Spatiotemporal Patterns in Land Use/Land Cover Observed by Fusion of Multi-Source Fine-Resolution Data in West Africa
Abstract
:1. Introduction
- (1)
- Identify the time intervals with the slowest and fastest annual rate of change.
- (2)
- Identify the LULC categories that were relatively dormant or active in a given interval, i.e., to examine the LULC categories that gained/lost more or less than expected.
- (3)
- Examine the LULC categories that were avoided or targeted by a given LULC category for transition in a given interval.
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Re-Classification of the Multi-Source Land Use/Land Cover (LULC) Data
2.3.1. Land Use/Land Cover Change Detection
2.3.2. Development of a New Land Use/ Land Cover (LULC) Classification Scheme
2.3.3. Data Aggregation and Mosaicking
2.4. Validation of the Land Use/Land Cover Datasets
2.5. Development of a Transition Matrix
2.6. The Intensity Analysis Framework
Equations | No. |
---|---|
(1) | |
(2) | |
(3) | |
(4) | |
(5) | |
(6) | |
(7) | |
(8) | |
(9) |
2.6.1. Identification of the Time Intervals with the Slowest and Fastest Annual Rate of Change
2.6.2. Identification of the Land Use/Land Cover (LULC) Categories That Were Relatively Dormant or Active
2.6.3. Examination of the Land Use/Land Cover (LULC) Categories That Were Avoided or Targeted for Transitions
3. Results
3.1. Comparison of the Land Use/Land Cover (LULC) Maps in Different Years
3.2. Identification of the Time Intervals with the Slowest and Fastest Annual Rate of Change
3.3. Identification of the LULC Categories That Were Relatively Dormant or Active in a Given Interval
3.4. Examination of the LULC Categories That Were Avoided or Targeted for Transitions
3.4.1. Shrubland, Grassland, Cropland, and Settlement Gains
3.4.2. Forestland, Wetland, Water Bodies, and Bare Land Losses
4. Discussion
4.1. Identification of the Time Intervals with the Slowest and Fastest Annual Rate of Change
4.2. Identification of the LULC Categories That Were Relatively Dormant or Active in a Given Interval
4.3. Examination of the LULC Categories That Were Avoided or Targeted for Transitions
5. Conclusions
6. Policy Recommendations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
No. | Code | COUNTRY |
---|---|---|
1 | BEN | Benin |
2 | BUF | Burkina Faso |
3 | CAM | Cameroon |
4 | CHA | Chad |
5 | CDI | Cote d’dIvoire |
6 | GAM | Gambia |
7 | GHA | Ghana |
8 | GIN | Guinea |
9 | GUB | Guinea Bissau |
10 | LIB | Liberia |
11 | MAL | Mali |
12 | MAU | Mauritania |
13 | NIG | Niger |
14 | NIR | Nigeria |
15 | SEN | Senegal |
16 | SIL | Sierra Leone |
17 | TOG | Togo |
], where t ranges from 1 to T-1 ] |
References
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of land-use and land-cover change in tropical regions. Annu. Rev. Environ. Resour. 2003, 28, 206–216. [Google Scholar] [CrossRef]
- Turner, A.B.L.; Meyer, W.B.; Skole, D.L. Global Land-Use/Land-Change: Towards an Integrated Study. Integr. Earth Syst. Sci. 2009, 23, 91–95. [Google Scholar]
- Ehlers, E.; Krafft, T. (Eds.) Earth System Science in the Anthropocene; Springer: Berlin/Heidelberg, Germany, 2016; Volume 53, ISBN 9788578110796. [Google Scholar]
- Steffen, W.; Sanderson, A.; Tyson, P.; Jäger, J.; Matson, P.; Moore, B., III; Oldfield, F.; Richardson, K.; Schellnhuber, H.-J.; Turner, B.L.; et al. Global Change and the Earth System: A Plane under Pressure; Springer: Berlin/Heidelberg, Germany, 2005; ISBN 9783540265948. [Google Scholar]
