Effects of the Implementation of the Broadband China Policy (BCP) on House Prices: Evidence from a Quasi-Natural Experiment in China
Abstract
:1. Introduction
2. Policy Background and Theoretical Hypothesis
2.1. Policy Background
2.2. Hypothesis
3. Materials and Methods
3.1. Data Description
3.2. Model Setting
- (1)
- Geographical distance matrix: Firstly, the actual distance between the two locations is calculated according to the latitude and longitude coordinates of the two prefecture-level cities, and the elements on the diagonal of the matrix are all taken as 0; the economic meaning is that the geographical distance of the same city is 0. Next, the non-diagonal elements are taken as the reciprocal of the geographical distance between the two locations. The matrix is then row-normalized to obtain the geographic matrix W1 required for this paper.
- (2)
- Economic distance matrix: To construct the economic distance matrix, firstly, a representative economic indicator between two cities is selected to measure the economic closeness of the two locations, and GDP per capita is usually chosen in the relevant literature. The diagonal element of this matrix is 0, and the elements in other positions are the inverse of the absolute value of the difference between the GDP per capita of the two prefecture-level cities. Finally, row normalization is performed to obtain the economic distance matrix.
- (3)
- Economic and social matrix: The economic matrix and the social matrix are multiplied before the two-row standardization, and then row standardization is carried out to obtain the economic and social matrix.
3.3. Selection of Variables
3.3.1. Independent Variable
3.3.2. Core Explanatory Variables
3.3.3. Mechanism Variables
3.3.4. Control Variables
3.4. Description of Data
3.5. Spatial Autocorrelation Testing
4. Results
4.1. Baseline Regression Analysis
4.2. Robustness Tests
4.2.1. Parallel Trend and Dynamic Effects Test
4.2.2. Placebo Test
4.2.3. Excluding Other Policy Interference
5. Mechanism Analysis
5.1. Land Urbanization Effect
5.2. Infrastructure Improvement Effect
5.3. Industry Optimization and upgrade Effect
6. Heterogeneity Analysis
6.1. Heterogeneity in the Level of a City’s Economy
6.2. Heterogeneity of Administrative Levels of Cities
6.3. Heterogeneity of Urban Location Characteristics
7. Discussion and Conclusions
7.1. Research Conclusions
7.2. Policy Implications
- Investigate the multifaceted trajectory of Broadband China development and enhance the effectiveness of pilot policy execution. Cities must persist in fortifying the institutional framework encompassing digital infrastructure, industrial assistance, and talent acquisition to further refine the comprehensive urban milieu during the implementation of the Broadband China initiative.
- Intensify housing price regulation and suppress speculative activities. Potential speculators may exploit the policy’s progress to engage in property market manipulation. Disproportionate surges in housing prices could hinder a city’s holistic growth and efficient land utilization. As urbanization advances, monitoring and controlling housing prices is imperative to fostering high-quality urban evolution.
- Advocate for locally tailored urbanization and emphasize synchronized regional growth. Considering the industrial structure impact, infrastructural ramifications, and spatial spillover resulting from the Broadband China initiative, a dynamic and context-specific approach should be employed while promoting the policy to avoid a blanket, one-size-fits-all strategy.
- Direct the redistribution and allocation of resource factors to invigorate urban innovation and entrepreneurship. Primarily, a more lenient talent recruitment policy should be established to attract a greater influx of innovative resources and skilled individuals, facilitating the agglomeration of a high-caliber workforce, optimizing the regional talent resource distribution, and ultimately stimulating entrepreneurial vigor.
