Soil-to-Atmosphere GHG Fluxes in Hemiboreal Deciduous Tree and Willow Coppice Based Agroforestry Systems with Mineral Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Soil GHG Flux Measurements
2.3. Soil Sampling and Chemical Analyses
2.4. Estimation of Basal Area in Deciduous Trees and Willow Coppice Plots
2.5. Estimation of Above-Ground Biomass of Ground Vegetation and Total Root Biomass
2.6. Estimation of Biomass of Tree Above-Ground Litter
2.7. Statistical Analysis
3. Results
3.1. Impact of Dominant Vegetation Type and Initially Applied Soil Fertilisation on Soil GHG Fluxes
3.2. Impact of Seasonality and Environmental Factors (Temperature and Moisture) on Soil GHG Fluxes
3.3. Relationships between Annual Soil GHG Fluxes, Soil General Chemistry and Parameters of Vegetation Biomass
3.4. Annual GHG Fluxes
4. Discussion
4.1. CO2 Fluxes
4.1.1. Impact of Seasonality and Environmental Factors on CO2 Fluxes
4.1.2. Impact of Dominant Vegetation Type and Initially Applied Soil-Fertilisation on Soil CO2 Fluxes
4.2. CH4 Fluxes
4.2.1. Impact of Seasonality and Environmental Factors on CH4 Fluxes
4.2.2. Impact of Dominant Vegetation Type and Initially Applied Soil Fertilisation on Soil CH4 Fluxes
4.3. N2O Fluxes
4.3.1. Impact of Seasonality and Environmental Factors on N2O Fluxes
4.3.2. Impact of Dominant Vegetation Type and Initially Applied Soil Fertilisation on Soil N2O Fluxes
4.4. Limitations of the Study and Necessity for Further Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nair, P.K.R.; Buresh, R.J.; Latt, C.R. Nutrient cycling in tropical agroforestry systems: Myths and science. In Agroforestry in Sustainable Agricultural Systems; Buck, I.E., Fernandes, E.C.M., Eds.; Lewis Publishers Inc.: Boca Raton, FL, USA, 1999; pp. 1–31. [Google Scholar]
- Selecky, T.; Bellingrath-Kimura, S.D.; Kobata, Y.; Yamada, M.; Guerrini, I.A.; Umemura, H.M.; Dos Santos, D.A. Changes in carbon cycling during development of successional agroforestry. Agriculture 2017, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Shi, M.; Li, Q.; Zhang, H.; Sun, J.; Zhang, J.; Song, X. Agroforestry alters the fluxes of greenhouse gases of Moso bamboo plantation soil. Environ. Res. Lett. 2022, 17, 115003. [Google Scholar] [CrossRef]
- Shao, G. Soil Greenhouse Gas (N2O, CO2 and CH4) Fluxes from Cropland Agroforestry and Monoculture Systems. Ph.D. Thesis, Georg-August-Universität Göttingen, Göttingen, Germany, 2022. [Google Scholar]
- Cardinael, R.; Chevallier, T.; Barthès, B.G.; Saby, N.P.A.; Parent, T.; Dupraz, C.; Bernoux, M.; Chenu, C. Impact of alley cropping agroforestry on stocks, forms and spatial distribution of soil organic carbon—A case study in a Mediterranean context. Geoderma 2015, 259–260, 288–299. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.G.; Kirschbaum, M.U.F.; Beedy, T.L. Carbon sequestration and net emissions of CH4 and N2O under agroforestry: Synthesizing available data and suggestions for future studies. Agric. Ecosyst. Environ. 2016, 226, 65–78. [Google Scholar] [CrossRef]
- Amadi, C.C.; Van Rees, K.C.J.; Farrell, R.E. Soil-atmosphere exchange of carbon dioxide, methane and nitrous oxide in shelterbelts compared with adjacent cropped fields. Agric. Ecosyst. Environ. 2016, 223, 123–134. [Google Scholar] [CrossRef]