- Geist, H.J.; Lambin, E.F. Proximate Causes and Underlying Driving Forces of Tropical Deforestation. Bioscience 2002, 52, 143–150. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Tucker, C.J.; Ba, M.B. Desertification, drought, and surface vegetation: An example from the West African sahel. Bull. Am. Meteorol. Soc. 1998, 79, 815–829. [Google Scholar] [CrossRef]
- Hulme, M. Climatic perspectives on Sahelian desiccation: 1973–1998. Glob. Environ. Chang. 2001, 11, 19–29. [Google Scholar] [CrossRef]
- Tucker, C.J.; Dregne, H.E.; Newcomb, W.W. Expansion and contraction of the Sahara Desert from 1980 to 1990. Science 1991, 253, 299–301. [Google Scholar] [CrossRef]
- Nicholson, S.E. Land surface-atmosphere interaction: Physical processes and surface changes and their impact. Prog. Phys. Geogr. 1988, 12, 36–65. [Google Scholar] [CrossRef]
- Aldwaik, S.Z.; Pontius, R.G. Intensity analysis to unify measurements of size and stationarity of land changes by interval, category, and transition. Landsc. Urban Plan. 2012, 106, 103–114. [Google Scholar] [CrossRef]
- Versace, V.L.; Ierodiaconou, D.; Stagnitti, F.; Hamilton, A.J. Appraisal of random and systematic land cover transitions for regional water balance and revegetation strategies. Agric. Ecosyst. Environ. 2008, 123, 328–336. [Google Scholar] [CrossRef]
- Braimoh, A.K. Random and systematic land-cover transitions in northern Ghana. Agric. Ecosyst. Environ. 2006, 113, 254–263. [Google Scholar] [CrossRef]
- Pontius, R.G., Jr.; Shusas, E.; McEachern, M. Detecting important categorical land changes while accounting for persistence. Agric. Environ. 2004, 101, 251–268. [Google Scholar] [CrossRef]
- Pontius, R.G., Jr. Component intensities to relate difference by category with difference overall. Int. J. Appl. Earth Obs. Geoinf. 2019, 77, 94–99. [Google Scholar] [CrossRef]
- Huang, B.; Huang, J.; Pontius, R.G., Jr.; Tu, Z. Comparison of Intensity Analysis and the land use dynamic degrees to measure land changes outside versus inside the coastal zone of Longhai, China. Ecol. Indic. 2018, 89, 336–347. [Google Scholar] [CrossRef]
- Aldwaik, S.Z.; Pontius, R.G., Jr. Map errors that could account for deviations from a uniform intensity of land change. Int. J. Geogr. Inf. Sci. 2013, 27, 1717–1739. [Google Scholar] [CrossRef]
- Quan, B.; Pontius, R.G., Jr.; Song, H.; Quan, B. Intensity Analysis to communicate land change during three time intervals in two regions of Quanzhou City, China two regions of Quanzhou City, China. GISci. Remote Sens. 2019, 57, 21–36. [Google Scholar] [CrossRef]
- Akinyemi, F.O.; Pontius, R.G., Jr.; Braimoh, A.K. Land change dynamics: Insights from Intensity Analysis applied to an African emerging city Land change dynamics: Insights from Intensity Analysis. J. Spat. Sci. 2017, 8596, 1–15. [Google Scholar] [CrossRef]
- Gyöngyi, O.; Pontius, R.G., Jr.; Kumar, S.; Szabó, S. Intensity Analysis and the Figure of Merit ’ s components for assessment of a Cellular Automata—Markov simulation model. Ecol. Indic. 2019, 101, 933–942. [Google Scholar] [CrossRef]
- Huang, J.; Pontius, R.G., Jr.; Li, Q.; Zhang, Y. Use of intensity analysis to link patterns with processes of land change from 1986 to 2007 in a coastal watershed of southeast China. Appl. Geogr. 2012, 34, 371–384. [Google Scholar] [CrossRef]