7.3. Limitations and Further Planning
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lopez, E.; Bocco, G.; Mendoza, M.; Velazquez, A.; Aguirre-Rivera, J.R. Peasant emigration and land-use change at the watershed level: A GIS-based approach in Central Mexico. Agric. Syst. 2006, 90, 62–78. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, Y. Modeling Urban Expansion and Agricultural Land Conversion in Henan Province, China: An Integration of Land Use and Socioeconomic Data. Sustainability 2016, 8, 920. [Google Scholar] [CrossRef]
- Fan, X.; Zhao, L.; He, D. Land Use Changes and its Driving Factors in a Coastal Zone. Pol. J. Environ. Stud. 2020, 29, 1143–1150. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Yang, F.; Zhu, L.; Li, R.; Wu, C.; Chen, D. Comparative Analysis of the Factors Influencing Land Use Change for Emerging Industry and Traditional Industry: A Case Study of Shenzhen City, China. Land 2021, 10, 575. [Google Scholar] [CrossRef]
- Lubowski, R.N.; Plantinga, A.J.; Stavins, R.N. What Drives Land-Use Change in the United States? A National Analysis of Landowner Decisions. Land Econ. 2008, 84, 529–550. [Google Scholar] [CrossRef]
- Song, X. Discussion on land use transition research framework. Acta Geogr. Sin. 2017, 72, 471–487. (In Chinese) [Google Scholar]
- Peng, J.; Zhao, M.; Guo, X.; Pan, Y.; Liu, Y. Spatial-temporal dynamics and associated driving forces of urban ecological land: A case study in Shenzhen City, China. Habitat Int. 2017, 60, 81–90. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, X.; Yang, H.; Zhong, T. Environmental effects of land-use/cover change caused by urbanization and policies in Southwest China Karst area—A case study of Guiyang. Habitat Int. 2014, 44, 339–348. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.X.; Yu, L. Is social capital eroded by the state-led urbanization in China? A case study on indigenous villagers in the urban fringe of Beijing. China Econ. Rev. 2015, 35, 232–246. [Google Scholar] [CrossRef]
- Zhao, P. Too complex to be managed? New trends in peri-urbanisation and its planning in Beijing. Cities 2013, 30, 68–76. [Google Scholar] [CrossRef]
- Zhao, P.; Wan, J. Land use and travel burden of residents in urban fringe and rural areas: An evaluation of urban-rural integration initiatives in Beijing. Land Use Policy 2021, 103, 105309. [Google Scholar] [CrossRef]
- Liu, R.; Tai-chee, W.; Liu, S. The informal housing market in Beijing’s rural areas: Its formation and operating mechanism amidst the process of urbanization. Geogr. Res. 2010, 29, 1355–1358. [Google Scholar]
- Sun, L.; Fertner, C.; Jorgensen, G. Beijing’s First Green Belt—A 50-Year Long Chinese Planning Story. Land 2021, 10, 969. [Google Scholar] [CrossRef]
- Liu, D.; Zheng, X.; Wang, H.; Zhang, C.; Li, J.; Lv, Y. Interoperable scenario simulation of land-use policy for Beijing-Tianjin-Hebei region, China. Land Use Policy 2018, 75, 155–165. [Google Scholar] [CrossRef]
- Ghent, C. Mitigating the effects of transport infrastructure development on ecosystems. Consilience 2018, 19, 58–68. [Google Scholar]