- Pardon, P.; Reubens, B.; Reheul, D.; Mertens, J.; De Frenne, P.; Coussement, T.; Janssens, P.; Verheyen, K. Trees increase soil organic carbon and nutrient availability in temperate agroforestry systems. Agric. Ecosyst. Environ. 2017, 247, 98–111. [Google Scholar] [CrossRef]
- De Stefano, A.; Jacobson, M.G. Soil carbon sequestration in agroforestry systems: A meta-analysis. Agrofor. Syst. 2018, 92, 285–299. [Google Scholar] [CrossRef]
- Peichl, M.; Thevathasan, N.V.; Gordon, A.M.; Huss, J.; Abohassan, R.A. Carbon sequestration potentials in temperate tree-based intercropping systems, southern Ontario, Canada. Agrofor. Syst. 2006, 66, 243–257. [Google Scholar] [CrossRef]
- Tefera, Y.; Hailu, Y.; Siraj, Z. Potential of agroforestry for climate change mitigation through carbon sequestration: Review paper. Agric. Res. Technol. Open Access J. 2019, 22, 556196. [Google Scholar]
- Montagnini, F.; Nair, P.K.R. Carbon sequestration: An underexploited environmental benefit of agroforestry systems. Agrofor. Syst. 2004, 61, 281–295. [Google Scholar]
- Upson, M.A. The Carbon Storage Benefits of Agroforestry and Farm Woodlands. Ph.D. Thesis, Cranfield University, Cranfield, UK, July 2014. [Google Scholar]
- Franzluebbers, A.J.; Chappell, J.C.; Shi, W.; Cubbage, F.W. Greenhouse gas emissions in an agroforestry system of the southeastern USA. Nutr. Cycl. Agroecosyst. 2017, 108, 85–100. [Google Scholar] [CrossRef]
- Toppo, P.; Raj, A. Role of agroforestry in climate change mitigation. J. Pharmacogn. Phytochem. 2018, 7, 241–243. [Google Scholar]
- Quandt, A.; Neufeldt, H.; Gorman, K. Climate change adaptation through agroforestry: Opportunities and gaps. Curr. Opin. Environ. Sustain. 2023, 60, 101244. [Google Scholar] [CrossRef]
- Högberg, P.; Nordgren, A.; Högberg, M.N.; Ottosson-Löfvenius, M.; Bhupinderpal-Singh; Olsson, P.; Linder, S. Fractional contributions by autotrophic and heterotrophic respiration to soil-surface CO2 efflux in Boreal forests. In The Carbon Balance of Forest Biomes; Griffiths, H., Jarvis, P.G., Eds.; Taylor & Francis Group: Abingdon, UK, 2005; pp. 251–267. [Google Scholar]
- Phillips, C.L.; Nickerson, N. Soil respiration. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Tang, X.; Du, J.; Shi, Y.; Lei, N.; Chen, G.; Cao, L.; Pei, X. Global patterns of soil heterotrophic respiration—A meta-analysis of available dataset. CATENA 2020, 191, 104574. [Google Scholar] [CrossRef]
- Tang, X.; Pei, X.; Lei, N.; Luo, X.; Liu, L.; Shi, L.; Chen, G.; Liang, J. Global patterns of soil autotrophic respiration and its relation to climate, soil and vegetation characteristics. Geoderma 2020, 369, 114339. [Google Scholar] [CrossRef]
- Verlinden, M.S.; Broeckx, L.S.; Wei, H.; Ceulemans, R. Soil CO2 efflux in a bioenergy plantation with fast-growing Populus trees—Influence of former land use, inter-row spacing and genotype. Plant Soil 2013, 369, 631–644. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Peng, Y.; Nie, X.; Yang, Y.; Yang, L.; Li, F.; Fang, K.; Xiao, Y.; Zhou, G. Differential responses of heterotrophic and autotrophic respiration to nitrogen addition and precipitation changes in a Tibetan alpine steppe. Sci. Rep. 2018, 8, 16546. [Google Scholar] [CrossRef] [Green Version]
