Characteristics of Soil Moisture Variation in Agroforestry in Karst Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Monitoring and Sampling
2.3. Sample Analysis and Determination Method
2.3.1. Physical and Chemical Properties of Soil
2.3.2. Analysis of Soil Water Storage and Soil Water Supplement of Each Rainfall
2.3.3. Experimental Methods and Data Processing
3. Results
3.1. Soil Moisture in Wet and Dry Seasons during Monitoring Period
3.2. Soil Moisture Stratification Response to Rainfall
3.3. Dynamic Changes of Soil Moisture under Different Rainfall Intensities
3.4. Recharge Relationship between Next Rainfall of Different Vegetation Types and Soil Water Content
3.4.1. Soil Moisture Supply by Next Rainfall of Different Vegetation Types
3.4.2. Relationship between Soil Water Supply and Rainfall
4. Discussion
4.1. Precipitation Is a Significant Factor Affecting Soil Moisture Variation
4.2. Soil Water Absorption Is Affected by Soil Properties and Vegetation Types
4.3. Deficiencies and Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ersahin, S.; Brohi, A.R. Spatial variation of soil water content in topsoil and subsoil of a Typic Ustifluvent. Agr. Water Manag. 2006, 83, 79–86. [Google Scholar] [CrossRef]
- Gish, T.J.; Prueger, J.H.; Daughtry, C.S.T.; Kustas, W.P.; McKee, L.G.; Russ, A.L.; Hatfield, J.I. Comparison of field-scale herbicide runoff and volatilization losses: An eight year field investigation. J. Environ. Qual 2011, 40, 1432–1442. [Google Scholar] [CrossRef] [PubMed]
- Grayson, R.B.; Bloschl, G.; Western, A.W.; McMahon, T.A. Advances in the use of observed spatial patterns of catchment hydrological response. Adv. Water Resour. 2002, 25, 1313–1334. [Google Scholar] [CrossRef]
- Deng, L.; Yan, W.; Zhang, Y. Severe depletion of soil moisture following land-use changes for ecological restoration: Evidence from northern China. For. Ecol. Manag. 2016, 366, 1–10. [Google Scholar] [CrossRef]
- D’Odorico, P.; Porporato, A. Preferential states in soil moisture and climate dynamics. Proc. Natl. Acad. Sci. USA 2004, 101, 8848–8851. [Google Scholar] [CrossRef] [Green Version]
- Duan, L.; Huang, M.; Zhang, L. Differences in hydrological responses for different vegetation types on a steep slope on the Loess Plateau, China. J. Hydrol. 2016, 537, 356–366. [Google Scholar] [CrossRef]
- Herman, E.K.; Toran, L.; White, W.B. Clastic sediment transport and storage in fluviokarst aquifers: An essential component of karst hydrogeology. Carbonates Evaporites 2012, 27, 211–241. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Lin, C.H.; He, T.B. Discussion on soil erosion factor and ecological restoration of karst mountain area in Guizhou. Guizhou Sci. 2006, 24, 62–74. [Google Scholar]
- Li, Y.B.; Xie, D.T.; Wei, C.F.; Zhou, B.T. A study of features of water-stable soil aggregate structure under different land use in karst mountains. Resour. Environ. Yangtze Basin 2002, 11, 451–455. [Google Scholar]
- Liu, W.; Wang, S.J.; Luo, W.J.; Rong, L. Comparative Research on Soil Water Movement Between Karst and Non-karst Plots in Libo County of Guizhou Province, China. Earth Environ. 2011, 39, 137–149. [Google Scholar]
- Beckett, P.H.T.; Webster, R. Soil variability: A review. Soils Fert. 1971, 34, 1–15. [Google Scholar]
- Robinson, D.A.; Campbell, C.S.; Hopmans, J.W.; Hornbuckle, B.K.; Jones, S.B.; Knight, R.; Ogden, F.L.; Selker, J.S.; Wendroth, O. Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone J. 2008, 7, 358–389. [Google Scholar] [CrossRef] [Green Version]
- Montenegro, S.; Ragab, R. Impact of possible climate and land use changes in the semi arid regions: A case study from North Eastern Brazil. J. Hydrol. 2012, 434, 55–68. [Google Scholar] [CrossRef]
