. 2009, 43, 721–738. [Google Scholar] [CrossRef]
- Hoekman, J.; Frenken, K.; Tijssen, R.J.W. Research Collaboration at a Distance: Changing Spatial Patterns of Scientific Collaboration within Europe. Res. Pol. 2010, 39, 662–673. [Google Scholar] [CrossRef]
- Montobbio, F.; Sterzi, V. The Globalization of Technology in Emerging Markets: A Gravity Model on the Determinants of International Patent Collaborations. World Devel. 2013, 44, 281–299. [Google Scholar] [CrossRef]
- Paier, M.; Scherngell, T. Determinants of Collaboration in European R&D Networks: Empirical Evidence from a Discrete Choice Model. Ind. Innov. 2011, 18, 89–104. [Google Scholar] [CrossRef]
- Plotnikova, T.; Rake, B. Collaboration in Pharmaceutical Research: Exploration of Country-Level Determinants. Scientometrics 2014, 98, 1173–1202. [Google Scholar] [CrossRef]
- Ponds, R.; Van Oort, F.; Frenken, K. The Geographical and Institutional Proximity of Research Collaboration. Pap. Reg. Sci. 2007, 86, 423–443. [Google Scholar] [CrossRef]
- Scherngell, T.; Hu, Y. Collaborative Knowledge Production in China: Regional Evidence from a Gravity Model Approach. Reg. Stud. 2011, 45, 755–772. [Google Scholar] [CrossRef]
- Gilsing, V.; Nooteboom, B.; Vanhaverbeke, W.; Duysters, G.; Van Den Oord, A. Network Embeddedness and the Exploration of Novel Technologies: Technological Distance, Betweenness Centrality and Density. Res. Pol. 2008, 37, 1717–1731. [Google Scholar] [CrossRef]
- Hung, S.W.; Wang, A.P. Examining the Small World Phenomenon in the Patent Citation Network: A Case Study of the Radio Frequency Identification (RFID) Network. Scientometrics 2010, 82, 121–134. [Google Scholar] [CrossRef]
- Huggins, R.; Prokop, D. Network Structure and Regional Innovation: A Study of University–Industry Ties. Urban Stud. 2017, 54, 931–952. [Google Scholar] [CrossRef]
- Van Der Wouden, F.; Rigby, D.L. Co-Inventor Networks and Knowledge Production in Specialized and Diversified Cities. Pap. Reg. Sci. 2019, 98, 1833–1853. [Google Scholar] [CrossRef]
- Bathelt, H.; Malmberg, A.; Maskell, P. Clusters and Knowledge: Local Buzz, Global Pipelines and the Process of Knowledge Creation. Prog. Hum. Geog. 2004, 28, 31–56. [Google Scholar] [CrossRef]
- Boschma, R. Proximity and Innovation: A Critical Assessment. Reg. Stud. 2005, 39, 61–74. [Google Scholar] [CrossRef]
- Breschi, S.; Lenzi, C. The Role of External Linkages and Gatekeepers for the Renewal and Expansion of US Cities’ Knowledge Base, 1990–2004. Reg. Stud. 2015, 49, 782–797. [Google Scholar] [CrossRef]
- Broekel, T. Collaboration Intensity and Regional Innovation Efficiency in Germany: A Conditional Efficiency Approach. Ind. Innov. 2012, 19, 155–179. [Google Scholar] [CrossRef]
- De Araújo, I.F.; Gonçalves, E.; Taveira, J.G. The Role of Patent Co-Inventorship Networks in Regional Inventive Performance. Int. Reg. Sci. Rev. 2019, 42, 235–280. [Google Scholar] [CrossRef]
- Feng, Z.; Cai, H.; Chen, Z.; Zhou, W. Influence of an Interurban Innovation Network on the Innovation Capacity of China: A Multiplex Network Perspective. Technol. Forecast. Soc. 2022, 180, 121651. [Google Scholar] [CrossRef]
