Topography, Soil Elemental Stoichiometry and Landscape Structure Determine the Nitrogen and Phosphorus Loadings of Agricultural Catchments in the Subtropics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Working Flow and Data
2.3. Stream Discharge Monitoring and Water Chemical Analysis
2.4. Digital Elevation Model, Landscape Composition and Spatial Configuration
2.5. Nitrogen and Phosphorus Input Densities
2.6. Soil Sampling and Analysis
2.7. Data Analysis and Modeling
3. Results
3.1. TN_wc, TP_wc, Environmental Factors and Their Relationships
3.2. Topography Played a Hierarchically Important Role in Impacting TN_wc and TP_wc
3.3. Paddy Fields Dominated the Impact on TN_wc and TP_wc
3.4. Explicit Relationships between TN_wc and TP_wc and the Selected Environmental Factors
3.5. PLS-SEM Path Analysis
4. Discussion
4.1. N and P Concentrations in Stream Waters
4.2. Topography
4.3. Landscape Composition, Configuration and Management
4.4. Soil Properties
4.5. Catchment N and P Path Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Code Availability
References
- Bussi, G.; Janes, V.; Whitehead, P.G.; Dadson, S.J.; Holman, I.P. Dynamic response of land use and river nutrient concentration to long-term climatic changes. Sci. Total Environ. 2017, 590–591, 818–831. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Jiang, Y.; Liu, Q.; Hou, Z.; Liao, J.; Fu, L.; Peng, Q. Influences of the land use pattern on water quality in low-order streams of the Dongjiang River basin, China: A multi-scale analysis. Sci. Total Environ. 2016, 551–552, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Forman, R.T.T. Land Mosaics: The Ecology of Landscapes and Regions; Cambridge University Press: London, UK, 1995. [Google Scholar]
- Lintern, A.; Webb, J.A.; Ryu, D.; Liu, S.; Bende-Michl, U.; Waters, D.; Leahy, P.; Wilson, P.; Western, A. Key factors influencing differences in stream water quality across space. Wiley Interdiscip. Rev. Water 2017, 5, e1260. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment Part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Lintern, A.; Webb, J.A.; Ryu, D.; Liu, S.; Waters, D.; Leahy, P.; Bende-Michl, U.; Western, A.W. What are the key catchment characteristics affecting spatial differences in riverine water quality? Water Resour. Res. 2018, 54, 7252–7272. [Google Scholar] [CrossRef]
- Ye, L.; Cai, Q.; Liu, R.; Cao, M. The influence of topography and land use on water quality of Xiangxi River in Three Gorges Reservoir region. Environ. Geol. 2009, 58, 937–942. [Google Scholar] [CrossRef]
- Alvarez-Cobelas, M.; Angeler, D.G.; Sanchez-Carrillo, S. Export of nitrogen from catchments: A worldwide analysis. Environ. Pollut. 2008, 156, 261–269. [Google Scholar] [CrossRef]
- Alvarez-Cobelas, M.; Sanchez-Carrillo, S.; Angeler, D.G.; Sanchez-Andres, R. Phosphorus export from catchments: A global view. J. North Am. Benthol. Soc. 2009, 28, 805–820. [Google Scholar] [CrossRef] [Green Version]
- Kearns, F.R.; Kelly, N.M.; Carter, J.L.; Resh, V.H. A method for the use of landscape metrics in freshwater research and management. Landsc. Ecol. 2005, 20, 113–125. [Google Scholar] [CrossRef]
- Lee, S.W.; Hwang, S.J.; Lee, S.B.; Hwang, H.S.; Sung, H.C. Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics. Landsc. Urban Plan. 2009, 92, 80–89. [Google Scholar] [CrossRef]
- Shen, Z.Y.; Chen, L.; Hong, Q.; Qiu, J.L.; Xie, H.; Liu, R.M. Assessment of nitrogen and phosphorus loads and causal factors from different land use and soil types in the Three Gorges Reservoir Area. Sci. Total Environ. 2013, 454–455, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.G.; Gardner, R.H.; O’Neill, R.V. Landscape Ecology in Theory and Practice. Geography 2003, 83, 479–494. [Google Scholar]