- Erena, M.G.; Yesus, T.G. Mapping potential wildlife habitats around Haro Abba Diko controlled hunting area, Western Ethiopia. Ecol. Evol. 2021, 11, 11282–11294. [Google Scholar] [CrossRef]
- Taylor, A.C.; Walker, F.M.; Goldingay, R.L.; Ball, T.; Van Der Ree, R. Degree of landscape fragmentation influences genetic isolation among populations of a Gliding mammal. PLoS ONE 2011, 6, e26651. [Google Scholar] [CrossRef]
- Brashares, J.S.; Arcese, P.; Sam, M. Human demography and reserve size predict wildlife extinction in West Africa. Biol. Sci. 2001, 268, 2473–2478. [Google Scholar] [CrossRef]
- Graham, M.D.; Notter, B.; Adams, W.M.; Lee, P.C.; Ochieng, T.N. Patterns of crop-raiding by elephants, Loxodonta africana, in Laikipia, Kenya, and the management of human–elephant conflict. Syst. Biodivers. 2010, 8, 435–445. [Google Scholar] [CrossRef]
- Wind, Y.; Saaty, T.L. Marketing applications of the analytic hierarchy process. Manag. Sci. 1980, 26, 641–658. [Google Scholar] [CrossRef]
- Molina-Prieto, L.F.; Rubio Fernández, D. Elementos de urbanismo azul: Lagos naturales y artificiales. Rev. Investig. 2016, 9, 22–44. [Google Scholar] [CrossRef]
- Poó Rubio, A. Origen es Destino. La Ciudad de México. De la Ciudad Lacustre a la Metrópoli de los Desastres Hídricos. In Proceedings of the XI Encuentro Iberoamericano de Mujeres Ingenieras, Arquitectas y Agrimensoras, Santo Domingo, Dominican Republic, 5–10 March 2012; p. 36. [Google Scholar]
- Darrah, S.E.; Shennan-Farpón, Y.; Loh, J.; Davidson, N.C.; Finlayson, C.M.; Gardner, R.C.; Walpole, M.J. Improvements to the Wetland Extent Trends (WET) Index as a Tool for Monitoring Natural and Human-Made Wetlands. Ecol. Indic. 2019, 99, 294–298. [Google Scholar] [CrossRef]
- Forman, R.T.T. Urban Ecology: Science of Cities; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Almazán-Núñez, R.C.; Hinterholzer-Rodríguez, A. Dinámica temporal de la avifauna en un parque urbano de la ciudad de Puebla, México. Huit. Rev. Mex. Ornitol. 2010, 11, 26–34. [Google Scholar] [CrossRef]
- Gledhill, D.G.; James, P. Rethinking Urban Blue Spaces from a Landscape Perspective: Species, Scale and the Human Element. In Ecological Perspectives of Urban Green and Open Spaces; Breuste, J., Ed.; Salzburger Geographische Arbeiten: Salzburg, Austria, 2008; Volume 42, pp. 151–164. [Google Scholar]
- Haase, D. Reflections about Blue Ecosystem Services in Cities. Sustain. Water Qual. Ecol. 2015, 5, 77–83. [Google Scholar]
- Fang, S.; Li, H.; Sun, Q.; Chen, L. Biomass production and carbon stocks in poplar-crop intercropping systems: A case study in northwestern Jiangsu, China. Agrofor. Syst. 2010, 79, 213–222. [Google Scholar] [CrossRef]
- Hairiah, K.; van Noordwijk, M.; Sari, R.R.; Saputra, D.D.; Suprayogo, D.; Kurniawan, S.; Prayogo, C.; Gusli, S. Soil carbon stocks in Indonesian (agro) forest transitions: Compaction conceals lower carbon concentrations in standard accounting. Agric. Ecosyst. Environ. 2020, 294, 106879. [Google Scholar] [CrossRef]