- Maggioni, M.A.; Nosvelli, M.; Uberti, T.E. Space versus Networks in the Geography of Innovation: A European Analysis. Pap. Reg. Sci. 2007, 86, 471–493. [Google Scholar] [CrossRef]
- Wanzenbbck, I.; Scherngell, T.; Brenner, T. Embeddedness of Regions in European Knowledge Networks: A Comparative Analysis of Inter-Regional R&D Collaborations, Co-Patents and Co-Publications. SSRN Electron. J. 2014, 53, 337–368. [Google Scholar] [CrossRef]
- Borgatti, S.P.; Everett, M.G. A Graph-Theoretic Perspective on Centrality. Soc. Netw. 2006, 28, 466–484. [Google Scholar] [CrossRef]
- Freeman, L.C. Centrality in Social Networks Conceptual Clarification. Soc. Netw. 1978, 1, 215–239. [Google Scholar] [CrossRef]
- Acs, Z.J.; Anselin, L.; Varga, A. Patents and Innovation Counts as Measures of Regional Production of New Knowledge. Res. Pol. 2002, 31, 1069–1085. [Google Scholar] [CrossRef]
- Griliches, Z. Patent Statistics as Economic Indicators: A Survey; National Bureau of Economic Research: Cambridge, MA, USA, 1990; p. w3301. [Google Scholar]
- Jaffe, A.B. Technological Opportunity and Spillovers of R & D: Evidence from Firms’ Patents, Profits, and Market Value. Am. Econ. Rev. 1986, 76, 984–1001. [Google Scholar]
- De Noni, I.; Orsi, L.; Belussi, F. The Role of Collaborative Networks in Supporting the Innovation Performances of Lagging-behind European Regions. Res. Pol. 2018, 47, 1–13. [Google Scholar] [CrossRef]
- Harris, C.D. The Market as a Factor in the Localization of Industry in the United States. Ann. Assoc. Am. Geogr. 1954, 44, 315–348. [Google Scholar] [CrossRef]
- Guan, J.; Zuo, K.; Chen, K.; Yam, R.C.M. Does Country-Level R&D Efficiency Benefit from the Collaboration Network Structure? Res. Pol. 2016, 45, 770–784. [Google Scholar] [CrossRef]
- Sheng, K.; Chen, H.; Zhang, J.; Gao, Y. Impact of airline network embedding on knowledge production of cities in China. Sci. Geogr. Sin. 2022, 42, 963–974. [Google Scholar] [CrossRef]
- Tang, C.; Guan, M.; Dou, J. Understanding the Impact of High Speed Railway on Urban Innovation Performance from the Perspective of Agglomeration Externalities and Network Externalities. Technol. Soc. 2021, 67, 101760. [Google Scholar] [CrossRef]
- Song, Y.; Yue, Q.; Zhu, J.; Zhang, M. Air Pollution, Human Capital, and Urban Innovation in China. Environ. Sci. Pollut. R. 2022, 30, 38031–38051. [Google Scholar] [CrossRef]
- Borgatti, S.P.; Everett, M.G. Models of Core/Periphery Structures. Soc. Netw. 2000, 21, 375–395. [Google Scholar] [CrossRef]
- Granovetter, M.S. The Strength of Weak Ties. Am. J. Sociol. 1973, 78, 1360–1380. [Google Scholar] [CrossRef]
- Sebestyén, T.; Varga, A. Research Productivity and the Quality of Interregional Knowledge Networks. Ann. Reg. Sci. 2013, 51, 155–189. [Google Scholar] [CrossRef]
- Demuynck, W.; Zhang, W.; Caset, F.; Derudder, B. Urban Co-Opetition in Megaregions: Measuring Competition and Cooperation within and beyond the Pearl River Delta. Comput. Environ. Urban Syst. 2023, 101, 101951. [Google Scholar] [CrossRef]