- Uuemaa, E.; Roosaare, J.; Mander, Ü. Landscape metrics as indicators of river water quality at catchment scale. Nord. Hydrol. 2007, 38, 125–138. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Liu, X.L.; Liu, F.; Li, Y.Y.; Song, L.F.; Li, H.; Ma, Q.M.; Wu, J. Relating land use patterns to stream nutrient levels in red soil agricultural catchments in subtropical central China. Environ. Sci. Pollut. Res. 2014, 21, 10481–10492. [Google Scholar] [CrossRef] [PubMed]
- Wickham, J.D.; Wade, T.G.; Ritters, K.H.; O’Neill, R.V.; Smith, J.H.; Smith, E.R.; Jones, K.B.; Neale, A.C. Upstream-to-downstream changes in nutrient export risk. Landsc. Ecol. 2003, 18, 193–206. [Google Scholar] [CrossRef]
- Alexander, R.B.; Smith, R.A.; Schwarz, G.E. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature 2000, 403, 758. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhang, Q.; Liu, G. Influences of watershed landscape composition and configuration on lake-water quality in the Yangtze River basin of China. Hydrol. Process. 2012, 26, 570–578. [Google Scholar] [CrossRef]
- Billmire, M.; Koziol, B.W. Landscape and flow path-based nutrient loading metrics for evaluation of in-stream water quality in Saginaw Bay, Michigan. J. Great Lakes Res. 2018, 44, 1068–1080. [Google Scholar] [CrossRef]
- Drewry, J.J.; Newham, L.T.H.; Greene, R.S.B.; Jakeman, A.J.; Croke, B.F.W. A review of nitrogen and phosphorus export to waterways: Context for catchment modeling. Mar. Freshw. Res. 2006, 57, 757–774. [Google Scholar] [CrossRef]
- Kleinman, P.J.A.; Sharpley, A.N.; McDowell, R.W.; Flaten, D.N.; Buda, A.R.; Tao, L.; Bergstrom, L.; Zhu, Q. Managing agricultural phosphorus for water quality protection: Principles for progress. Plant Soil 2011, 349, 169–182. [Google Scholar] [CrossRef]
- Franklin, D.H.; Steiner, J.L.; Duke, S.E.; Moriasi, D.N.; Starks, P.J. Spatial considerations in wet and dry periods for phosphorus in streams of the Fort Cobb Watershed, United States. J. Am. Water Resour. Assoc. 2013, 49, 908–922. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, J.; Shirkey, G.; John, R.; Wu, S.R.; Park, H.; Shao, C.L. Applications of structural equation modeling (SEM) in ecological studies: An updated review. Ecol. Process. 2016, 5, 19. [Google Scholar] [CrossRef] [Green Version]
- Hoyle, R.H. Structural Equation Modeling: Concepts, Issues, and Applications; SAGE Publications: Thousand Oaks, CA, USA, 1995. [Google Scholar]
- Wold, H. Estimation of principal component and related models by iterative least squares. In Multivariate Analysis; Krishnaiah, P., Ed.; Academic Press: New York, NY, USA, 1966; pp. 391–420. [Google Scholar]
- Lohmoeller, J.B. Latent Variable Path Modeling with Partial Least Squares; Physica: Heidelberg, Germany, 1989. [Google Scholar]
- Hair, J.F.; Hult GT, M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed.; SAGE Publications: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Cooperative Research Group on Chinese Soil Taxonomy. Chinese Soil Taxonomy; Sciences Press: Beijing, China; New York, NY, USA, 2001. [Google Scholar]
- Mitchell, A. The ESRI Guide to GIS Analysis; ESRI Press: Redlands, CA, USA, 2008; Volume 2. [Google Scholar]
- Jenny, H. Factors of Soil Formation: A System of Quantitative Pedology; McGraw-Hill: New York, NY, USA, 1941. [Google Scholar]
- Li, W.; Xu, X.P. Hydraulics; The Press of Wu Han Hydraulic and Power University: Wuhan, China, 1999. (In Chinese) [Google Scholar]
- Tang, J.L.; Zhang, B.; Gao, C.; Zepp, H. Hydrological pathway and source area of nutrient losses identified by a multi-scale monitoring in an agricultural catchment. Catena 2008, 72, 374–385. [Google Scholar] [CrossRef]
- Water Resources Research Laboratory, USA. Water Measurement Manual. 2001. Available online: http://www.usbr.gov/pmts/hydraulicslab/pubs/wmm (accessed on 1 January 2012).
- McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; General Technical Report PNW-GTR-351; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995. [Google Scholar]
- McGarigal, K.; Cushman, S.A.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer Software Program Produced by the Authors at the University of Massachusetts, Amherst, 2012. Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 1 December 2016).
- Shao, X.Q. Temporal and Spatial Variation in Atmospheric Nitrogen and Phosphorus Deposition in Four Forest Types in Different Climatic Regions. Master’s Thesis, Northwest A&F University, Xianyang, China, 2018; p. 47. [Google Scholar]
- Han, Y.G.; Yu, X.X.; Wang, X.X.; Wang, Y.Q.; Tian, J.X.; Xu, L.; Wang, C.Z. Net anthropogenic phosphorus inputs (NAPI) index application in Mainland China. Chemosphere 2013, 90, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.G.; Fan, Y.T.; Yang, P.L.; Wang, X.X.; Wang, Y.J.; Tian, J.X.; Xu, L.; Wang, C.Z. Net anthropogenic nitrogen inputs (NANI) index application in Mainland China. Geoderma 2014, 213, 87–94. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2018; Available online: https://www.R-project.org (accessed on 1 December 2018).
- Garson, G.D. Partial Least Squares: Regression and Structural Equation Models; Statistical Associates Publishers: Asheboro, NC, USA, 2016. [Google Scholar]
- Ringle, C.M.; Wende, S.; Becker, J.-M. SmartPLS 3; SmartPLS GmbH: Boenningstedt, Germany, 2015; Available online: https://www.smartpls.com (accessed on 1 January 2018).
- Shen, J.L.; Li, Y.; Liu, X.J.; Luo, X.S.; Tang, H.; Zhang, Y.Z.; Wu, J. Atmospheric dry and wet nitrogen deposition on three contrasting land use types of an agricultural catchment in subtropical central China. Atmos. Environ. 2013, 67, 415–424. [Google Scholar] [CrossRef]
- Pike, R.J.; Wilson, S.E. Elevation-relief ratio, hypsometric integral and geomorphic area-altitude analysis. Geol. Soc. Am. Bull. 1971, 62, 1079–1084. [Google Scholar] [CrossRef]
- Langbein, W.B. Topographic Characteristics of Drainage Basins; US Geological Survey Water-Supply Paper; U.S. Government Publishing Office: Washington, DC, USA, 1947; Volume 986, pp. 157–159. [Google Scholar]
- Lenat, D.R.; Crawford, J.K. Effects of land use on water quality and aquatic biota of three North Carolina Piedmont streams. Hydrobiologia 1994, 294, 185–199. [Google Scholar] [CrossRef]
- Li, S.; Gu, S.; Liu, W.; Han, H.; Zhang, Q. Water quality in relation to land use and land cover in the upper Han River Basin, China. Catena 2008, 75, 216–222. [Google Scholar] [CrossRef]
- Tong, S.T.; Chen, W. Modeling the relationship between land use and surface water quality. J. Environ. Manag. 2002, 66, 377–393. [Google Scholar] [CrossRef]
- Peterson, B.J.; Wollheim, W.M.; Mulholland, P.J.; Webster, J.R.; Meyer, J.L.; Tank, J.L.; Marti, E.; Bowden, W.B.; Valett, H.M.; Hershey, A.E.; et al. Control of nitrogen export from watersheds by headwater streams. Science 2001, 292, 86–92. [Google Scholar] [CrossRef]