- Yang, L.; Chen, L.D.; Wei, W.; Yu, Y.; Zhang, H.D. Comparison of deep soil moisture in two re-vegetation watersheds in semi-arid regions. J. Hydrol. 2014, 513, 314–321. [Google Scholar] [CrossRef]
- Yao, X.L.; Fu, B.J.; Lv, Y.H.; Chang, R.Y.; Wang, S.; Wang, Y.F.; Su, C.H. The multi-scale spatial variance of soil moisture in the semi-arid Loess Plateau of China. J. Soils Sediments 2012, 12, 694–703. [Google Scholar] [CrossRef]
- Yu, B.W.; Liu, G.H.; Liu, Q.S.; Huang, C.; Li, H.; Zhao, Z.H. Seasonal variation of deep soil moisture under different land uses on the semi-arid Loess Plateau of China. J. Soils Sediments 2019, 19, 1179–1189. [Google Scholar] [CrossRef]
- Wei, F.; Wang, S.; Fu, B. African dryland ecosystem changes controlled by soil water. Land Degrad. Dev. 2019, 30, 1564–1573. [Google Scholar] [CrossRef]
- Zhu, Q.; Nie, X.F.; Zhou, X.B. Soil moisture response to rainfall at different topographic positions along a mixed land-use hillslope. Catena 2014, 119, 61–70. [Google Scholar] [CrossRef]
- Yen, B.C.; Chow, V.T. A laboratory study of surface runoff due to moving rainstorms. Water Resour. Res. 1969, 5, 989–1006. [Google Scholar] [CrossRef]
- Foroud, N.; Broughton, R.S.; Austin, G.L. The effects of a moving rainstorm on direct runoff properties. Water Resour. Bull 1984, 20, 87–91. [Google Scholar] [CrossRef]
- Nunes, J.P.; De Lima, J.; Singh, V.P. Numerical modeling of surface runoff and erosion due to moving rainstorms at the drainage basin scale. J. Hydrol. 2006, 330, 709–720. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.T.; Huang, J.K. Effect of moving storms on attainment of equilibrium discharge. Hydrol. Process. 2007, 21, 3357–3366. [Google Scholar] [CrossRef]
- Liu, Q.; Du, J.Y.; Shi, J.C. Analysis of spatial distribution and multi-year trend of the remotely sensed soil moisture on the Tibetan Plateau. Sci. China-Earth Sci. 2013, 56, 2173–2185. [Google Scholar] [CrossRef]
- Ayehu, G.; Tadesse, T.; Gessesse, B. Monitoring Residual Soil Moisture and Its Association to the Long-Term Variability of Rainfall over the Upper Blue Nile Basin in Ethiopia. Remote Sens. 2020, 12, 2138. [Google Scholar] [CrossRef]
- Penna, D.; Borga, M.; Norbiato, D. Hillslope scale soil moisture variability in a steep alpine terrain. J. Hydrol. 2009, 364, 311–327. [Google Scholar] [CrossRef]
- Wang, S.; Ye, L.H.; Zheng, Z.C.; Li, T.X. Characteristics of runoff and nitrogen losses in yellow soil sloping cropland at mature stage of maize. J. Soil. Water Conserv. 2018, 32, 28–33. [Google Scholar]
- Wang, S.; Fu, Z.Y.; Chen, H.S.; Nie, Y.P.; Xu, Q.X. Mechanisms of surface and subsurface runoff generation in subtropical soil-epikarst systems: Implications of rainfall simulation experiments on karst slope. J. Hydrology. 2020, 580, 124370. [Google Scholar] [CrossRef]
- Fu, Z.Y.; Chen, H.S.; Zhang, W.; Xu, Q.X.; Wang, S.; Wang, K.L. Subsurface flow in a soilmantled subtropical dolomite karst slope: A field rainfall simulation study. Geomorphology 2015, 250, 1–14. [Google Scholar] [CrossRef]
- Fu, Z.Y.; Chen, H.S.; Xu, Q.X.; Jia, J.T.; Wang, S.; Wang, K.L. Role of epikarst in near-surface hydrological processes in a soil mantled subtropical dolomite karst slope: Implications of field rainfall simulation experiments. Hydrol. Process. 2016, 30, 795–811. [Google Scholar] [CrossRef]
- A, Y.L.; Wang, G.; Sun, W.; Xue, B.; Kiem, A. Stratification response of soil water content during rainfall events under different rainfall patterns. Hydrol. Process. 2018, 32, 1–12. [Google Scholar] [CrossRef]
