Ash Treatment Promotes the Revegetation of Abandoned Extracted Peatlands
Abstract
:1. Introduction
- Does wood and oil shale ash application affect the composition and richness of vascular plant species?
- Which species (the cover of vascular plants and bryophytes) are characteristic of the experimental plots of the cutaway peatland treated with ash?
- Does the status of the volumetric water content, pH, and nutrient ratios (N:P, N:K, and Ca:Mg) in the peat substrate upper layer (0–20 cm) change after treatment with ash?
- Do wood ash and oil shale ash affect the allocation of the above- and belowground biomass of vascular plants on the fertilized plots?
2. Materials and Methods
2.1. Study Area and Natural Revegetation of Abandoned Peat-Extraction Fields
2.2. Treatments and Measurements
2.3. Weather Conditions during the Vegetation Periods in 2016, 2017, and 2019
2.4. Chemical Analyses
2.5. Statistical Analyses
3. Results
3.1. The Volumetric Water Content and Chemical Properties of Peat Substrate
3.2. The Effect of Ash Application on the Richness and Cover of Vascular Plants and Bryophytes
3.3. The Effect of Ash Application on the Composition of Vascular Plants and Bryophytes
3.4. The Allocation of above- and Belowground Biomass of Vascular Plants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aerts, R.; Wallen, B.; Malmer, N. Growth-limiting nutrients in Sphagnum-dominated bogs subjects to low and high atmospheric nitrogen supply. J. Ecol. 1992, 80, 131–140. [Google Scholar] [CrossRef]
- Campbell, D.R.; Lavoie, C.; Rochefort, L. Wind erosion and surface stability in abandoned milled peatlands. Can. J. Soil Sci. 2002, 82, 85–95. [Google Scholar] [CrossRef]
- Andersen, R.; Francez, A.-J.; Rochefort, L. The physicochemical and microbiological status of a restored bog in Quebec: Identification of relevant criteria to monitor success. Soil Biol. Biochem. 2006, 38, 1375–1387. [Google Scholar] [CrossRef]
- Aapala, K.; Sallantaus, T.; Haapalehto, T. Ecological restoration of drained peatlands. In Finland—Fenland; Korhonen, R., Korpela, L., Sarkkola, S., Eds.; Finnish Peat Society, Maahenki Ltd.: Helsinki, Finland, 2008; pp. 243–249. [Google Scholar]
- Järveoja, J.; Peichl, M.; Maddison, M.; Soosaar, K.; Vellak, K.; Karofeld, E.; Teemusk, A.; Mander, Ü. Impact of water table level on annual carbon and greenhouse gas balance of a restored peat extraction area. Biogeosciences 2016, 13, 1263–1272. [Google Scholar] [CrossRef]
- Silvan, N.; Yli-Petäys, M. Restoration of cut-away peatlands. In Finland—Fenland; Korhonen, R., Korpela, L., Sarkkola, S., Eds.; Finnish Peat Society, Maahenki Ltd.: Helsinki, Finland, 2008; pp. 238–242. [Google Scholar]
- Lode, E. Restoration of mires—The question of ethics, aesthetics and environmental awareness. Est. Peat 1999, 32, 5–11. (In Estonian) [Google Scholar]
- Karofeld, E.; Müür, M.; Vellak, K. Factors affecting re-vegetation dynamics of experimentally restored extracted peatland in Estonia. Environ. Sci. Pollut. Res. 2016, 23, 13706–13717. [Google Scholar] [CrossRef]
- Girard, M.; Lavoie, C.; Thériault, M. The Regeneration of a Highly Disturbed Ecosystem: A Mined Peatland in Southern Québec. Ecosystems 2002, 5, 274–288. [Google Scholar] [CrossRef]
- Lavoie, C.; Saint-Loius, A.; Lachance, D. Vegetation dynamics on an abandoned vacuum-mined peatland: 5 years of monitoring. Wetl. Ecol. Manag. 2005, 13, 621–633. [Google Scholar] [CrossRef]