- Lim, S.-S.; Baah-Acheamfour, M.; Choi, W.-J.; Arshad, M.A.; Fatemi, F.; Banerjee, S.; Carlyle, C.N.; Bork, E.W.; Park, H.-J.; Chang, S.X. Soil organic carbon stocks in three Canadian agroforestry systems: From surface organic to deeper mineral soils. For. Ecol. Manag. 2018, 417, 103–109. [Google Scholar] [CrossRef]
- Whalen, J.K.; Willms, W.D.; Dormaar, J.F. Soil carbon, nitrogen and phosphorus in modified rangeland communities. Rangel. Ecol. Manag. J. Range Manag. Arch. 2003, 56, 665–672. [Google Scholar]
- Neto, V.; Ainuddin, N.A.; Wong, M.; Ting, H. Contributions of forest biomass and organic matter to above-and belowground carbon contents at Ayer Hitam Forest Reserve, Malaysia. J. Trop. For. Sci. 2012, 24, 217–230. [Google Scholar]
- Bruun, H.H.; Moen, J.; Virtanen, R.; Grytnes, J.A.; Oksanen, L.; Angerbjörn, A. Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. J. Veg. Sci. 2006, 17, 37–46. [Google Scholar] [CrossRef]
- Chatterjee, N.; Nair, P.R.; Chakraborty, S.; Nair, V.D. Changes in soil carbon stocks across the Forest-Agroforest-Agriculture/Pasture continuum in various agroecological regions: A meta-analysis. Agric. Ecosyst. Environ. 2018, 266, 55–67. [Google Scholar] [CrossRef]
- Aalde, H.; Gonzalez, P.; Gytarsky, M.; Krug, T.; Kurz, W.A.; Lasco, R.D.; Martino, D.L.; McConkey, B.G.; Ogle, S.; Paustian, K. Generic methodologies applicable to multiple land-use categories. In IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies (IGES) for the IPCC: Kanagawa, Japan, 2006; Volume 4, pp. 1–59. [Google Scholar]
- Li, Q. The Research on Carbon Storage of Populous-Crop Intercropping System in the Huanghuaihai Plain. Master’s Thesis, Henan Agricultural University, Zhengzhou, Henan, 2008. [Google Scholar]
- Ziegler, A.D.; Phelps, J.; Yuen, J.Q.; Webb, E.L.; Lawrence, D.; Fox, J.M.; Bruun, T.B.; Leisz, S.J.; Ryan, C.M.; Dressler, W. Carbon outcomes of major land-cover transitions in SE Asia: Great uncertainties and REDD+ policy implications. Glob. Chang. Biol. 2012, 18, 3087–3099. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Kaushal, R.; Alam, N.; Mehta, H.; Chaturvedi, O.; Mandal, D.; Tomar, J.; Rathore, A.; Singh, C. Predictive models for biomass and carbon stocks estimation in Grewia optiva on degraded lands in western Himalaya. Agrofor. Syst. 2014, 88, 895–905. [Google Scholar] [CrossRef]
- Winjum, J.K.; Dixon, R.K.; Schroeder, P.E. Estimating the global potential of forest and agroforest management practices to sequester carbon. Water Air Soil Pollut. 1992, 64, 213–227. [Google Scholar] [CrossRef]
- Yadav, R.; Gupta, B.; Bhutia, P.; Bisht, J. Socioeconomics and sources of livelihood security in Central Himalaya, India: A case study. Int. J. Sustain. Dev. World Ecol. 2017, 24, 545–553. [Google Scholar] [CrossRef]
- Choudhary, B.; Saxena, K. An assessment of soil organic carbon, total nitrogen and tree biomass in land uses of a village landscape of central Himalaya, India. Glob. J. Environ. Res. 2015, 9, 27–42. [Google Scholar]