- Pontius, R.G.; Gao, Y.; Giner, N.M.; Kohyama, T.; Osaki, M.; Hirose, K. Design and Interpretation of Intensity Analysis Illustrated by Land Change in Central Kalimantan, Indonesia. Land 2013, 2, 351–369. [Google Scholar] [CrossRef]
- Akinyemi, F.O.; Ikanyeng, M.; Muro, J. Land cover change effects on land surface temperature trends in an African urbanizing dryland region. City Environ. Interact. 2019, 4, 100029. [Google Scholar] [CrossRef]
- Asenso Barnieh, B.; Jia, L.; Menenti, M.; Zhou, J.; Zeng, Y. Mapping Land Use Land Cover Transitions at Different Spatiotemporal Scales in West Africa. Sustainability 2020, 12, 8565. [Google Scholar] [CrossRef]
- Vittek, M.; Brink, A.; Donnay, F.; Simonetti, D.; Desclé, B. Land Cover Change Monitoring Using Landsat MSS/TM Satellite Image Data over West Africa between 1975 and 1990. Remote Sens. 2014, 6, 658–676. [Google Scholar] [CrossRef]
- Brink, A.B.; Eva, H.D. Monitoring 25 years of land cover change dynamics in Africa: A sample based remote sensing approach. Appl. Geogr. 2009, 29, 501–512. [Google Scholar] [CrossRef]
- Han, J.H.; Cao, X.Y.; Imura, H. Evaluating land-use change in rapidly urbanizing China: Case study of Shanghai. J. Urban Plan. Dev. 2009, 135, 166–171. [Google Scholar] [CrossRef]
- Gergel, S.E.; Turner, M.G. Learning Landscape Ecology: A Practical Guide to Concepts and Techniques; Springer: New York, NY, USA, 2000. [Google Scholar]
- Romero-Ruiz, M.H.; Flantua, S.G.A.; Tansey, K.; Berrio, J.C. Landscape transformations in savannas of northern South America: Land use/cover changes since 1987 in the Llanos Orientales of Colombia. Appl. Geogr. 2011, 32, 766–776. [Google Scholar] [CrossRef]
- Munsi, M.; Malaviya, S.; Oinam, G.; Joshi, P.K. A landscape approach for quantifying land-use and land-cover change (1976–2006) in middle Himalaya. Reg. Environ. Chang. 2010, 10, 145–155. [Google Scholar] [CrossRef]
- Mertens, B.; Lambin, E. Land-cover-change trajectories in southern Cameroon. Ann. Assoc. Am. Geogr. 2000, 90, 467–494. [Google Scholar] [CrossRef]
- Enaruvbe, G.O.; Pontius, R.G., Jr. Influence of classification errors on Intensity Analysis of land changes in southern Nigeria. Int. J. Remote 2015, 36, 244–261. [Google Scholar] [CrossRef]
- Shafizadeh-Moghadam, H.; Minaei, M.; Feng, Y.; Pontius, R.G., Jr. GlobeLand30 Maps Show Four Times Larger Gross than Net Land Change from 2000 to 2010 in Asia. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 240–248. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Intensity and Spatial Pattern of Urban Land Changes in the Megacities of Southeast Asia. Land Use Policy 2015, 48, 213–222. [Google Scholar] [CrossRef]
- Feng, Y.; Tong, X. Dynamic Land Use Change Simulation Using Cellular Automata with Spatially Nonstationary Transition Rules. GIScience Remote Sens. 2018, 55, 678–698. [Google Scholar] [CrossRef]
- Karlson, M.; Ostwald, M. Remote sensing of vegetation in the Sudano-Sahelian zone: A literature review from 1975 to 2014. J. Arid Environ. 2015, 124, 257–269. [Google Scholar] [CrossRef]
- Mbow, C.; Brandt, M.; Ouedraogo, I.; De Leeuw, J.; Marshall, M. What Four Decades of Earth Observation Tell Us about Land Degradation in the Sahel? Remote Sens. 2015, 7, 4048–4067. [Google Scholar] [CrossRef]
- National Geomatics Center of China Global Land Cover Dataset (GlobleLand30m) Product Description. Available online: http://www.globallandcover.com/GLC30Download/index.aspx (accessed on 6 December 2018).