- Li, S.; Liu, H.; Zhang, L.; Li, X.; Wang, H.; Zhuang, Y.; Zhang, F.; Zhai, L.; Fan, X.; Hu, W.; et al. Potential nutrient removal function of naturally existed ditches and ponds in paddy regions: Prospect of enhancing water quality by irrigation and drainage management. Sci. Total Environ. 2020, 718, 137418. [Google Scholar] [CrossRef] [PubMed]
- Janeau, J.L.; Gillard, L.C.; Grellier, S.; Jouquet, P.; Thi Phuong Quynhf, L.; Thi Nguyet Minh, L.; Quoc Anh, N.; Orange, D.; Dinh Rinh, P.; Duc Toan, T.; et al. Soil erosion, dissolved organic carbon and nutrient losses under different land use systems in a small catchment in northern Vietnam. Agric. Water Manag. 2014, 146, 314–323. [Google Scholar] [CrossRef]
- Amiri, B.J.; Nakane, K. Modeling the linkage between river water quality and landscape metrics in the Chugoku District of Japan. Water Resour. Manag. 2009, 23, 931–956. [Google Scholar] [CrossRef]
- Johnson, L.; Richards, C.; Host, G.; Arthur, J. Landscape influences on water chemistry in Midwestern stream ecosystems. Plant J. 1997, 37, 193–208. [Google Scholar] [CrossRef]
- Moreno-Mateos, D.; Mander, U.; Comin, F.A.; Pedrocchi, C.; Uuemaa, E. Relationships between landscape pattern, wetland characteristics, and water quality in agricultural catchments. J. Environ. Qual. 2008, 37, 2170–2180. [Google Scholar] [CrossRef] [PubMed]
- Uuemaa, E.; Roosaare, J.; Mander, Ü. Scale dependence of landscape metrics and their indicatory value for nutrient and organic matter losses from catchments. Ecol. Indic. 2005, 5, 350–369. [Google Scholar] [CrossRef]
- Xiao, H.; Ji, W. Relating landscape characteristics to non-point source pollution in mine waste-located watersheds using geospatial technique. J. Environ. Manag. 2007, 82, 111–119. [Google Scholar] [CrossRef]
- Gao, C.; Zhu, J.G.; Zhu, J.Y.; Gao, X.; Dou, Y.J.; Hosen, Y. Nitrogen export from an agriculture watershed in the Taihu Lake area, China. Environ. Geochem. Health 2004, 26, 199–207. [Google Scholar] [CrossRef]
- Howarth, R.W. An assessment of human influences on fluxes of nitrogen from the terrestrial landscape to the estuaries and continental shelves of the North Atlantic Ocean. Nutr. Cycl. Agroecosystems 1998, 52, 213–223. [Google Scholar] [CrossRef]
- Varanka, S.; Hjort, J.; Luoto, M. Geomorphological factors predict water quality in boreal river. Earth Surf. Process. Landf. 2015, 40, 1989–1999. [Google Scholar] [CrossRef]
- Arheimer, B.; Lidden, R. Nitrogen and phosphorus concentrations from agricultural catchments—Influence of spatial and temporal variables. J. Hydrol. 2000, 227, 140–159. [Google Scholar] [CrossRef]
- Penuelas, J.; Poulter, B.; Sardans, J.; Ciais, P.; Van Der Velde, M.; Bopp, L.; Boucher, O.; Godderis, Y.; Hinsinger, P.; Llusia, J.; et al. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 2013, 4, 2934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toth, J.D.; Dou, Z.; Ferguson, J.D.; Galligan, D.T.; Ramberg, C.F., Jr. Nitrogen- vs. phosphorus-based dairy manure applications to field crops: Nitrate and phosphorus leaching and soil phosphorus accumulation. J. Environ. Qual. 2006, 35, 2302–2312. [Google Scholar] [CrossRef] [PubMed]