- Epron, D. Separating autotrophic and heterotrophic components of soil respiration: Lessons learned from trenching and related root-exclusion experiments. In Soil Carbon Dynamics: An Integrated Methodology; Kutsch, W., Bahn, M., Heinemeyer, A., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 157–168. [Google Scholar]
- Oertel, C.; Matschullat, J.; Zurba, K.; Zimmermann, F.; Erasmi, S. Greenhouse gas emissions from soils—A review. Geochemistry 2016, 76, 327–352. [Google Scholar] [CrossRef] [Green Version]
- Beule, L.; Lehtsaar, E.; Corre, M.D.; Schmidt, M.; Veldkamp, E.; Karlovsky, P. Poplar rows in temperate agroforestry croplands promote bacteria, fungi, and denitrification genes in soils. Front. Microbiol. 2019, 10, 3108. [Google Scholar] [CrossRef] [Green Version]
- Raich, J.W.; Tufekcioglu, A. Vegetation and soil respiration: Correlations and controls. Biogeochemistry 2000, 48, 71–90. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Sander, B.O.; Pelster, D.; Díaz-Pinés, E. Quantifying greenhouse gas emissions from managed and natural soils. In Methods for Measuring Greenhouse Gas Balances and Evaluating Mitigation Options in Smallholder Agriculture; Rosenstock, T., Rufino, M., Butterbach-Bahl, K., Wollenberg, L., Richards, M., Eds.; Springer: Cham, Switzerland, 2016; pp. 71–96. [Google Scholar]
- Dutaur, L.; Verchot, L.V. A global inventory of the soil CH4 sink. Glob. Biogeochem. Cycles 2007, 21, GB4013. [Google Scholar] [CrossRef]
- Dlamini, J.; Cardenas, L.M.; Tesfamariam, E.H.; Dunn, R.M.; Hawkins, J.M.B.; Blackwell, M.S.A.; Evans, J.; Collins, A.L. Soil methane (CH4) fluxes in cropland with permanent pasture and riparian buffer strips with different vegetation. J. Plant. Nutr. Soil Sci. 2021, 185, 132–144. [Google Scholar] [CrossRef]
- Walter, K.; Don, A.; Flessa, H. Net N2O and CH4 soil fluxes of annual and perennial bioenergy crops in two central German regions. Biomass Bioenergy 2015, 81, 556–567. [Google Scholar] [CrossRef]
- Amadi, C.C.; Farrell, R.E.; Van Rees, K.C.J. Greenhouse gas emissions along a shelterbelt-cropped field transect. Agric. Ecosyst. Environ. 2017, 241, 110–120. [Google Scholar] [CrossRef]
- Ussiri, D.; Lal, R. Soil Emission of Nitrous Oxide and Its Mitigation; Springer: Dordrecht, The Netherlands, 2013; pp. 63–89. [Google Scholar]
- Wachiye, S.; Merbold, L.; Vesala, T.; Rinne, J.; Räsänen, M.; Leitner, S.; Pellikka, P. Soil greenhouse gas emissions under different land-use types in savanna ecosystems of Kenya. Biogeosciences 2020, 17, 2149–2167. [Google Scholar] [CrossRef] [Green Version]
- Schaufler, G.; Kitzler, B.; Schindlbacher, A.; Skiba, U.; Sutton, M.A.; Zechmeister-Bolternstern, S. Greenhouse gas emissions from European soils under different land use: Effects of soil moisture and temperature. Eur. J. Soil Sci. 2010, 61, 683–696. [Google Scholar] [CrossRef]
- Huang, X.; Lu, X.; Zhou, G.; Shi, Y.; Zhang, D.; Zhang, W.; Hosseini Bai, S. How land-use change affects soil respiration in an alpine agro-pastoral ecotone. CATENA 2022, 214, 106291. [Google Scholar] [CrossRef]
- A European Green Deal. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 1 March 2023).
- The Paris Agreement. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement (accessed on 1 March 2023).
- Land Use and Forestry Regulation for 2021–2030. Available online: https://climate.ec.europa.eu/eu-action/forests-and-agriculture/land-use-and-forestry-regulation-2021-2030_en (accessed on 1 March 2023).