- Possu, W.B.; Brandle, J.R.; Domke, G.M.; Schoeneberger, M.; Blankenship, E. Estimating carbon storage in windbreak trees on US agricultural lands. Agrofor. Syst. 2016, 90, 889–904. [Google Scholar] [CrossRef]
- Elmqvist, T.; Setälä, H.; Handel, S.; van der Ploeg, S.; Aronson, J.; Blignaut, J.; Gómez-Baggethun, E.; Nowak, D.; Kronenberg, J.; de Groot, R. Benefits of Restoring Ecosystem Services in Urban Areas. Curr. Opin. Environ. Sustain. 2015, 14, 101–108. [Google Scholar] [CrossRef]
- Batres González, J.J.; Ortells Chabrera, V.; Lorenzo Palomera, J. Diseño y ordenamiento de la dinámica urbana, medio ineludible en la preservación sustentable de los de los recursos hídricos naturales urbanos en México, caso lagunas urbanas del sur de Tamaulipas (Tampico-Madero-Altamira). Quivera 2010, 12, 1–13. [Google Scholar]
- Ricárdez de la Cruz, G.; López Ocaña, G.; Bautista Margulis, R.G.; Torres Balcázar, C.A. Laguna de las Ilusiones y su entorno urbano: Aguas residuales, urbanas y sedimentos. Kuxulkab 2016, 22, 27–38. [Google Scholar] [CrossRef]
- Oliva Martínez, M.G.; Rodríguez Rocha, A.; Lugo Vázquez, A.; Sánchez Rodríguez, M.d.R. Composición y Dinámica Del Fitoplancton En Un Lago Urbano Hipertrófico. Hidrobiológica 2008, 18, 1–13. [Google Scholar]
- Pineda-Mendoza, R.; Martínez-Jerónimo, F.; Garduño-Solórzano, G.; Olvera-Ramírez, R. Caracterización morfológica y molecular de cianobacterias filamentosas aisladas de florecimientos de tres lagos urbanos eutróficos de la Ciudad de México. Polibotánica 2011, 31, 31–50. [Google Scholar]
- Rodríguez Rodríguez, E.; Ruíz Ruíz, M.; Vertíz Pérez, L.A. Procesos de Eutroficación en Siete Lagunas Urbanas de Villlahermosa, Tabasco, México. In Proceedings of the Congreso Regional de AIDIS para Norteamérica y El Caribe, San Juan, Puerto Rico, 8–12 June 1997; p. 10. [Google Scholar]
- Haeffner, M.; Jackson-Smith, D.; Buchert, M.; Risley, J. Accessing Blue Spaces: Social and Geographic Factors Structuring Familiarity with, Use of, and Appreciation of Urban Waterways. Landsc. Urban Plan. 2017, 167, 136–146. [Google Scholar] [CrossRef]
- Barbose, G.; Darghouth, N.R.; Weaver, S.; Feldman, D.; Margolis, R.; Wiser, R. Tracking US Photovoltaic System Prices 1998–2012: A Rapidly Changing Market. Prog. Photovolt. 2014, 23, 692. [Google Scholar] [CrossRef]
- Bergquist, A.-K.; Söderholm, K. Transition to Greener Pulp: Regulation, Industry Responses, and Path Dependency. Bus. Hist. 2015, 57, 862. [Google Scholar] [CrossRef]
- Birch, K.; Calvert, K. Rethinking “Drop-in” Biofuels: On the Political Materialities of Bioenergy. Sci. Technol. Stud. 2015, 28, 52–72. [Google Scholar] [CrossRef]
- Brudermann, T.; Sangkakool, T. Green Roofs in Temperate Climate Cities in Europe—An Analysis of Key Decision Factors. Urban For. Urban Green. 2017, 21, 224–234. [Google Scholar] [CrossRef]
- Bryson, D.; Atwal, G.; Chaudhuri, A.; Dave, K. Antecedents of Intention to Use Green Banking Services in India. Strateg. Chang. 2016, 25, 551–567. [Google Scholar] [CrossRef]