- Orru, M.; Ots, K.; Orru, H. Re-vegetation processes in cutaway peat production fields in Estonia in relation to peat quality and water regime. Environ. Monit. Assess. 2016, 188, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Price, J.S. Hydrology and microclimate of a partly restored cutover bog, Québec. Hydrol. Process. 1996, 10, 1263–1272. [Google Scholar] [CrossRef]
- Triisberg, T.; Karofeld, E.; Paal, J. Factors affecting the re-vegetation of abandoned extracted peatlands in Estonia: A synthesis from field and greenhouse studies. Est. J. Ecol. 2013, 62, 192–211. [Google Scholar] [CrossRef]
- Triisberg-Uljas, T.; Karofeld, E.; Liira, J.; Orru, M. Microtopography and the properties of residual peat are convenient indicators for restoration planning of abandoned extracted peatlands. Restor. Ecol. 2014, 22, 31–39. [Google Scholar] [CrossRef]
- Salonen, V. Revegetation of harvested peat surfaces in relation to substrate quality. J. Veg. Sci. 1994, 5, 403–408. [Google Scholar] [CrossRef]
- Groeneveld, E.; Rochefort, L. Nursing plants in peatland restoration: On their potential use to alleviate frost heaving problems. Suo 2002, 53, 73–85. [Google Scholar]
- Salonen, V. Relationship between the seed rain and the establishment of vegetation in two areas abandoned after peat harvesting. Ecography 1987, 10, 171–174. [Google Scholar] [CrossRef]
- Huopalainen, M.; Tuittila, E.-S.; Laine, J.; Vasander, H. The potential of soil seed banks for revegetation of bogs in SW Finland after long-term aerial pollution. Ann. Bot. Fenn. 2000, 37, 1–9. [Google Scholar]
- Quinty, F.; Rochefort, L. Peatland Restoration Guide, 2nd ed.; Canadian Sphagnum Peat Moss Association and the New Brunswick Department of Natural Resources and Energy: Québec, Canada, 2003. [Google Scholar]
- Triisberg-Uljas, T.; Karofeld, E.; Paal, J. Re-vegetation of block-cut and milled peatlands: An Estonian example. Mires Peat 2011, 8, 5. [Google Scholar]
- Campbell, D.R.; Rochefort, L. Germination and seedling growth of bog plants in relation to the recolonization of milled peatlands. Plant Ecol. 2003, 169, 71–84. [Google Scholar] [CrossRef]
- Zuševica, A.; Celma, S.; Neimane, S.; von Cossel, M.; Lazdina, D. Wood-ash fertiliser and distance from drainage ditch impacts the succession and biodiversity of vascular plant species in tree plantings on marginal organic soil. Agronomy 2022, 12, 421. [Google Scholar] [CrossRef]
- Paal, J. Cutover Peatlands, Their Use and Rehabilitation; Eesti Turbaliit: Tartu, Estonia, 2011. (In Estonian) [Google Scholar]
- Huotari, N.; Tillman-Sutela, E.; Kubin, E. Ground vegetation has a major role in element dynamics in an ash-fertilized cut-away peatland. For. Ecol. Manag. 2011, 261, 2081–2088. [Google Scholar] [CrossRef]
- Campbell, D.R.; Rochefort, L.; Lavoie, C. Determining the immigration potential of plants colonizing disturbed environments: The case of milled peatlands in Quebec. J. Appl. Ecol. 2003, 40, 79–91. [Google Scholar] [CrossRef]
- Lanta, V.; Doležal, J.; Šamata, J. Vegetation patterns in a cut-away peatland in relation to abiotic and biotic factors: A case study from the Šumava Mts., Czech Republic. Suo 2004, 55, 33–43. [Google Scholar]
- Rochefort, L.; Campeau, S. Rehabilitation work on post-harvested bogs in south eastern Canada. In Conserving Peatlands; Parkyn, L., Stoneman, R.E., Ingram, H.A.P., Eds.; Cab International: Wallingford, UK, 1997; pp. 287–294. [Google Scholar]
- Poulin, M.; Rochefort, L.; Quinty, F.; Lavoie, C. Spontaneous revegetation of mined peatlands in eastern Canada. Can. J. Bot. 2005, 83, 539–557. [Google Scholar] [CrossRef]