- Sharma, H.; Pant, K.S.; Bishist, R.; Gautam, K.L.; Ludarmani; Dogra, R.; Kumar, M.; Kumar, A. Estimation of biomass and carbon storage potential in agroforestry systems of north western Himalayas, India. CATENA 2023, 225, 107009. [Google Scholar] [CrossRef]
- Golicz, K.; Bellingrath-Kimura, S.; Breuer, L.; Wartenberg, A.C. Carbon accounting in European agroforestry systems—Key research gaps and data needs. Curr. Res. Environ. Sustain. 2022, 4, 100134. [Google Scholar] [CrossRef]
- Cardinael, R.; Cadisch, G.; Gosme, M.; Oelbermann, M.; van Noordwijk, M. Climate change mitigation and adaptation in agriculture: Why agroforestry should be part of the solution. Agric. Ecosyst. Environ. 2021, 319, 107555. [Google Scholar] [CrossRef]
- Kay, S.; Rega, C.; Moreno, G.; den Herder, M.; Palma, J.H.N.; Borek, R.; Crous-Duran, J.; Freese, D.; Giannitsopoulos, M.; Graves, A.; et al. Agroforestry creates carbon sinks whilst enhancing the environment in agricultural landscapes in Europe. Land Use Policy 2019, 83, 581–593. [Google Scholar] [CrossRef]
- Medinski, T.V.; Freese, D.; Böhm, C. Soil CO2 flux in an alley-cropping system composed of black locust and poplar trees, Germany. Agrofor. Syst. 2015, 89, 267–277. [Google Scholar] [CrossRef]
- Kārkliņš, A.; Rancāne, S. Augsnes Apraksts, Reģ. Nr. AI0103; LLU Augsnes un Augu Zinātņu Institūts: Skrīveri, Latvija, 2012; pp. 1–2. [Google Scholar]
- Kārkliņš, A.; Rancāne, S. Augsnes Apraksts, Reģ. Nr. AI0104; LLU Augsnes un Augu Zinātņu Institūts: Skrīveri, Latvija, 2012; pp. 1–2. [Google Scholar]
- FAO. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; p. 203. [Google Scholar]
- Latvian Environment, Geology and Meteorology Centre. Meteorological Network. Available online: https://videscentrs.lvgmc.lv/ (accessed on 7 February 2023).
- Pavelka, M.; Acosta, M.; Kiese, R.; Altimir, N.; Brümmer, C.; Crill, P.; Darenova, E.; Fuß, R.; Gielen, B.; Graf, A.; et al. Standardisation of chamber technique for CO2, N2O and CH4 fluxes measurements from terrestrial ecosystems. Int. Agrophysics 2018, 32, 569–587. [Google Scholar] [CrossRef]
- Darenova, E.; Pavelka, M.; Acosta, M. Diurnal deviations in the relationship between CO2 efflux and temperature: A case study. CATENA 2014, 123, 263–269. [Google Scholar] [CrossRef]
- Loftfield, N.; Flessa, H.; Augustin, J.; Beese, F. Automated gas chromatographic system for rapid analysis of the atmospheric trace gases methane, carbon dioxide, and nitrous oxide. J. Environ. Qual. 1997, 26, 560–564. [Google Scholar] [CrossRef]
- Liepiņš, J.; Lazdiņš, A.; Liepiņš, K. Equations for estimating above- and belowground biomass of Norway spruce, Scots pine, Birch spp. and European aspen in Latvia. Scand. J. For. Res. 2018, 33, 58–70. [Google Scholar] [CrossRef]
- Liepiņš, J.; Liepiņš, K.; Lazdiņš, A. Equations for estimating the above- and belowground biomass of grey alder (Alnus incana (L.) Moench.) and common alder (Alnus glutinosa L.) in Latvia. Scand. J. For. Res. 2021, 36, 389–400. [Google Scholar] [CrossRef]
- Ukonmaanaho, L.; Pitman, R.; Bastrup-Birk, A.; Breda, N.; Rautio, P. Sampling and analysis of litterfall. In Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests, I, Part XIII; UNECE and ICP Forests Programme Co-ordinating Centre, Ed.; Thünen Institute for Forests Ecosystems: Eberswalde, Germany, 2016; 14p. [Google Scholar]
- R Core Team. The R Project for Statistical Computing. Available online: https://www.R-project.org (accessed on 7 February 2023).