- Burger, M.J. Structure and Cooptition in Urban Networks; Erasmus University Rotterdam: Rotterdam, The Netherlands, 2011; ISBN 978-90-5892-288-5. [Google Scholar]
- Lai, K. Differentiated Markets: Shanghai, Beijing and Hong Kong in China’s Financial Centre Network. Urban Stud. 2012, 49, 1275–1296. [Google Scholar] [CrossRef]
- Crespo, J.; Suire, R.; Vicente, J. Lock-in or Lock-out? How Structural Properties of Knowledge Networks Affect Regional Resilience. J. Econ. Geogr. 2014, 14, 199–219. [Google Scholar] [CrossRef]
- Camagni, R.; Salone, C. Network Urban Structures in Northern Italy: Elements for a Theoretical Framework. Urban Stud. 1993, 30, 1053–1064. [Google Scholar] [CrossRef]
- Gordon, I. Internationalisation and Urban Competition. Urban Stud. 1999, 36, 1001–1016. [Google Scholar] [CrossRef]
- Capello, R. The City Network Paradigm: Measuring Urban Network Externalities. Urban Stud. 2000, 37, 1925–1945. [Google Scholar] [CrossRef]
- Burger, M.J.; Meijers, E.J. Agglomerations and the Rise of Urban Network Externalities. Pap. Reg. Sci. 2016, 95, 5–15. [Google Scholar] [CrossRef]
- Van Meeteren, M.; Neal, Z.; Derudder, B. Disentangling Agglomeration and Network Externalities: Conceptual Typology Illustrated by the Geography of Globalized Producer Service Firms. Pap. Reg. Sci. 2016, 95, 61–80. [Google Scholar] [CrossRef]
- Anselin, L.; Varga, A.; Acs, Z. Local Geographic Spillovers between University Research and High Technology Innovations. J. Urban Econ. 1997, 42, 422–448. [Google Scholar] [CrossRef]
- Griliches, Z. Issues in Assessing the Contribution of Research and Development to Productivity Growth. Bell J. Econ. 1979, 10, 92–116. [Google Scholar] [CrossRef]
- Jaffe, A.B. Real Effects of Academic Research. Am. Econ. Rev. 1989, 79, 957–970. [Google Scholar]
- Schilling, M.A.; Phelps, C.C. Interfirm Collaboration Networks: The Impact of Large-Scale Network Structure on Firm Innovation. Manag. Sci. 2007, 53, 1113–1126. [Google Scholar] [CrossRef]
- Zaheer, A.; Bell, G.G. Benefiting from Network Position: Firm Capabilities, Structural Holes, and Performance. Strateg. Manag. J. 2005, 26, 809–825. [Google Scholar] [CrossRef]
- Cantner, U.; Meder, A. Technological Proximity and the Choice of Cooperation Partner. J. Econ. Interact. Coord. 2007, 2, 45–65. [Google Scholar] [CrossRef]
- Doloreux, D.; Parto, S. Regional Innovation Systems: Current Discourse and Unresolved Issues. Technol. Soc. 2005, 27, 133–153. [Google Scholar] [CrossRef]
Variables | N | Mean | SD | Min | Max |
---|---|---|---|---|---|
972 | 7.006 | 2.042 | 2.079 | 12.515 | |
972 | 4.629 | 2.516 | 0.000 | 11.357 | |
972 | 8.395 | 1.154 | 5.707 | 13.483 | |
972 | 1.652 | 0.943 | 0.000 | 4.533 | |
972 | 0.664 | 1.589 | 0.000 | 9.777 | |
972 | 3.763 | 1.783 | 0.000 | 8.517 | |
972 | 8.362 | 1.329 | 0.000 | 12.184 | |
972 | 0.659 | 0.251 | 0.106 | 1.667 | |
972 | 10.461 | 4.861 | 0.000 | 16.82 | |
972 | 10.166 | 0.961 | 0.000 | 13.056 | |
972 | 6.237 | 1.821 | 3.985 | 11.408 | |
972 | 3.536 | 1.286 | 0.000 | 7.151 |
Rank | Degree | Patent | ||||||
---|---|---|---|---|---|---|---|---|
2005 | 2010 | 2015 | 2020 | 2005 | 2010 | 2015 | 2020 | |