- Salonen, V.; Penttinen, A.; Särkkä, A. Plant colonization of a bare peat surface: Population changes and spatial patterns. J. Veg. Sci. 1992, 3, 113–118. [Google Scholar] [CrossRef]
- Huopalainen, M.; Tuittila, E.-S.; Laine, J.; Vasander, H. Seed and spore bank in a cut-away peatland twenty years after abandoment. Int. Peat J. 1998, 8, 42–51. [Google Scholar]
- Berube, M.-E.; Lavoie, C. The natural revegation of a vacuum-mined peatland: Eight years of monitoring. Can. Field-Nat. 2000, 114, 279–286. [Google Scholar] [CrossRef]
- Rowlands, R.G.; Feehan, J. The ecological future of industrially milled cutaway peatlands in Ireland. Asp. Appl. Biol. 2000, 58, 263–269. [Google Scholar]
- Tuittila, E.-S.; Vasander, H.; Laine, J. Impact of rewetting on the vegetation of a cut-away peatland. Appl. Veg. Sci. 2000, 3, 205–212. [Google Scholar] [CrossRef]
- Boudreau, S.; Rochefort, L. Restoration of Post-Mined Peatlands: Effect of Vascular Pioneer Species on Sphagnum Establishment; International Peat Society: Duluth, MN, USA, 1998; pp. 39–43. [Google Scholar]
- Groeneveld, E.; Massé, A.; Rochefort, L. Polytrichum strictum as a nurse-plant in peatland restoration. Restor. Ecol. 2007, 15, 709–719. [Google Scholar] [CrossRef]
- Huotari, N.; Tillmann-Sutela, E.; Kauppi, A.; Kubin, E. Fertilization ensures rapid formation of ground vegetation on cut-away peatlands. Can. J. Forest Res. 2007, 37, 874–883. [Google Scholar] [CrossRef]
- Silferberg, K. Nutrient Status and Development of Tree Stands and Vegetation on Ash-Fertilized Drained Peatlands; The Finnish Forest Research Institute: Vantaa, Finland, 1996. [Google Scholar]
- Moilanen, M.; Silfverberg, K.; Hokkanen, T.J. Effects of wood-ash on the tree growth, vegetation and substrate quality of a drained mire: A case study. Forest Ecol. Manag. 2002, 171, 321–338. [Google Scholar] [CrossRef]
- Kikamägi, K.; Ots, K.; Kuznetsova, T. Effect of wood ash on the biomass production and nutrient status of young silver birch (Betula pendula Roth) trees on cutaway peatlands in Estonia. Ecol. Eng. 2013, 58, 17–25. [Google Scholar] [CrossRef]
- Kikamägi, K.; Ots, K.; Kuznetsova, T.; Pototski, A. The growth and nutrients status of conifers on ash-treated cutaway peatland. Trees Struct. Funct. 2014, 28, 53–64. [Google Scholar] [CrossRef]
- Ots, K.; Tilk, M.; Aguraijuja, K. The effect of oil shale ash and mixtures of wood ash and oil shale ash on the above- and belowground biomass formation of Silver birch and Scots pine seedlings on a cutaway peatland. Ecol. Eng. 2017, 108, 296–306. [Google Scholar] [CrossRef]
- Ramst, R.; Orru, M.; Salo, V.; Halliste, L. Revision of Estonian Cutaway Peatlands. In The Second Stage: Ida-Viru, Lääne-Viru, Jõgeva, Järva ja Tartu County; Geological Survey of Estonia: Tallinn, Estonia, 2006. [Google Scholar]
- Leht, M. Keybook of Estonian Vascular Plants; Eesti Loodusfoto: Tartu, Estonia, 2010. [Google Scholar]
- Ingerpuu, N.; Kalda, A.; Krall, H.; Kannukene, L.; Leis, M.; Vellak, K. Estonian Bryophyte Identifier; EPMÜ ZBI: Tartu, Estonia, 1998. [Google Scholar]
- Estonian Weather Service. Available online: https://www.ilmateenistus.ee/ilm/ilmavaatlused/vaatlusandmed/oopaevaandmed/ (accessed on 29 November 2023).
- ISO/10390; Soil Quality—Determination of pH International Organization for Standardization: Geneva, Switzerland, 1994.
- ISO/11261; Soil Quality—Determination of Total Nitrogen—Modified Kjeldahl Method. International Organization for Standardization: Geneva, Switzerland, 1995.
- ISO/11260; Soil Quality—Determination of CEC and Base Saturation. International Organization for Standardization: Geneva, Switzerland, 1995.