- Sterner, R.W.; Elser, J.J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere; Princeton University Press: Princeton, NJ, USA, 2002. [Google Scholar]
- Liu, J.Z.; Sun, P.F.; Sun, R.; Wang, S.C.; Gao, B.; Tang, J.; Wu, Y.H.; Dolfing, J. Carbon-nutrient stoichiometry drives phosphorus immobilization in phototrophic biofilms at the soil-water interface in paddy fields. Water Res. 2019, 167, 115129. [Google Scholar] [CrossRef]
- Schindler, D.W.; Hecky, R.E.; Findlay, D.L.; Station, M.P.; Parker, B.R.; Paterson, M.J.; Beaty, K.G.; Lyng, M.; Kasian, S.E.M. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proc. Natl. Acad. Sci. USA 2008, 105, 11254–11258. [Google Scholar] [CrossRef] [Green Version]
- Smith, V.H. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 1983, 221, 669–671. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wu, J.; Liu, S.; Shen, J.L.; Huang, D.; Su, Y.R.; Wei, W.X.; Syers, J.K. Is the C:N:P stoichiometry in soil and soil microbial biomass related to the landscape and land use in southern subtropical China? Glob. Biogeochem. Cycles 2012, 26, 1–14. [Google Scholar] [CrossRef]
- Zechemeister-Boltenstern, S.; Keiblinger, K.M.; Mooshammer, M.; Penuelas, J.; Richter, A.; Sardans, J.; Wanek, W. The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecol. Monogr. 2015, 85, 133–155. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.K.; Ge, T.D.; Luo, Y.; Liu, S.; Xu, X.; Tong, C.; Shibistova, O.; Guggenberger, G.; Wu, J.S. Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil. Soil Biol. Biochem. 2018, 121, 67–76. [Google Scholar] [CrossRef]
- Manoni, F.; Porporato, A. Common hydrological and biogeochemical controls along the soil-stream continuum. Hydrol. Process. 2011, 25, 1355–1360. [Google Scholar] [CrossRef]
- Kwabiah, A.B.; Palm, C.A.; Stoskopf, N.C.; Voroney, P. Response of soil microbial biomass dynamics to quality of plant materials with emphasis on P availability. Soil Biol. Biochem. 2003, 35, 207–216. [Google Scholar] [CrossRef]
- Wei, X.M.; Razavi, B.S.; Hu, Y.J.; Xu, X.L.; Zhu, Z.K.; Liu, Y.H.; Kuzyakov, Y.; Li, Y.; Wu, J.S.; Ge, T.D. C/P stoichiometry of dying rice root defines the spatial distribution and dynamics of enzyme activities in root-detritusphere. Biol. Fertil. Soils 2019, 55, 251–263. [Google Scholar] [CrossRef]
- Hrachowitz, M.; Benettin, P.; van Breukelen, B.M.; Fovet, O.; Howden NJ, K.; Ruiz, L.; van der Velde, Y.; Wade, A.J. Transit times—The link between hydrology and water quality at the catchment scale. Wiley Interdiscip. Rev. Water 2016, 3, 629–657. [Google Scholar] [CrossRef] [Green Version]
- Bouwman, A.F.; Bierkens, M.F.P.; Griffioen, J.; Hefting, M.M.; Middelburg, J.J.; Middelkoop, H.; Slomp, C.P. Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: Towards integration of ecological and biogeochemical models. Biogeosciences 2013, 10, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Seitzinger, S.P.; Styles, R.V.; Boyer, E.W.; Alexander, R.B.; Billen, G.; Howarth, R.W.; Mayer, B.; Van Breemen, N. Nitrogen retention in rivers: Model development and application to watersheds in the northeastern U.S.A. Biogeochemistry 2002, 57, 199–237. [Google Scholar] [CrossRef]