- Cavdar, S.C.; Aydin, A.D. An Empirical Analysis about Technological Development and Innovation Indicators (World Conference on Technology, Innovation and Entrepreneurship. Procedia-Soc. Behav. Sci. 2015, 195, 1486–1495. [Google Scholar] [CrossRef]
- Chiu, C.H. Regulatory Regimes and the Environmental Implications of Sustainability-Based Governance of Extralegal Buildings: Comparing the Taichung and Kaohsiung Policies. J. Archit. Plan. 2017, 18, 113–128. [Google Scholar]
- Cohen, S. What Is Stopping the Renewable Energy Transformation and What Can the US Government Do? Soc. Res. 2015, 82, 689–710. [Google Scholar] [CrossRef]
- Cooper, J.R. A Multidimensional Approach to the Adoption of Innovation. Manag. Decis. 1998, 36, 493–502. [Google Scholar] [CrossRef]
- Cowley, R.; Joss, S.; Dayot, Y. The Smart City and Its Publics: Insights from across Six UK Cities. Urban Res. Pract. 2017, 11, 53. [Google Scholar] [CrossRef]
- Dal Borgo, M.; Goodridge, P.; Haskel, J.; Pesole, A. Productivity and Growth in UK Industries: An Intangible Investment Approach. Oxf. Bull. Econ. Stat. 2013, 75, 806–834. [Google Scholar] [CrossRef]
- de Boer, J.; Zuidema, C.; van Hoorn, A.; de Roo, G. The Adaptation of Dutch Energy Policy to Emerging Area-Based Energy Practices. Energy Policy 2018, 117, 142–150. [Google Scholar] [CrossRef]
Variable Name | Average | Standard Deviation | Min | Max | N |
---|---|---|---|---|---|
did | 0.3058 | 0.2015 | 0.0000 | 1.0000 | 3372 |
hp | 2.4460 | 7.1286 | 0.0464 | 64.0385 | 3372 |
industry | 0.1760 | 0.1131 | 0.0374 | 0.4333 | 3372 |
land | 48.1854 | 8.7020 | 28.3300 | 66.4100 | 3372 |
manufacture | 1.2886 | 0.5895 | 0.4380 | 3.3208 | 3372 |
science | 0.0133 | 0.0113 | 0.0016 | 0.0424 | 3372 |
finance | 1.3300 | 1.2034 | 0.4697 | 9.6221 | 3372 |
fdi | 0.0105 | 0.0133 | 0.0000 | 0.0613 | 3372 |
edu | 0.0405 | 0.0736 | 0.0009 | 0.4277 | 3372 |
den | 0.0401 | 0.0329 | 0.0011 | 0.1185 | 3372 |
Year | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
Moran I | 0.064 *** | 0.066 *** | 0.052 *** | 0.052 *** | 0.051 *** | 0.052 *** |
Year | 2015 | 2016 | 2017 | 2018 | 2019 | |
Moran I | 2015 | 0.043 *** | 0.038 *** | 0.046 *** | 0.050 *** |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
---|---|---|---|---|---|---|---|---|
Variables | lnhp FE | lnhp FE | lnhp SAR | lnhp SAR | lnhp SEM | lnhp SEM | lnhp SDM | lnhp SDM |
DID | 0.275 ** | 0.528 *** | 0.251 ** | 0.534 *** | 0.234 ** | 0.542 *** | 0.221 ** | 0.492 *** |
(2.33) | (3.61) | (2.22) | (3.70) | (2.11) | (3.79) | (2.03) | (3.39) | |
City FE | YES | YES | YES | YES | YES | YES | YES | YES |
Control FE | YES | YES | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES | YES | YES |
Rho | 0.186 *** | 0.139 ** | 0.157 *** | 0.117 ** | ||||
(3.43) | (2.52) | (3.10) | (2.29) | |||||
Lambda | 0.179 *** | 0.121 ** | ||||||
(3.29) | (2.15) | |||||||
Observations | 3372 | 3372 | 3372 | 3372 | 3372 | 3372 | 3372 | 3372 |
R-squared | 0.033 | 0.108 | 0.041 | 0.054 | 0.048 | 0.061 | 0.001 | 0.011 |
Number of city | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 |