- R-4.1.1 Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- McCune, B.; Mefford, M. PC-ORD. Multivariate Analysis of Ecological Data, Version 7; M&M Software: Gleneden Beach, OR, USA, 2016. [Google Scholar]
- Humphrey, J.W.; Daveyb, S.; Peacec, A.J.; Harding, K. Lichens and bryophyte communities of planted and semi-natural forests in Britain: The influence of site type, stand structure and dead wood. Biol. Conserv. 2002, 107, 165–180. [Google Scholar] [CrossRef]
- Belnap, J.; Lange, O.L. Biological Soil Crusts: Structure, Function, and Management; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Joosten, H. The Global Peatland CO2 Picture: Peatland Status and Drainage Related Emissions in All Countries of the World; Wetland International: Ede, The Netherlands, 2010; p. 36. [Google Scholar]
- Ren, H.; Wang, F.; Ye, W.; Zhang, Q.; Han, T.; Huang, Y.; Chu, G.; Hui, D.; Guo, Q. Bryophyte diversity is related to vascular plant diversity and microhabitat under disturbance in karst caves. Ecol. Indic. 2021, 120, 106947. [Google Scholar] [CrossRef]
- Tilk, M.; Tullus, T.; Ots, K. Effects of environmental factors on the species richness, composition and community horizontal structure of vascular plants in Scots pine forests on fixed sand dunes. Silva Fenn. 2017, 51, 6986. [Google Scholar] [CrossRef]
- Tilk, M.; Ots, K.; Tullus, T. Effect of environmental factors on the composition of terrestrial bryophyte and lichen species in Scots pine forests on fixed sand dunes. For. Syst. 2018, 27, e015. [Google Scholar] [CrossRef]
- Huotari, N.; Tillman-Sutela, E.; Kubin, E. Ground vegetation exceeds tree seedlings in early biomass production and carbon stock on an ash-fertilized cut-away peatland. Biomass Bioenergy 2009, 33, 1108–1115. [Google Scholar] [CrossRef]
- Näsi, N.; Kubin, E.; Tillman-Sutela, E. Revegetation of a Cut-Away Peatland Is Accelerated by Ash-Fertilization; TNM Print: Nove Mesto, Slovakia, 2005; pp. 42–46. [Google Scholar]
- Liira, J.; Triisberg-Uljas, T.; Karofeld, E.; Karu, H.; Paal, J. Does the autecology of core species reflect the synecology of functional groups during the assembly of vegetation in abandoned extracted peatlands? Mires Peat 2019, 20, 8. [Google Scholar]
- Liu, Z.; Notaro, M.; Gallimore, R. Indirect vegetation-soil moisture feedback with application to Holocene North Africa climate. Glob. Change Biol. 2010, 16, 1733–1743. [Google Scholar] [CrossRef]
- Wang, X.; Liu, F.; Tan, W.; Li, W.; Feng, X.; Sparks, D.L. Characteristics of phosphate adsorption-desorption onto ferrihydrite: Comparison with well-crystalline Fe (hydr)oxides. Soil Sci. 2013, 178, 1–11. [Google Scholar] [CrossRef]
- Ferland, C.; Rochefort, L. Restoration techniques for Sphagnum-dominated. Can. J. Bot. 1997, 75, 1110–1118. [Google Scholar] [CrossRef]
- Sottocornola, M.; Boudreau, S.; Rochefort, L. Peat bog restoration: Effect of phosphorus on plant re-establishment. Ecol. Eng. 2007, 31, 29–40. [Google Scholar] [CrossRef]
- Nieminen, M.; Penttilä, M. Inorganic and organic phosphorus fractions in peat from drined mires in northern Finland. Silva Fenn. 2004, 38, 243–251. [Google Scholar] [CrossRef]