- Marcé, R.; von Schiller, D.; Aguilera, R.; Martí; E; Bernal, S. Contribution of hydrologic opportunity and biogeochemical reactivity to the variability of nutrient retention in river networks. Glob. Biogeochem. Cycles 2018, 32, 376–388. [Google Scholar] [CrossRef]
- Hart, M.R.; Quin, B.F.; Nguyen, M.L. Phosphorus runoff from agricultural land and direct fertilizer effects: A review. J. Environ. Qual. 2004, 33, 1954–1972. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Chapra, S.C.; Wedpohl, R.; Sims, J.T.; Daniel, T.C.; Reddy, K.R. Managing agricultural phosphorus for protection of surface waters: Issues and options. J. Environ. Qual. 1994, 23, 437–451. [Google Scholar] [CrossRef]
- De Klein, J.J.M.; Koelmans, A.A. Quantifying seasonal export and retention of nutrients in West European lowland rivers at catchment scale. Hydrol. Process. 2011, 25, 2102–2111. [Google Scholar] [CrossRef]
- Reddy, K.R.; Kadlec, R.H.; Flaig, E.; Gale, P.M. Phosphorus Retention in Streams and Wetlands: A Review. Crit. Rev. Environ. Sci. Technol. 1999, 29, 83–146. [Google Scholar] [CrossRef]
- Varanka, S.; Luoto, M. Environmental determinants of water quality in boreal rivers based on partitioning methods. River Res. Appl. 2012, 28, 1034–1046. [Google Scholar] [CrossRef]
Catchment | Land Use Type | Area | Livestock Density | Population Density | Nitrogen Input | Phosphorus Input | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Woodland (%) | Paddy Field (%) | Tea Field (%) | Residential Area (%) | Road (%) | Pond (%) | River (%) | km2 | (AU ha−1) | (People ha−1) | (kg N ha−1 yr−1) | (kg P ha−1 yr−1) | |
FULING | 99.82 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.18 | 0.09 | 0.00 | 0.00 | 38.9 | 1.34 |
FEIYUE | 62.27 | 28.49 | 4.52 | 2.89 | 0.31 | 1.53 | 0.01 | 5.10 | 0.60 | 3.31 | 196.92 | 27.44 |
XINGSHA | 60.15 | 29.40 | 5.38 | 2.52 | 0.09 | 2.46 | 0.01 | 5.10 | 0.38 | 2.42 | 181.1 | 22.44 |
JIUXIYUAN | 51.84 | 32.76 | 10.37 | 2.95 | 0.01 | 1.85 | 0.22 | 9.69 | 0.44 | 2.10 | 216.5 | 26.10 |
GUANJIA | 80.55 | 15.99 | 0.55 | 1.36 | 0.26 | 0.87 | 0.42 | 25.82 | 0.20 | 1.57 | 105.9 | 12.15 |
JIANSHAN | 78.06 | 17.28 | 1.19 | 1.58 | 0.24 | 1.03 | 0.62 | 50.20 | 0.60 | 3.37 | 152.7 | 22.90 |
TUOJIA | 59.39 | 29.32 | 5.47 | 2.99 | 0.25 | 2.23 | 0.34 | 52.12 | 1.38 | 4.65 | 273.7 | 46.65 |
NANYUE | 56.27 | 34.79 | 2.00 | 3.27 | 0.91 | 2.75 | 0.01 | 2.64 | 1.11 | 3.04 | 243.0 | 40.44 |
WANGZIYUAN | 57.20 | 33.10 | 4.54 | 3.09 | 0.22 | 1.48 | 0.37 | 73.36 | 0.55 | 2.19 | 200.4 | 27.22 |
Catchment | TN_wc | TP_wc | ||||||
---|---|---|---|---|---|---|---|---|
Mean (mg L−1) | Standard Error (mg L−1) | Maximum (mg L−1) | Minimum (mg L−1) | Mean (mg L−1) | Standard Error (mg L−1) | Maximum (mg L−1) | Minimum (mg L−1) | |
FULING | 1.32 | 0.284 | 2.27 | 0.86 | 0.049 | 0.005 | 0.066 | 0.037 |
FEIYUE | 3.44 | 0.260 | 4.26 | 2.83 | 0.281 | 0.034 | 0.387 | 0.166 |
XINGSHA | 3.00 | 0.154 | 3.37 | 2.62 | 0.183 | 0.021 | 0.244 | 0.156 |
JIUXIYUAN | 3.37 | 0.141 | 3.91 | 3.14 | 0.222 | 0.016 | 0.262 | 0.181 |