1 | Beijing | Beijing | Beijing | Beijing | Shanghai | Shanghai | Beijing | Shenzhen |
[744] | [5271] | [32,101] | [85,561] | [23,131] | [57,538] | [147,705] | [272,436] | |
2 | Shanghai | Shanghai | Shenzhen | Shenzhen | Shenzhen | Beijing | Shenzhen | Beijing |
[652] | [3698] | [18,509] | [70,647] | [19,138] | [52,741] | [106,532] | [218,631] | |
3 | Shenzhen | Shenzhen | Shanghai | Guangzhou | Beijing | Shenzhen | Shanghai | Guangzhou |
[491] | [3154] | [18,284] | [55,448] | [18,575] | [44,779] | [90,020] | [210,273] | |
4 | Guangzhou | Guangzhou | Suzhou | Shanghai | Foshan | Suzhou | Suzhou | Shanghai |
[264] | [1370] | [9437] | [54,842] | [10,181] | [28,050] | [88,113] | [185,076] | |
5 | Tianjin | Tianjin | Nantong | Suzhou | Guangzhou | Hangzhou | Chongqing | Suzhou |
[217] | [1216] | [8826] | [41,187] | [7434] | [24,741] | [71,092] | [179,485] | |
6 | Shenyang | Nanjing | Guangzhou | Shaoxing | Tianjin | Wuxi | Tianjin | Hangzhou |
[164] | [991] | [6862] | [31,756] | [7241] | [22,248] | [61,129] | [129,502] | |
7 | Foshan | Hangzhou | Hangzhou | Quanzhou | Hangzhou | Chengdu | Chengdu | Nanjing |
[136] | [924] | [6708] | [26,894] | [6317] | [21,627] | [60,999] | [103,008] | |
8 | Haikou | Suzhou | Nanjing | Nanjing | Chengdu | Guangzhou | Guangzhou | Tianjin |
[128] | [769] | [6153] | [25,815] | [5308] | [18,077] | [54,585] | [91,980] | |
9 | Chengdu | Chengdu | Ningbo | Hangzhou | Chongqing | Tianjin | Hangzhou | Chengdu |
[108] | [755] | [5514] | [25,470] | [5115] | [16,120] | [53,539] | [85,678] | |
10 | Nanjing | Foshan | Chengdu | Nantong | Nanjing | Chongqing | Wuxi | Foshan |
[101] | [726] | [5124] | [24,939] | [3876] | [16,071] | [48,975] | [82,213] |
Year | Geographic Adjacency Matrix | Network Adjacency Matrix | ||||||
---|---|---|---|---|---|---|---|---|
Degree | Patent | Degree | Patent | |||||
Moran’s I | p Value | Moran’s I | p Value | Moran’s I | p Value | Moran’s I | p Value | |
2005 | 0.009 | 0.014 | 0.013 | 0.002 | 0.370 | 0.000 | 0.362 | 0.000 |
2010 | 0.013 | 0.001 | 0.036 | 0.000 | 0.358 | 0.000 | 0.429 | 0.000 |
2015 | 0.027 | 0.000 | 0.047 | 0.000 | 0.377 | 0.000 | 0.462 | 0.000 |
2020 | 0.058 | 0.000 | 0.048 | 0.000 | 0.468 | 0.000 | 0.459 | 0.000 |
Variables | Knowledge Production Equation | Variables | Network Position Equation |
---|---|---|---|
(1) | (2) | ||
0.685 *** | 0.234 *** | ||
(0.012) | (0.080) | ||
0.077 *** | 0.354 *** | ||
(0.030) | (0.109) | ||
0.209 *** | 0.105 *** | ||
(0.035) | (0.028) | ||
0.033 ** | −0.033 *** | ||
(0.013) | (0.009) | ||
0.064 *** | 0.620 *** | ||
(0.012) | (0.051) | ||
0.128 *** | 0.946 *** | ||
(0.015) | (0.094) | ||
Constant | 1.518 *** | Constant | −7.198 *** |
(0.219) | (0.435) | ||
R2 | 0.902 | R2 | 0.893 |
Observations | 972 | Observations | 972 |
Variables | Knowledge Production Equation | Variables | Network Position Equation | ||||||
---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | ||
NP: Eigenvector Centrality | NP: Coreness | Winsorize: NP | Winsorize: KP | NP: Eigenvector Centrality | NP: Coreness | Winsorize: NP | Winsorize: KP | ||
1.781 *** | 1.051 *** | 0.687 *** | 0.681 *** | 0.267 *** | 0.254 *** | 0.214 ** | 0.234 *** | ||