- Ferm, A.; Hokkanen, T.; Moilanen, M.; Issakainen, J. Effects of wood bark ash on the growth and nutrition of a Scots pine afforestation in central Finland. Plant Soil 1992, 147, 305–316. [Google Scholar] [CrossRef]
- Purre, A.-H.; Truus, L.; Ilomets, M. Decade of vegetation development on two revegetated milled peatlands with different trophic status. Mires Peat 2021, 27, 2. [Google Scholar]
- Kristian, R.; Roosaluste, E. Secondari Succession in Disturbed Raised Bogs. In Dynamics and Ecology of Wetlands and Lakes in Estonia; Academy of Sciences of the Estonian SSR: Tallinn, Estonia, 1988; pp. 145–154. [Google Scholar]
- Salonen, V.; Setälä, H. Plant colonization of bare peat surface—Relative importance of seed availability and soil. Ecography 1992, 15, 199–204. [Google Scholar] [CrossRef]
- Purre, A.-H.; Ilomets, M.; Truus, L.; Pajula, R.; Sepp, K. The effect of different treatments of Moss Layer Transfer Technique on plant functional types biomass in revegetated milled peatlands. Restor. Ecol. 2020, 28, 1584–1595. [Google Scholar] [CrossRef]
- Valk, U. Estonian bogs; OÜ Halo Kirjastus: Tartu, Estonia, 2005. [Google Scholar]
- Karofeld, E.; Vellak, K.; Marmor, L.; Paal, J. The influence of alkaline dust input on the bogs in North-East Estonia. For. Stud. 2007, 47, 47–70. [Google Scholar]
- Huotari, N. Recycling of Wood- and Peat-Ash—A Successful Way to Establish Full Plant Cover and Dense Birch Stand on a Cut-Away Peatland; University of Oulu, Faculty of Science, Department of Biology: Oulu, Finland, 2011. [Google Scholar]
- Koerselman, W.; Meuleman, A. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 1996, 33, 1441–1450. [Google Scholar] [CrossRef]
Precipitation (mm) | Temperature (°C) | |||||
---|---|---|---|---|---|---|
2016 | 2017 | 2019 | 2016 | 2017 | 2019 | |
April | 48.8 | 60.7 | 7.7 | 5.0 | 1.9 | 6.2 |
May | 3.0 | 16.1 | 50.6 | 12.9 | 8.7 | 9.8 |
June | 127.0 | 75.4 | 22.5 | 15.4 | 12.7 | 17.4 |
July | 113.4 | 106.6 | 104.8 | 17.1 | 14.9 | 15.6 |
August | 175.3 | 133.7 | 57.7 | 15.5 | 15.7 | 15.2 |
September | 20.7 | 83.7 | 82.5 | 12.2 | 11.5 | 11.1 |
October | 73.0 | 127.6 | 141.5 | 4.0 | 4.6 | 5.8 |
Average | 80.2 | 86.3 | 66.7 | 11.7 | 10.0 | 11.6 |
Element | Wood Ash | Oil Shale Ash |
---|---|---|
pH | 9.8 | 12.5 |
N | <1000 | <1000 |
P | 14,275 | 658 |
K | 12,200 | 9800 |
Ca | 155,000 | 270,000 |
Mg | 2040 | 39,750 |
2016 | 2017 | 2019 | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Species | WA15 | WA10 | WA10+OSA8 | OSA8 | WA15 | WA10 | WA10+OSA8 | OSA8 | WA15 | WA10 | WA10+OSA8 | OSA8 | ||||||||||||
F | C | F | C | F | C | F | C | F | C | F | C | F | C | F | C | F | C | F | C | F | C | F | C | |
Artemisia vulgaris | 15 | + | 9 | 2 | 6 | + | 6 | + | 17 | 2 | ||||||||||||||
Calamagrostis canescens | 28 | 2 | 61 | 4 | 39 | + | 22 | 20 | 13 | 1 | 28 | 15 | ||||||||||||
Carex pseudocyperus | 11 | 2 | 6 | + | ||||||||||||||||||||
Epilobium angustifolium | 92 | 4 | 67 | 2 | 73 | 1 | 67 | 2 | 78 | 3 | 39 | + | 83 | 10 | 73 | 14 | 50 | 5 | 14 | 1 | ||||
Epipactis palustris | 9 | + | 6 | + | 6 | 3 | 13 | 13 | 6 | 10 | ||||||||||||||
Eriophorum vaginatum | 22 | 2 | 22 | 3 | 17 | + | 21 | 4 | ||||||||||||||||
Eupatorium cannabinum | 17 | + | 11 | 30 | 13 | 13 | ||||||||||||||||||