GUANJIA | 1.87 | 0.133 | 2.42 | 1.57 | 0.117 | 0.014 | 0.176 | 0.087 |
JIANSHAN | 1.95 | 0.121 | 2.52 | 1.61 | 0.095 | 0.006 | 0.135 | 0.076 |
TUOJIA | 3.37 | 0.247 | 4.39 | 2.73 | 0.204 | 0.015 | 0.306 | 0.146 |
NANYUE | 3.38 | 0.221 | 4.08 | 2.76 | 0.282 | 0.033 | 0.541 | 0.194 |
WANGZIYUAN | 2.662 | 0.189 | 3.955 | 2.037 | 0.148 | 0.016 | 0.295 | 0.101 |
Metrics | Index | Abbreviation (Unit) | Description | Computing Equation |
---|---|---|---|---|
Area-Edge | Largest patch index | LPI (%) | Percentage of total landscape area composed of the largest patch. | |
Edge density | ED (m per ha) | Edge length on a per unit area basis. | ||
Aggregation | Patch density | PD (patches per 100 ha) | Number of patches in the landscape divided by total landscape area (m2), multiplied by 10,000 and 100 (to convert to 100 hectares). | |
Aggregation index | AI (%) | Number of like adjacencies involving the corresponding land use type, divided by the maximum possible number of like adjacencies involving the corresponding land use type. | ||
Patch cohesion index | COHESION (-) | Physical connectedness of the corresponding patch type. | ||
Shape | Related circumscribing circle index | CIRCLE (-) | Measure of overall patch elongation. | |
Shape index | SHAPE (-) | Perimeter–area ratio index calculated by adjusting for a square standard. | ||
Fractal dimension index | FRAC (-) | Reflects the shape complexity across a range of spatial scales (patch sizes). | ||
Diversity | Shannon’s diversity index | SHDI (-) | Diversity in a landscape. |
Catchment | Metrics of Spatial Configuration | ||||||||
---|---|---|---|---|---|---|---|---|---|
LPI | ED | PD | AI | COHESION | CIRCLE | SHAPE | FRAC | SHDI | |
% | m per ha | Patches per 100 ha | % | - | - | - | - | - | |
FULING | 99.8 | 12.1 | 20.22 | 99.26 | 99.87 | 0.592 | 1.84 | 1.215 | 0.013 |
FEIYUE | 43.16 | 182.2 | 76.94 | 95.44 | 99.51 | 0.557 | 1.49 | 1.107 | 0.977 |
XINGSHA | 42.4 | 182.2 | 70.94 | 95.44 | 99.56 | 0.562 | 1.43 | 1.099 | 1.013 |
JIUXIYUAN | 32.2 | 185.9 | 63.50 | 95.33 | 99.54 | 0.555 | 1.49 | 1.103 | 1.133 |
GUANJIA | 63.6 | 169.1 | 43.72 | 95.74 | 99.77 | 0.594 | 1.64 | 1.116 | 0.635 |
JIANSHAN | 66.7 | 154.5 | 44.52 | 96.11 | 99.81 | 0.588 | 1.58 | 1.113 | 0.708 |
TUOJIA | 35.3 | 179.8 | 65.02 | 95.49 | 99.70 | 0.540 | 1.45 | 1.099 | 1.052 |
NANYUE | 27.2 | 244.2 | 101.20 | 93.94 | 99.12 | 0.566 | 1.51 | 1.106 | 1.023 |
WANGZIYUAN | 36.9 | 195.3 | 63.82 | 95.11 | 99.82 | 0.567 | 1.48 | 1.105 | 1.031 |
Catchment | Chemical Property | Physical Property | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
pH (-) | SOC (g C kg−1) | TSN (g N kg−1) | TSP (g P kg−1) | SOIL_CNR (mol mol−1) | SOIL_CPR (mol mol−1) | SOIL_NPR (mol mol−1) | SAND (%) | SILT (%) | CLAY (%) | |
FULING | 3.73 | 8.99 | 1.41 | 0.356 | 8.52 | 99.56 | 12.9 | 21.52 | 46.74 | 19.98 |
FEIYUE | 3.85 | 7.97 | 1.56 | 0.443 | 10.85 | 81.05 | 8.96 | 24.06 | 35.82 | 21.75 |
XINGSHA | 3.83 | 6.74 | 1.24 | 0.394 | 10.63 | 75.86 | 8.63 | 32.99 | 37.50 | 27.43 |
JIUXIYUAN | 4.05 | 7.24 | 1.17 | 0.401 | 10.48 | 73.28 | 8.49 | 48.52 | 27.29 | 23.29 |