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Tateishi, R.; Uriyangqai, B.; Al-Bilbisi, H.; Ghar, M.A.; Tsend-Ayush, J.; Kobayashi, T.; Kasimu, A.; Hoan, N.T.; Shalaby, A.; Alsaaideh, B.; et al. Production of global land cover data-GLCNMO. Int. J. Digit. Earth 2011, 4, 22–49. [Google Scholar] [CrossRef]
- Ruelland, D.; Tribotte, A.; Puech, C.; Dieulin, C. Comparison of methods for LUCC monitoring over 50 years from aerial photographs and satellite images in a Sahelian catchment. Int. J. Remote Sens. 2011, 32, 1747–1777. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Yu, L.; Wang, J.; Gong, P. Improving 30 m global land-cover map FROM-GLC with time series MODIS and auxiliary data sets: A segmentation-based approach. Int. J. Remote Sens. 2017, 34, 5851–5867. [Google Scholar] [CrossRef]
- Church, R.J. West Africa: A study of the Environment and of Man’s Use of It; Longman’s, Green and Co., Ltd.: Harlow, UK, 1966. [Google Scholar]
- Zhao, J.; Yu, L.; Liu, H.; Huang, H.; Wang, J. Towards an open and synergistic framework for mapping global land cover. PeerJ 2021, 9, 1–18. [Google Scholar] [CrossRef]
- ESA-CCI-LC Land Cover CCI Product User Guide Version 2.0. Available online: http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-QuickUserGuide-LC-Maps_v2-0-7.pd (accessed on 6 December 2017).
- Gong, P.; Li, X.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W.; et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 2020, 236, 111510. [Google Scholar] [CrossRef]
- Hansen, M.; Potapov, P.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.; Goetz, S.; Loveland, T. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Dinerstein, E.; Olson, D.; Joshi, A.; Vynne, C.; Burgess, N.D.; Wikramanayake, E.; Hahn, N.; Palminteri, S.; Hedao, P.; Noss, R. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 2017, 67, 534–545. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Gong, P.; Wang, J.; Zhu, Z.; Biging, G.S.; Yuan, C.; Hu, T.; Zhang, H.; Wang, Q.; Li, X.; et al. The first all-season sample set for mapping global land cover with Landsat-8 data. Sci. Bull. 2017, 62, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Runfola, D.S.M.; Pontius, R.G., Jr. Measuring the temporal instability of land change using the Flow matrix. Int. J. Geogr. Inf. Sci. 2013, 27, 1696–1716. [Google Scholar] [CrossRef]
- Comité Inter-États de Lutte Contre la Sécheresse dans le Sahel (CILSS). Landscapes of West Africa—A Window on a Changing World; United States Geological Survey: Garretson, SD, USA, 2016. [Google Scholar]
- Asenso Barnieh, B.; Jia, L.; Menenti, M.; Jiang, M.; Zhou, J.; Lv, Y.; Zeng, Y.; Bennour, A. Quantifying spatial reallocation of land use/land cover categories in West Africa. Ecol. Indic. 2022, 135, 108556. [Google Scholar] [CrossRef]
- Sendzimir, J.; Reij, C.P.; Magnuszewsk, P. Rebuilding Resilience in the Sahel: Regreening in the Maradi and Zinder Regions of Niger. Ecol. Soc. 2011, 16, 1. [Google Scholar] [CrossRef]