Hieracium sp. | 8 | + | 9 | + | 6 | + | 11 | + | 61 | 2 | 6 | 5 | 20 | 12 | 44 | 4 | 14 | 4 | ||||||
Juncus effusus | 62 | 27 | 67 | 24 | 36 | 1 | 20 | 5 | 6 | + | 22 | 2 | 6 | + | 27 | 31 | 17 | 8 | 7 | 2 | ||||
Lycopus europaeus | 17 | + | 6 | 10 | 13 | 2 | ||||||||||||||||||
Melilotus albus | 6 | 10 | 6 | 2 | ||||||||||||||||||||
Orthilia secunda | 78 | 12 | 33 | 6 | 6 | + | 50 | 24 | 33 | 20 | 6 | 5 | ||||||||||||
Phragmites australis | 8 | + | 27 | 1 | 78 | 6 | 33 | 2 | 78 | 2 | 6 | 20 | 7 | 3 | 28 | 4 | 50 | 4 | ||||||
Poa nemoralis | 6 | + | 11 | + | 22 | 13 | 13 | 3 | 7 | 2 | ||||||||||||||
Polygala amarella | 6 | + | 6 | + | 6 | 5 | ||||||||||||||||||
Potentilla norvegica | 11 | + | 6 | + | 11 | 12 | ||||||||||||||||||
Pyrola rotundifolia | 62 | 19 | 33 | 21 | 18 | 1 | 83 | 25 | 78 | 25 | 22 | 3 | 83 | 32 | 40 | 20 | 22 | 23 | ||||||
Sagina nodosa | 11 | + | 11 | + | 6 | 10 | ||||||||||||||||||
Taraxacum officinale | 6 | + | 17 | + | 11 | + | 17 | 1 | 7 | 1 | ||||||||||||||
Trichophorum alpinum | 78 | 4 | 6 | 5 | 20 | 7 | 28 | 26 | 72 | 9 | ||||||||||||||
Tussilago farfara | 46 | 5 | 17 | + | 36 | + | 44 | 3 | 56 | 3 | 17 | + | 44 | 14 | 40 | 8 | 6 | 8 | ||||||
Valeriana officinalis | 7 | 1 | ||||||||||||||||||||||
Veronica officinalis | 6 | 2 | 7 | 1 | ||||||||||||||||||||
Vicia cracca | 8 | + | 6 | + | 6 | 5 | 7 | 4 | ||||||||||||||||
Total No. of species | 8 | 8 | 4 | 4 | 8 | 1 | 14 | 17 | 15 | 1 | 16 | 15 | 9 | |||||||||||
Barbula convoluta | 100 | 23 | 72 | 7 | 71 | 12 | ||||||||||||||||||
Ceratodon purpureus | 100 | 100 | 78 | 25 | 61 | 32 | 100 | 73 | 11 | 15 | 53 | 59 | 78 | 76 | ||||||||||
Polytrichum strictum | 23 | 18 | 100 | 67 | 22 | 2 | 33 | 8 | 17 | 2 | 11 | 15 | 13 | 40 | ||||||||||
Total No. of species | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 1 | 1 |
Species | WA15 | WA10 | WA10+OSA8 | OSA8 |
---|---|---|---|---|
Pyrola rotundifolia | 116 | 34 | 97 | – |
Epilobium angustifolium | 84 | 43 | – | – |
Orthilia secunda | 25 | – | 8 | – |
Tussilago farfara | 28 | 9 | – | – |
Calamagrostis canescens | – | – | 138 | – |
Trichophorum alpinum | – | – | 67 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ots, K.; Tullus, T.; Sild, M.; Tullus, A.; Lutter, R.; Kaivapalu, M.; Sopp, R.; Täll, K.; Tullus, H. Ash Treatment Promotes the Revegetation of Abandoned Extracted Peatlands. Land 2024, 13, 1623. https://doi.org/10.3390/land13101623
Ots K, Tullus T, Sild M, Tullus A, Lutter R, Kaivapalu M, Sopp R, Täll K, Tullus H. Ash Treatment Promotes the Revegetation of Abandoned Extracted Peatlands. Land. 2024; 13(10):1623. https://doi.org/10.3390/land13101623
Chicago/Turabian StyleOts, Katri, Tea Tullus, Mari Sild, Arvo Tullus, Reimo Lutter, Marju Kaivapalu, Reeno Sopp, Kristjan Täll, and Hardi Tullus. 2024. "Ash Treatment Promotes the Revegetation of Abandoned Extracted Peatlands" Land 13, no. 10: 1623. https://doi.org/10.3390/land13101623
APA StyleOts, K., Tullus, T., Sild, M., Tullus, A., Lutter, R., Kaivapalu, M., Sopp, R., Täll, K., & Tullus, H. (2024). Ash Treatment Promotes the Revegetation of Abandoned Extracted Peatlands. Land, 13(10), 1623. https://doi.org/10.3390/land13101623