City FE | YES | YES | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES | YES | YES |
(1) | (2) | (3) | |
---|---|---|---|
did | 0.1110 | 0.1956 | 0.0880 |
(0.5676) | (1.0675) | (0.5028) | |
rho | −0.4845 | −1.8648 | 0.5587 |
(−0.1238) | (−0.4939) | (0.1566) | |
_cons | −3.0603 | −3.4299 | −6.7852 |
(−0.2920) | (−0.3454) | (−0.6825) |
(1) | (2) | (3) | |
---|---|---|---|
did | 0.2640 | 0.5156 | 0.4356 |
(0.2165) | (0.4346) | (0.3283) | |
rho | 0.1514 | 0.1551 | 0.1256 |
(1.1052) | (1.2605) | (0.9157) | |
_cons | −2.9614 | −3.1950 * | −2.6348 |
(−1.4312) | (−1.7116) | (−1.2489) |
(1) | (2) | (3) | |
---|---|---|---|
water1 | 0.4061 ** | 0.1213 * | 0.1256 * |
(1.9954) | (1.8152) | (1.7323) | |
_cons | −4.1901 * | −2.8734 | −3.2898 |
(−1.9492) | (−1.5569) | (−1.4766) |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
---|---|---|---|---|---|---|---|---|
Variables | lnhp FE | lnhp FE | lnhp SAR | lnhp SAR | lnhp SEM | lnhp SEM | lnhp SDM | lnhp SDM |
DID | 0.196 *** | 0.151 *** | 0.199 *** | 0.130 ** | 0.138 *** | 0.115 ** | 0.199 *** | 0.130 ** |
(3.58) | (2.71) | (3.50) | (2.29) | (2.64) | (2.22) | (3.50) | (2.29) | |
Land | 0.014 | 0.019 * | 0.017 | 0.021 * | 0.019 * | 0.020 * | 0.026 ** | 0.031 *** |
(1.33) | (1.78) | (1.62) | (1.95) | (1.81) | (1.88) | (2.41) | (2.70) | |
City FE | YES | YES | YES | YES | YES | YES | YES | YES |
Control FE | NO | YES | NO | YES | NO | YES | NO | YES |
Year FE | YES | YES | YES | YES | YES | YES | YES | YES |
Rho | 0.186 *** | 0.139 ** | 0.157 *** | 0.117 ** | ||||
(3.43) | (2.52) | (3.10) | (2.29) | |||||
Lambda | 0.179 *** | 0.121 ** | ||||||
(3.29) | (2.15) | |||||||
Observations | 3372 | 3372 | 3372 | 3372 | 3372 | 3372 | 3372 | 3372 |
R-squared | 0.036 | 0.112 | 0.043 | 0.047 | 0.051 | 0.056 | 0.006 | 0.007 |
Number of city | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 |
City FE | YES | YES | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES | YES | YES |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
---|---|---|---|---|---|---|---|---|
Variables | lnhp FE | lnhp FE | lnhp SAR | lnhp SAR | lnhp SEM | lnhp SEM | lnhp SDM | lnhp SDM |
DID | 0.512 *** | 0.789 *** | 0.153 *** | 0.020 * | 0.026 ** | 0.031 *** | 0.013 *** | 0.019 * |
(0.016) | (0.021) | (0.016) | (1.88) | (2.41) | (2.70) | (1.74) | (1.81) | |
Land | 0.174 *** | 0.019 * | 0.117 ** | 0.021 * | 0.019 * | 0.020 * | 0.026 ** | 0.031 *** |
(1.99) | (1.78) | (2.29) | (1.95) | (1.81) | (1.88) | (2.41) | (2.70) | |
City FE | YES | YES | YES | YES | YES | YES | YES | YES |
Control FE | NO | YES | NO | YES | NO | YES | NO | YES |
Year FE | YES | YES | YES | YES | YES | YES | YES | YES |
Rho | 0.186 *** | 0.139 ** | 0.157 *** | 0.117 ** | ||||
(3.43) | (2.52) | (3.10) | (2.29) | |||||
Lambda | 0.179 *** | 0.121 ** | ||||||
(3.29) | (2.15) | |||||||
Observations | 3372 | 3372 | 3372 | 3372 | 3372 | 3372 | 3372 | 3372 |
R-squared | 0.036 | 0.112 | 0.043 | 0.047 | 0.051 | 0.056 | 0.006 | 0.007 |
Number of city | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 |