- Gauder, M.; Butterbach-Bahl, K.; Graeff-Hönninger, S.; Claupein, W.; Wiegel, R. Soil-derived trace gas fluxes from different energy crops—Results from a field experiment in Southwest Germany. GCB Bioenergy Bioprod. Sustain. Bioeconomy 2012, 4, 289–301. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Gavrichkova, O. REVIEW: Time lag between photosynthesis and carbon dioxide efflux from soil: A review of mechanisms and controls. Glob. Change Biol. 2010, 16, 3386–3406. [Google Scholar] [CrossRef]
- Smith, K.A.; Ball, T.; Conen, F.; Dobbie, K.E.; Massheder, J.; Rey, A. Exchange of greenhouse gases between soil and atmosphere: Interactions of soil physical factors and biological processes. Eur. J. Soil Sci. 2003, 54, 779–791. [Google Scholar] [CrossRef] [Green Version]
- Hursh, A.; Ballantyne, A.; Cooper, L.; Maneta, M.; Kimball, J.; Watts, J. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale. Glob. Change Biol. 2017, 23, 2090–2103. [Google Scholar] [CrossRef] [PubMed]
- Laganière, J.; Angers, D.; Paré, D. Carbon accumulation in agricultural soils after afforestation: A meta-analysis. Glob. Change Biol. 2010, 16, 439–453. [Google Scholar] [CrossRef]
- Zhang, X.; Adamowski, J.F.; Deo, R.C.; Xu, X.; Zhu, G.; Cao, J. Effects of afforestation on soil bulk density and pH in the Loess Plateau, China. Water 2018, 10, 1710. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.-J.; Qiu, L.; Zu, Y.-G.; Su, D.-X.; An, J.; Wang, H.-Y.; Zheng, G.-Y.; Sun, W.; Chen, X.-Q. Changes in soil organic carbon, nitrogen, pH and bulk density with the development of larch (Larix gmelinii) plantations in China. Glob. Change Biol. 2011, 17, 2657–2676. [Google Scholar]
- Sánchez-Navarro, V.; Shahrokh, V.; Martínez-Martínez, S.; Acosta, J.A.; Almagro, M.; Martínez-Mena, M.; Boix-Fayos, C.; Díaz-Pereira, E.; Zornoza, R. Perennial alley cropping contributes to decrease soil CO2 and N2O emissions and increase soil carbon sequestration in a Mediterranean almond orchard. Sci. Total Environ. 2022, 845, 157225. [Google Scholar] [CrossRef]
- Bailey, N.J.; Motavalli, P.P.; Udawatta, R.P.; Nelson, K.A. Soil CO2 emissions in agricultural watersheds with agroforestry and grass contour buffer strips. Agrofor. Syst. 2009, 77, 143–158. [Google Scholar] [CrossRef]
- Whalen, S.C.; Reeburgh, W.S. Moisture and temperature sensitivity of CH4 oxidation in boreal soils. Soil Biol. Biochem. 1996, 28, 1271–1281. [Google Scholar] [CrossRef] [Green Version]
- Dou, X.; Zhou, W.; Zhang, Q.; Cheng, X. Greenhouse gas (CO2, CH4, N2O) emissions from soils following afforestation in central China. Atmos. Environ. 2016, 126, 98–106. [Google Scholar] [CrossRef]
- Kim, D.-G.; Isenhart, T.M.; Parkin, T.B.; Schultz, R.C.; Loynachan, T.E. Methane flux in cropland and adjacent riparian buffers with different vegetation covers. J. Environ. Qual. 2010, 39, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Bardule, A. Micro and Macro Element Flows in Short Rotation Hybrid Aspen (Populus tremuloides Michx. × Populus tremula L.) Plantation in Agricultural Land. Ph.D. Thesis, University of Latvia, Riga, Latvia, 19 December 2019. [Google Scholar]
- Bédard, C.; Knowles, R. Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiol. Rev. 1989, 53, 68–84. [Google Scholar] [CrossRef]