- Reij, C.; Tappan, G.; Smale, M. Agroenvironmental Transformation in the Sahel:Another Kind of “Green Revolution”; IFPRI: Washington, DC, USA, 2009. [Google Scholar]
- Costa, F.; Cabral, A.I.R.; Lagos, F. Land cover changes and landscape pattern dynamics in Senegal and Guinea Bissau borderland Land cover changes and landscape pattern dynamics in Senegal and Guinea Bissau borderland. Appl. Geogr. 2017, 82, 115–128. [Google Scholar] [CrossRef]
- Olsson, L.; Eklundh, L.; Ardo, J. A recent greening of the Sahel—Trends, patterns and potential causes. J. Arid Environ. 2005, 63, 556–566. [Google Scholar] [CrossRef]
- Dardel, C.; Kergoat, L.; Hiernaux, P.; Mougin, E.; Grippa, M.; Tucker, C.J. Re-greening Sahel: 30 years of remote sensing data and field observations (Mali, Niger). Remote Sens. Environ. 2014, 140, 350–364. [Google Scholar] [CrossRef]
- Aniekwe, S.; Igu, N. A Geographical Analysis of Urban Sprawl in Abuja, Nigeria. J. Geogr. Res. 2019, 2, 13–19. [Google Scholar] [CrossRef]
FROM GLC | ESA-CCI |
---|---|
Cropland | Rainfed cropland, irrigated/post-flooding cropland |
Mosaic cropland (>50%)/natural vegetation (tree, shrub, herbaceous cover), | |
Mosaic cropland/natural vegetation (tree, shrub, herbaceous cover) (>50%) | |
Forestland | Tree cover, broadleaved, deciduous, closed to open (>15%), |
Tree cover, needle leaved, evergreen, closed to open (>15%), | |
Tree cover, needle leaved, deciduous, closed to open (>15%), | |
Tree cover, mixed leaf type (broadleaved and needle leaved), | |
Mosaic tree and shrub (>50%)/herbaceous cover | |
Grassland | Mosaic tree and shrub/herbaceous cover (>50%), grassland, |
Shrubland | Shrubland |
Wetland | Tree cover flooded with fresh/ brackish water/saline, |
Shrub or herbaceous cover flooded with fresh/saline/brackish water | |
Water | Water bodies |
Impervious surface | Urban areas/Settlements |
Bare land | Sparse vegetation (tree, shrub, herbaceous cover) (<15%), Bare areas |
Areas (km2) | ||||||||
---|---|---|---|---|---|---|---|---|
LULC Categories | Cropland | Forestland | Grassland | Shrubland | Wetland | Water | Settlement | Bareland |
Period (1990–2000) | ||||||||
Cropland | 683,079.7 | 11,425.1 | 35,915.9 | 49,784.1 | 78.5 | 318.7 | 2077.3 | 447.8 |
Forestland | 11,912.5 | 871,949.0 | 10,700.1 | 43,885.1 | 266.2 | 592.7 | 118.1 | 40.3 |
Grassland | 38,283.2 | 10,058.5 | 1,701,829.6 | 41,800.1 | 230.3 | 998.7 | 1099.8 | 18,927.6 |
Shrubland | 40,121.7 | 38,255.9 | 35,852.0 | 1,760,458.1 | 38.6 | 95.1 | 94.9 | 847.4 |
Wetland | 71.3 | 266.4 | 236.2 | 32.1 | 2639.0 | 304.7 | 3.4 | 5.8 |
Water | 274.2 | 499.2 | 571.4 | 38.9 | 216.0 | 30,011.8 | 6.3 | 27.2 |
Settlement | 183.1 | 12.0 | 186.4 | 15.0 | 0.8 | 2.2 | 2892.9 | 32.8 |
Bareland | 2375.1 | 55.2 | 40,396.0 | 3594.0 | 25.0 | 149.3 | 172.8 | 1,533,969.7 |
Period (2000–2010) | ||||||||
Cropland | 766,466.1 | 1626.2 | 1139.2 | 5778.0 | 8.6 | 110.6 | 1179.4 | 12.0 |
Forestland | 12,584.7 | 886,525.1 | 7709.2 | 25,592.9 | 11.6 | 79.6 | 92.2 | 31.5 |