(0.659) | (0.607) | (0.012) | (0.012) | (0.047) | (0.022) | (0.081) | (0.083) | ||
Controls | Yes | Yes | Yes | Yes | Controls | Yes | Yes | Yes | Yes |
Constant | 2.591 *** | 1.160 | 1.478 *** | 1.659 *** | Constant | −0.748 *** | −0.530 * | −7.216 *** | −7.235 *** |
(1.493) | (1.284) | (0.221) | (0.218) | (0.245) | (0.282) | (0.442) | (0.435) | ||
R2 | 0.521 | 0.542 | 0.901 | 0.900 | R2 | 0.240 | 0.220 | 0.891 | 0.893 |
Observations | 972 | 972 | 972 | 972 | Observations | 972 | 972 | 972 | 972 |
Variables | Knowledge Production Equation | Variables | Network Position Equation | ||||||
---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | ||
Core Block | Periphery Block | Eastern Region | Central–Western Region | Core Block | Periphery Block | Eastern Region | Central–Western Region | ||
0.660 *** | 0.691 *** | 0.447 *** | 0.691 *** | 0.661 *** | 0.521 *** | 0.480 ** | 0.430 *** | ||
(0.022) | (0.018) | (0.038) | (0.018) | (0.131) | (0.069) | (0.211) | (0.091) | ||
Controls | Yes | Yes | Yes | Yes | Controls | Yes | Yes | Yes | Yes |
Constant | 1.487 *** | 1.485 *** | 2.768 *** | 1.500 *** | Constant | −6.207 *** | −6.804 *** | −8.445 *** | −6.045 *** |
(0.423) | (0.240) | (0.452) | (0.264) | (0.457) | (0.465) | (0.945) | (0.381) | ||
R2 | 0.691 | 0.768 | 0.846 | 0.847 | R2 | 0.797 | 0.818 | 0.889 | 0.871 |
Observations | 176 | 796 | 380 | 592 | Observations | 176 | 796 | 380 | 592 |
Variables | Knowledge Production Equation | Variables | Network Position Equation | ||
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | ||
Geographic Adjacency Matrix | Network Adjacency Matrix | Geographic Adjacency Matrix | Network Adjacency Matrix | ||
1.052 *** | 1.115 *** | 0.873 *** | 0.804 *** | ||
(0.027) | (0.030) | (0.025) | (0.025) | ||
−0.733 *** | −0.774 *** | −0.518 *** | −0.489 *** | ||
(0.051) | (0.051) | (0.032) | (0.032) | ||
0.534 *** | 0.537 *** | 0.721 *** | 0.721 *** | ||
(0.040) | (0.041) | (0.033) | (0.031) | ||
Controls | Yes | Yes | Controls | Yes | Yes |
Constant | 1.565 *** | 1.493 *** | Constant | −1.635 *** | −1.470 *** |
(0.159) | (0.166) | (0.229) | (0.221) | ||
R2 | 0.877 | 0.874 | R2 | 0.931 | 0.938 |
Observations | 972 | 972 | Observations | 972 | 972 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Sun, B.; Wang, C. Interplay between Network Position and Knowledge Production of Cities in China Based on Patent Measurement. Land 2024, 13, 1713. https://doi.org/10.3390/land13101713
Zhang J, Sun B, Wang C. Interplay between Network Position and Knowledge Production of Cities in China Based on Patent Measurement. Land. 2024; 13(10):1713. https://doi.org/10.3390/land13101713
Chicago/Turabian StyleZhang, Jie, Bindong Sun, and Chuanyang Wang. 2024. "Interplay between Network Position and Knowledge Production of Cities in China Based on Patent Measurement" Land 13, no. 10: 1713. https://doi.org/10.3390/land13101713
APA StyleZhang, J., Sun, B., & Wang, C. (2024). Interplay between Network Position and Knowledge Production of Cities in China Based on Patent Measurement. Land, 13(10), 1713. https://doi.org/10.3390/land13101713