- Martínez-Fernández, J.; Ceballos, A. Temporal stability of soil moisture in a large-field experiment in Spain. Soil Sci. Soc. Am. 2003, 67, 1647–1656. [Google Scholar] [CrossRef]
- Gao, X.D.; Wu, P.T.; Zhao, X.N.; Shi, Y.G.; Wang, J.W.; Zhang, B.Q. Soil moisture variability along transects over a well-developed gully in the Loess Plateau, China. Catena 2011, 87, 357–367. [Google Scholar] [CrossRef]
- Vereecken, H.; Huisman, J.A.; Pachepsky, Y. On the spatio-temporal dynamics of soil moisture at the field scale. Hydrol 2014, 516, 76–96. [Google Scholar] [CrossRef]
- Hupet, F.; Vanclooster, M. Intraseasonal dynamics of soil moisture variability within a small agricultural maize cropped field. Hydrol 2002, 261, 86–101. [Google Scholar] [CrossRef]
- Vepraskas, M.J.; Heitman, J.L.; Austin, R.E. Future directions for hydropedology: Quantifying impacts of global change on land use. Hydrol. Earth Syst. Sci. 2010, 13, 1427–1438. [Google Scholar] [CrossRef]
- Farley, K.A.; Jobbágy, E.G.; Jackson, R.B. Effects of afforestation on water yield: A global synthesis with implications for policy. Glob. Change Biol. 2005, 11, 1565–1576. [Google Scholar] [CrossRef]
- Sun, G.; Zhou, G.Y.; Zhang, A.Q. Potential water yield reduction due to forestation across China. Hydrol 2006, 328, 548–558. [Google Scholar] [CrossRef]
- Su, Y.; He, B.H.; Yao, X.H.; Ren, H.D. Spatial Variability of Soil Water in Karst Rocky Desertification Area in the Eastern Part of Yunnan Province. J. Southwest China Norm. Univ. (Nat. Sci. Ed.) 2008, 33, 67–71. [Google Scholar]
- Xiong, K.N.; Chi, Y.K. Problems and countermeasures of karst ecosystem in southern China. Ecol. Econ. 2015, 31, 23–30. [Google Scholar]
- Ma, Q.H.; Zhang, K.L. Progress and prospect of soil erosion research in karst areas of Southwest China. Adv. Earth Sci. 2018, 33, 1130–1141. [Google Scholar]
- Li, Y.Q.; Dai, Q.H.; Ren, Q.Q. Karst soil vertical permeability and influence factors of shallow crack. J. Soil Water Conserv. 2020, 3, 150–155. [Google Scholar]
- Yang, L.; Zhang, H.D.; Chen, L.D. Study on soil water recharging efficiency and threshold value of secondary rainfall in Loess Wide beam gentle slope hilly region. J. Sci. China Earth Sci. 2018, 48, 457–466. [Google Scholar]
- Guo, D.S.; Ma, Z.Q. Study on test principle and manufacturing accuracy of hydrometer. Chin. J. Geotech. Eng. 1981, 3, 106–113. [Google Scholar]
- Stephenson, D. Kinematic study of effects of storm dynamics on runoff hydrographs. Water SA 1984, 10, 189–196. [Google Scholar]
- Singh, V. Effect of spatial and temporal variability in rainfall and watershed characteristics on stream flow hydrograph. Hydrol. Process. 1997, 11, 1649–1669. [Google Scholar] [CrossRef]
- Yom, Y.J. Study on Shallow Karst Fissures and Main Ecological Functions of Soil in Karst Rocky Desertification Rea. Ph.D. Thesis, Guizhou University, Guiyang, China, 2019. [Google Scholar]
- Bai, W.; Chen, X.; Tang, Y.; He, Y.; Zheng, Y. Temporal and spatial changes of soil moisture and its response to temperature and precipitation over the Tibetan Plateau. Hydrol. Sci. J. 2019, 64, 1370–1384. [Google Scholar] [CrossRef]
- Zeng, J.; Fei, L.J.; Pei, Q.B. Influence of Soil Bulk Density on Soil Water Infiltration Characteristics in Water Vertical Movement for Red Loams. J. Drain. Irrig. Mach. Eng. 2017, 35, 1081–1087. [Google Scholar]
- Zhang, C.; Chen, H.S.; Zhang, W.; Nie, Y.P.; Ye, Y.Y.; Wang, K.L. Spatial Variation Characteristics of Surface Soil Water Content, Bulk Density and Saturated Hydraulic Conductivity on Karst Slopes. Chin. J. Appl. Ecol. 2014, 25, 1585–1591. [Google Scholar]