- Veldkamp, E.; Koehler, B.; Corre, M.D. Indications of nitrogen-limited methane uptake in tropical forest soils. Biogeosciences 2013, 10, 5367–5379. [Google Scholar] [CrossRef]
- Allen, S.C.; Jose, S.; Nair, P.K.R.; Brecke, B.J.; Nkedi-Kizza, P.; Ramsey, C.L. Safety-net role of tree roots: Evidence from a pecan (Carya illinoensis K. Koch)—Cotton (Gossypium hirsutum L.) alley cropping system in the southern United States. For. Ecol. Manag. 2004, 192, 395–407. [Google Scholar] [CrossRef]
- Beaudette, C.; Bradley, R.L.; Whalen, J.K.; McVetty, P.B.E.; Vessey, K.; Smith, D.L. Tree-based intercropping does not compromise canola (Brassica napus L.) seed oil yield and reduces soil nitrous oxide emissions. Agric. Ecosyst. Environ. 2010, 139, 33–39. [Google Scholar] [CrossRef]
- Drewer, J.; Finch, J.W.; Lloyd, C.R.; Baggs, E.; Skiba, U. How do soil emissions of N2O, CH4 and CO2 from perennial bioenergy crops differ from arable annual crops? GCB Bioenergy 2011, 4, 408–419. [Google Scholar] [CrossRef] [Green Version]
- Kavdir, Y.; Hellebrand, H.J.; Kern, J. Seasonal variations of nitrous oxide emission in relation to nitrogen fertilization and energy crop types in sandy soil. Soil Tillage Res. 2008, 98, 175–186. [Google Scholar] [CrossRef]
- Yao, Z.; Yan, G.; Ma, L.; Wang, Y.; Zhang, H.; Zheng, X.; Wang, R.; Liu, C.; Wang, Y.; Zhu, B.; et al. Soil C/N ratio is the dominant control of annual N2O fluxes from organic soils of natural and semi-natural ecosystems. Agric. For. Meteorol. 2022, 327, 109198. [Google Scholar] [CrossRef]
Fertiliser | Origin of Fertiliser | Dose, t DM ha−1 | Type of Distribution | Frequency of Fertilisation | Input of Nutrients through Fertilisation, kg ha−1 | ||
---|---|---|---|---|---|---|---|
Ntotal | Ptotal | Ktotal | |||||
Stabilized wood ash | Boiler house in Sigulda (Latvia) | 6 | Spread mechanically shortly before planting of tree seedlings and willow cuttings | Once shortly before planting of tree seedlings and willow cuttings | 2.6 | 65 | 190 |
Sewage sludge | Ltd. “Aizkraukles ūdens” (Latvia) | 10 | 259 | 163 | 22 |
Species of Trees, Willows and Grass in Plots of AF Systems | Type of Seedlings, Cuttings, Seeds | Producer of Seedlings, Cuttings, Seeds (Plant Material) | Planting/Sowing Time | Distance between Trees or Willows in Woody Vegetation Plots of AF Systems, m | Tree or Willow Density in Woody Vegetation Plots of AF Systems, Number ha−1 |
---|---|---|---|---|---|
Black alder (Alnus glutinosa (L.)) | one year old container seedlings | JSC “Latvijas Finieris” nursery “Zābaki”, Latvia | spring of 2011 | 2.5 × 2.5 m | 1600 |
Silver birch (Betula pendula Roth) | spring of 2011 | 2.5 × 2.5 m | 1600 | ||
Hybrid alder (Alnus hybrida A.Br) | Plant Physiology laboratory of the LSFRI ‘Silava’, Nursery of the Forest Research Station, Latvia | spring of 2012 | 2.5 × 2.5 m | 1600 | |
Hybrid aspen (Populus tremuloides Michx. × Populus tremula L.) | JSC “Latvia’s State Forests” LVM Seeds and plants “Kalsnava”, Latvia | spring of 2011 | 2.0 × 2.0 | 2500 | |
Willow (Salix spp.) | cuttings | Salixenergi, delivered by Salix energy Latvia from Sweden | spring of 2011 | (0.75 × 2) × 1.5 m | 13000 |