City FE | YES | YES | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES | YES | YES |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
---|---|---|---|---|---|---|---|---|
Variables | lnhp FE | lnhp FE | lnhp SAR | lnhp SAR | lnhp SEM | lnhp SEM | lnhp SDM | lnhp SDM |
DID | 0.084 *** | 0.085 *** | 0.095 *** | 0.081 *** | 0.024 *** | 0.024 *** | 0.014 ** | 0.024 *** |
(3.12) | (2.29) | (1.95) | (1.81) | (1.88) | (3.29) | (3.61) | (2.22) | |
Land | 0.121 ** | 0.279 *** | 0.006 ** | 0.006 ** | 0.540 *** | 0.680 *** | 0.025 *** | 0.021 *** |
(0.57) | (1.05) | (0.53) | (0.53) | (2.34) | (2.16) | (1.87) | (1.57) | |
City FE | YES | YES | YES | YES | YES | YES | YES | YES |
Control FE | NO | YES | NO | YES | NO | YES | NO | YES |
Year FE | YES | YES | YES | YES | YES | YES | YES | YES |
Rho | 0.186 *** | 0.139 ** | 0.157 *** | 0.117 ** | ||||
(3.43) | (2.52) | (3.10) | (2.29) | |||||
Lambda | 0.179 *** | 0.121 ** | ||||||
(3.29) | (2.15) | |||||||
Observations | 3372 | 3372 | 3372 | 3372 | 3372 | 3372 | 3372 | 3372 |
R-squared | 0.036 | 0.112 | 0.043 | 0.047 | 0.051 | 0.056 | 0.006 | 0.007 |
Number of city | 281 | 281 | 281 | 281 | 281 | 281 | 281 | 281 |
City FE | YES | YES | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES | YES | YES |
Economy High | Economy Middle | Economy Low | Administrative High | Administrative Middle | Administrative Low | Eastern Region | Central Region | Western Region | |
---|---|---|---|---|---|---|---|---|---|
did | 3.6910 ** | 2.6198 * | 0.4061 ** | 4.2723 ** | 3.3169 ** | 0.3551 * | 3.5851 * | 5.4974 ** | 4.8785 * |
(2.0712) | (1.7283) | (1.9954) | (2.4334) | (2.1166) | (1.9106) | (1.8244) | (2.1536) | (1.8857) | |
rho | 0.1151 | 0.1213 * | 0.1256 * | 0.4610 ** | 1.5251 | 0.3551 * | 0.0022 | 0.2182 | 0.8251 *** |
(1.5515) | (1.8152) | (1.7323) | (2.1415) | (0.4169) | (1.9106) | (0.0060) | (0.7844) | (2.9919) | |
_cons | −4.1901 * | −2.8734 | −3.2898 | −2.1854 | −0.1505 | −0.5708 | 0.7687 | −2.2825 ** | −2.8020 *** |
(−1.9492) | (−1.5569) | (−1.4766) | (−1.2258) | (−0.1011) | (−0.3239) | (0.4128) | (−2.1157) | (−2.7986) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; He, Y.; Zheng, K. Effects of the Implementation of the Broadband China Policy (BCP) on House Prices: Evidence from a Quasi-Natural Experiment in China. Land 2023, 12, 1111. https://doi.org/10.3390/land12051111
Wang P, He Y, Zheng K. Effects of the Implementation of the Broadband China Policy (BCP) on House Prices: Evidence from a Quasi-Natural Experiment in China. Land. 2023; 12(5):1111. https://doi.org/10.3390/land12051111
Chicago/Turabian StyleWang, Peng, Yihui He, and Kengcheng Zheng. 2023. "Effects of the Implementation of the Broadband China Policy (BCP) on House Prices: Evidence from a Quasi-Natural Experiment in China" Land 12, no. 5: 1111. https://doi.org/10.3390/land12051111
APA StyleWang, P., He, Y., & Zheng, K. (2023). Effects of the Implementation of the Broadband China Policy (BCP) on House Prices: Evidence from a Quasi-Natural Experiment in China. Land, 12(5), 1111. https://doi.org/10.3390/land12051111