- Bialkowski, R.; Buttle, J.M. Stemflow and throughfall contributions to soil water recharge under trees with differing branch architectures. Hydrol. Process. 2015, 29, 4068–4082. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Wang, X.P.; Hu, R.; Pan, Y.X.; Paradeloc, M. Rainfall partitioning into throughfall, stemflow and interception loss by two xerophytic shrubs within a rain-fed re-vegetated desert ecosystem, northwestern China. J. Hydrol. 2015, 527, 1084–1095. [Google Scholar] [CrossRef]
- Wang, Y.C.; Wu, Y.H.; Li, M. Study on Water and Soil Loss and Control Methods in Pisha Sandstone, 1st ed.; The Yellow River Water Conservancy Press: Zhengzhou, China, 2007; pp. 132–138. [Google Scholar]
Study Sites | Longitude | Latitude | Altitude/m | Slope Inclination/° | Vegetation |
---|---|---|---|---|---|
Site 1 (wood tree) | 108°7′44.8″ E | 27°9′0.9″ N | 1032 | 10 | Pine, cypress |
Site 2 (peach tree) | 108°7′37.2″ E | 27°9′1.1″ N | 980 | 6 | Peach tree |
Site 3 (flue-cured tobacco) | 108°7′33.7″ E | 27°8′57.8″ N | 971 | 6 | Flue-cured tobacco |
Site 4 (grass land) | 108°7′31.6″ E | 27°8′53.2″ N | 949 | 4 | Silvergrass |
Study Sites | Soil Layer Depth/cm | 1 SBD(g·cm−3) | 2 TOC/% | 3 TP/% | 4 FC/ |
---|---|---|---|---|---|
Site 1 | 0–15 | 0.82 | 12.62 | 66.89 | 40.98 |
15–30 | 0.96 | 11.27 | 62.26 | 47.99 | |
30–45 | 1.06 | 9.23 | 58.88 | 43.84 | |
Site 2 | 0–15 | 1.40 | 1.10 | 47.74 | 32.76 |
15–30 | 1.17 | 1.16 | 55.46 | 41.18 | |
30–45 | 1.05 | 1.23 | 59.36 | 52.68 | |
45–60 | 1.10 | 0.76 | 57,354 | 49.98 | |
60–75 | 1.17 | 0.77 | 55.37 | 32.79 | |
Site 3 | 0–15 | 1.40 | 0.34 | 47.69 | 32.86 |
15–30 | 1.36 | 0.14 | 48.98 | 32.49 | |
30–45 | 1.42 | 0.14 | 47.00 | 28.54 | |
45–60 | 1.49 | 0.12 | 44.73 | 28.56 | |
60–75 | 1.52 | 0.06 | 43.83 | 27.36 | |
Site 4 | 0–15 | 1.33 | 1.21 | 49.92 | 37.94 |
15–30 | 1.39 | 0.74 | 48.22 | 34.07 | |
30–45 | 1.47 | 0.26 | 45.29 | 30.54 | |
45–60 | 1.35 | 0.21 | 49.49 | 36.77 | |
60–75 | 1.32 | 0.22 | 50.48 | 37.69 |
Rainfall | Rainfall/mm | Duration of Rainfall/h | Rainfall Intensity/(mm/h) |
---|---|---|---|
Small rainfall | 5 | 1 | 5 |
Medium rainfall | 36.4 | 7 | 5.2 |
Large rainfall | 60.8 | 11 | 5.5 |
Rainfall Event | Rainfall/mm | Duration of Rainfall/h | Rainfall Intensity/mm/h |
---|---|---|---|
Small rainfall event | 29.2 | 8 | 3.65 |
Moderate to low rainfall event | 27.4 | 3.5 | 7.83 |
Time of Monitoring | Site Number | Soil Depth(m) | ||||
---|---|---|---|---|---|---|
0–0.15 | 0.15–0.30 | 0.30–0.45 | 0.45–0.60 | 0.60–0.75 | ||
2020/3–2020/8 (wet season) | S1 | 11.47% | 13.13% | 13.93% | / | / |
S2 | 9.03% | 19.89% | 7.60% | 15.96% | 4.48% | |
S3 | 7.81% | 5.21% | 3.07% | 6.48% | 5.56% | |
S4 | 17.17% | 15.91% | 9.41% | 7.26% | 5.89% | |
2020/9–2021/2 (dry season) | S1 | 4.19% | 7.19% | 17.35% | / | / |
S2 | 6.29% | 18.32% | 8.69% | 11.70% | 5.66% | |
S3 | 12.22% | 3.32% | 1.83% | 3.28% | 3.32% | |
S4 | 11.49% | 9.59% | 6.31% | 3.22% | 3.61% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Xiong, K.; Wu, C.; Luo, D.; Xiao, J.; Shen, C. Characteristics of Soil Moisture Variation in Agroforestry in Karst Region. Land 2023, 12, 347. https://doi.org/10.3390/land12020347
Wang Z, Xiong K, Wu C, Luo D, Xiao J, Shen C. Characteristics of Soil Moisture Variation in Agroforestry in Karst Region. Land. 2023; 12(2):347. https://doi.org/10.3390/land12020347
Chicago/Turabian StyleWang, Zehui, Kangning Xiong, Chenxu Wu, Ding Luo, Jie Xiao, and Chuhong Shen. 2023. "Characteristics of Soil Moisture Variation in Agroforestry in Karst Region" Land 12, no. 2: 347. https://doi.org/10.3390/land12020347
APA StyleWang, Z., Xiong, K., Wu, C., Luo, D., Xiao, J., & Shen, C. (2023). Characteristics of Soil Moisture Variation in Agroforestry in Karst Region. Land, 12(2), 347. https://doi.org/10.3390/land12020347