GUANJIA | 3.98 | 10.15 | 1.79 | 0.456 | 8.62 | 92.47 | 12.03 | 17.71 | 55.21 | 25.33 |
JIANSHAN | 3.95 | 9.57 | 1.66 | 0.451 | 9.64 | 89.66 | 11.01 | 21.06 | 49.45 | 23.54 |
TUOJIA | 3.93 | 7.90 | 1.47 | 0.436 | 9.77 | 79.05 | 9.97 | 34.61 | 36.62 | 23.10 |
NANYUE | 3.94 | 7.13 | 1.63 | 0.445 | 8.55 | 70.29 | 9.48 | 36.56 | 35.44 | 26.34 |
WANGZIYUAN | 3.95 | 8.21 | 1.53 | 0.431 | 9.15 | 81.61 | 10.67 | 31.29 | 39.76 | 22.98 |
Factor | Indicator | Correlation Coefficient |
---|---|---|
Landscape (composition) | Woodland | 0.91 *** |
Paddy field | −0.93 *** | |
Residential area | −0.92 *** | |
Pond | −0.92 *** | |
Landscape (configuration) | LPI | 0.93 *** |
ED | −0.89 ** | |
PD | −0.97 *** | |
AI | 0.90 *** | |
COHESION | 0.85 ** | |
CIRCLE | 0.72 * | |
SHAPE | 0.85 ** | |
FRAC | 0.79 * | |
SHDI | −0.90 *** | |
Landscape (management) | Ninput | −0.87 ** |
Pinput | −0.79 * | |
Soil (Property) | SILT | 0.73 * |
SOC | 0.75 * | |
SOIL_CPR | 0.96 *** | |
SOIL_NPR | 0.89 ** |
Y | Relationship | Specific Indirect Effect | p Value | Performance |
---|---|---|---|---|
TN_wc | TOPO → SOIL → NLOSS TOPO → LAND1 → NLOSS | 0.958 (0.000) × 0.294 (0.382) = 0.282 0.943 (0.000) × 0.696 (0.051) = 0.656 | 0.389 0.065 | Chi-square = 55.96 nfi = 0.596 srmr = 0.063 Rpls2 = 0.947 |
TP_wc | TOPO → SOIL → PLOSS TOPO → LAND2 → PLOSS | 0.958 (0.000) × 0.259 (0.678) = 0.248 0.973 (0.000) × 0.670 (0.278) = 0.563 | 0.688 0.290 | Chi-square = 48.84 nfi = 0.635 srmr = 0.066 Rpls2 = 0.821 |
TN_wc | TOPO → SOIL → NLOSS TOPO → LAND3 → NLOSS | 0.958 (0.000) × 0.372 (0.233) = 0.357 0.935 (0.000) × 0.623 (0.052) = 0.582 | 0.242 0.073 | Chi-square = 88.70 nfi = 0.528 srmr = 0.059 Rpls2 = 0.945 |
TP_wc | TOPO → SOIL → PLOSS TOPO → LAND4 → PLOSS | 0.958 (0.000) × 0.333 (0.680) = 0.318 0.953 (0.000) × 0.595 (0.459) = 0.569 | 0.689 0.473 | Chi-square = 52.00 nfi = 0.638 srmr = 0.071 Rpls2 = 0.807 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, Y.; Liu, J.; Wang, M.; Shen, J.; Liu, X. Topography, Soil Elemental Stoichiometry and Landscape Structure Determine the Nitrogen and Phosphorus Loadings of Agricultural Catchments in the Subtropics. Land 2023, 12, 568. https://doi.org/10.3390/land12030568
Li Y, Wang Y, Liu J, Wang M, Shen J, Liu X. Topography, Soil Elemental Stoichiometry and Landscape Structure Determine the Nitrogen and Phosphorus Loadings of Agricultural Catchments in the Subtropics. Land. 2023; 12(3):568. https://doi.org/10.3390/land12030568
Chicago/Turabian StyleLi, Yong, Yi Wang, Ji Liu, Meihui Wang, Jianlin Shen, and Xinliang Liu. 2023. "Topography, Soil Elemental Stoichiometry and Landscape Structure Determine the Nitrogen and Phosphorus Loadings of Agricultural Catchments in the Subtropics" Land 12, no. 3: 568. https://doi.org/10.3390/land12030568
APA StyleLi, Y., Wang, Y., Liu, J., Wang, M., Shen, J., & Liu, X. (2023). Topography, Soil Elemental Stoichiometry and Landscape Structure Determine the Nitrogen and Phosphorus Loadings of Agricultural Catchments in the Subtropics. Land, 12(3), 568. https://doi.org/10.3390/land12030568