Grassland | 7814.3 | 550.0 | 1,800,830.4 | 15,678.6 | 7.3 | 91.9 | 651.1 | 93.6 |
Shrubland | 1689.9 | 688.6 | 874.0 | 1,896,309.1 | 3.1 | 17.9 | 26.8 | 6.1 |
Wetland | 57.3 | 136.6 | 88.5 | 81.5 | 3107.2 | 25.5 | 3.0 | 0.1 |
Water | 24.5 | 15.6 | 369.6 | 13.4 | 12.8 | 32,104.8 | 1.1 | 3.1 |
Settlement | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6469.4 | 0.0 |
Bareland | 2652.8 | 27.6 | 33,754.7 | 3438.4 | 11.0 | 85.0 | 314.2 | 1,514,015.4 |
Period (2010–2020) | ||||||||
Cropland | 684,571.6 | 5625.1 | 36,765.2 | 43,704.5 | 59.2 | 221.4 | 20,149.2 | 174.8 |
Forestland | 35,172.1 | 758,458.0 | 21,447.7 | 73,246.4 | 214.2 | 564.6 | 357.1 | 4.2 |
Grassland | 36,678.5 | 6528.8 | 1,742,692.8 | 35,766.6 | 216.0 | 737.1 | 4029.5 | 18,086.8 |
Shrubland | 45,865.7 | 31,791.0 | 34,090.9 | 1,833,569.1 | 14.6 | 40.5 | 1133.7 | 377.8 |
Wetland | 61.2 | 252.22 | 264.9 | 16.3 | 2277.7 | 269.2 | 15.0 | 0.8 |
Water | 276.1 | 503.0 | 801.6 | 43.8 | 332.3 | 30,387.6 | 75.4 | 23.3 |
Settlement | 55.7 | 3.5 | 341.6 | 14.3 | 0.6 | 7.6 | 8301.5 | 7.1 |
Bareland | 509.5 | 0.8 | 29,709.5 | 1067.0 | 6.0 | 47.7 | 523.9 | 1,482,297.0 |
Period | 1990–2000 | 2000–2010 | 2010–2020 | 1990–2020 |
---|---|---|---|---|
LULC Category | Net Change (%) | Net Change (%) | Net Change (%) | Net Change (%) |
Cropland | −0.87 | 1.89 | 1.48 | 2.50 |
Forestland | −0.74 | −4.62 | −9.70 | −14.51 |
Grassland | 0.68 | 1.03 | 1.15 | 2.83 |
Shrubland | 1.26 | 2.43 | 2.04 | 5.62 |
Wetland | −1.81 | −9.65 | −1.16 | −12.33 |
Water | 2.55 | −0.09 | −0.52 | 1.95 |
Settlement | 48.57 | 25.96 | 74.75 | 90.39 |
Bareland | −1.67 | −2.58 | −0.87 | −5.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asenso Barnieh, B.; Jia, L.; Menenti, M.; Yu, L.; Nyantakyi, E.K.; Kabo-Bah, A.T.; Jiang, M.; Zhou, J.; Lv, Y.; Zeng, Y.; et al. Spatiotemporal Patterns in Land Use/Land Cover Observed by Fusion of Multi-Source Fine-Resolution Data in West Africa. Land 2023, 12, 1032. https://doi.org/10.3390/land12051032
Asenso Barnieh B, Jia L, Menenti M, Yu L, Nyantakyi EK, Kabo-Bah AT, Jiang M, Zhou J, Lv Y, Zeng Y, et al. Spatiotemporal Patterns in Land Use/Land Cover Observed by Fusion of Multi-Source Fine-Resolution Data in West Africa. Land. 2023; 12(5):1032. https://doi.org/10.3390/land12051032
Chicago/Turabian StyleAsenso Barnieh, Beatrice, Li Jia, Massimo Menenti, Le Yu, Emmanuel Kwesi Nyantakyi, Amos Tiereyangn Kabo-Bah, Min Jiang, Jie Zhou, Yunzhe Lv, Yelong Zeng, and et al. 2023. "Spatiotemporal Patterns in Land Use/Land Cover Observed by Fusion of Multi-Source Fine-Resolution Data in West Africa" Land 12, no. 5: 1032. https://doi.org/10.3390/land12051032
APA StyleAsenso Barnieh, B., Jia, L., Menenti, M., Yu, L., Nyantakyi, E. K., Kabo-Bah, A. T., Jiang, M., Zhou, J., Lv, Y., Zeng, Y., & Bennour, A. (2023). Spatiotemporal Patterns in Land Use/Land Cover Observed by Fusion of Multi-Source Fine-Resolution Data in West Africa. Land, 12(5), 1032. https://doi.org/10.3390/land12051032