Reed canary grass (Phalaris arundinacea) “Bamse” | seeds | Institute of Agriculture, Skriveri, Latvia | spring of 2012 | - | 12 kg seeds ha−1 |
Parameter | Deciduous Trees | Willow Coppice | RCG | ||||||
---|---|---|---|---|---|---|---|---|---|
CO2 Fluxes | CH4 Fluxes | N2O Fluxes | CO2 Fluxes | CH4 Fluxes | N2O Fluxes | CO2 Fluxes | CH4 Fluxes | N2O Fluxes | |
Soil temperature at 10 cm depth | 0.82 *** | −0.32 *** | 0.40 *** | 0.88 *** | −0.24 * | 0.52 *** | 0.88 *** | −0.46 *** | 0.58 *** |
Soil temperature at 20 cm depth | 0.80 *** | −0.35 *** | 0.37 *** | 0.90 *** | −0.35 ** | 0.57 *** | 0.81 *** | −0.42 *** | 0.47 *** |
Soil temperature at 30 cm depth | 0.81 *** | −0.36 *** | 0.38 *** | 0.90 *** | −0.33 ** | 0.56 *** | 0.82 *** | −0.43 *** | 0.47 *** |
Air temperature | 0.77 *** | −0.29 *** | 0.36 *** | 0.79 *** | − | 0.47 *** | 0.85 *** | −0.44 *** | 0.56 *** |
Air moisture a | −0.13 ** | − | − | − | −0.25 * | − | −0.34 ** | − | − |
Dominant Vegetation in Plots of Agroforestry Systems | Temperature (Independent Variable) | Coefficients of Equation (y = a + bx) | Characterisation of Equation | ||
---|---|---|---|---|---|
a (intercept) | b (slope) | R2 | RMSE | ||
Deciduous trees | soil at 10 cm depth | 5.7362 | 4.8473 | 0.662 | 24.756 |
soil at 20 cm depth | 1.3994 | 6.0652 | 0.665 | 24.690 | |
soil at 30 cm depth | 0.1255 | 6.1314 | 0.682 | 24.070 | |
air | 14.985 | 3.4992 | 0.570 | 27.829 | |
Willow coppice a (control) | soil at 10 cm depth | 7.9616 | 5.1587 | 0.785 | 17.955 |
soil at 20 cm depth | 3.9532 | 7.1392 | 0.923 | 10.711 | |
soil at 30 cm depth | 3.3833 | 7.0684 | 0.925 | 10.595 | |
air | 11.705 | 3.711 | 0.624 | 23.732 | |
Willow coppice a (fertilized with wood ash) | soil at 10 cm depth | 13.208 | 5.2599 | 0.861 | 18.397 |
soil at 20 cm depth | 3.0773 | 7.1014 | 0.870 | 17.765 | |
soil at 30 cm depth | 3.9833 | 7.0135 | 0.876 | 17.381 | |
air | 18.471 | 4.4872 | 0.804 | 21.835 | |
Willows coppice a (fertilized with sewage sludge) | soil at 10 cm depth | 18.319 | 6.4946 | 0.785 | 27.095 |
soil at 20 cm depth | 2.8699 | 9.0258 | 0.826 | 24.339 | |
soil at 30 cm depth | 3.6427 | 8.9083 | 0.825 | 24.444 | |
air | 33.539 | 4.859 | 0.676 | 33.219 | |
soil at 10 cm depth | −1.5836 | 9.1019 | 0.742 | 41.625 | |
RCG | soil at 20 cm depth | −8.4343 | 11.882 | 0.705 | 44.469 |
soil at 30 cm depth | −8.5966 | 11.857 | 0.711 | 44.030 | |
air | 17.667 | 7.2884 | 0.655 | 48.060 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bārdulis, A.; Purviņa, D.; Makovskis, K.; Bārdule, A.; Lazdiņa, D. Soil-to-Atmosphere GHG Fluxes in Hemiboreal Deciduous Tree and Willow Coppice Based Agroforestry Systems with Mineral Soil. Land 2023, 12, 715. https://doi.org/10.3390/land12030715
Bārdulis A, Purviņa D, Makovskis K, Bārdule A, Lazdiņa D. Soil-to-Atmosphere GHG Fluxes in Hemiboreal Deciduous Tree and Willow Coppice Based Agroforestry Systems with Mineral Soil. Land. 2023; 12(3):715. https://doi.org/10.3390/land12030715
Chicago/Turabian StyleBārdulis, Andis, Dana Purviņa, Kristaps Makovskis, Arta Bārdule, and Dagnija Lazdiņa. 2023. "Soil-to-Atmosphere GHG Fluxes in Hemiboreal Deciduous Tree and Willow Coppice Based Agroforestry Systems with Mineral Soil" Land 12, no. 3: 715. https://doi.org/10.3390/land12030715