The Suitability of Prehistoric Human Settlements from the Perspective of the Residents
Abstract
:1. Introduction
2. Deconstruction of the Connotation of SPHE
2.1. Composition and Meaning of the Suitability of Modern Human Settlements
2.2. SPHE Composition and Space–Time Representation
2.2.1. Social Environmental Appearance
2.2.2. Natural Environmental Conditions
2.2.3. Prehistoric Human Needs
2.3. SPHE Meaning
3. Spatiotemporal Representation of SPHE
3.1. Time Course of SPHE
3.2. Spatial Hierarchy of SPHE
4. Discussion
4.1. SPHE Research Main Line and Content Framework
- Theoretical construction of SPHE. This requires the further expansion of the theoretical framework of SPHE, improving the connotation interpretation, concept statement, hypothesis verification, compositional structure, operational mechanism, factual data accumulation, technical system, and value function demonstration of SPHE. Additionally, it should include an expansion of the guiding ideology, theoretical reserve, and technical composition of SPHE with different research perspectives, needs, and subject backgrounds, building the superstructure of SPHE and improving its applicability and scientific nature.
- Research on the changing characteristics of environmental evolution and habitation process. This should include focusing on the study of the natural and social environmental living conditions caused by the evolution of the environment and human civilization at different time and space scales; that is, changes in human living space and production, food, and social resources. It is also important to discuss the differences in the forms, types, and stages of human settlements, such as residential forms, production technologies, and livelihood, migration, and social organization patterns in the process of human settlements caused by differences in living conditions. Based on this, the change in housing demand and its general manifestations caused by this change under multiple scales (time, space, and cultural type) can be summarized and key characterizations extracted.
- The relationship between the development of prehistoric human needs and the suitability transformation of human settlements and its suitability evaluation system. This involves systematically studying the adaptation forms and transformation approaches of human residential behavior to human needs and natural and social environmental conditions at different scales, and interpreting the connotations of technological, migratory, and cultural adaptations of residential activities due to changes in demand [133,135,136]. Furthermore, the regionality and stage of the residential adaptation process should be discussed, and the key manifestations and quantitative approaches of residential adaptation extracted. It is also necessary to establish SPHE evaluation criteria and objectives, verify interdisciplinary evaluation systems and methods, and interpret suitability classification standards from the perspective of human–land interactions, based on the environmental background combined with the performance elements of human initiative. In addition, we must study the relationship and driving mechanism of paleoenvironmental evolution and reconstruction and the development and progress of human civilization with prehistoric human habitation activities and suitability evolution, build an environmental evolution model and suitability development stages, and explain the multiple driving mechanisms on multiple scales.
- Residential adaptation theory and suitability distribution models. Based on developing the above studies, it is necessary to sort the temporal and spatial characteristics, trends, and driving-force mechanisms of prehistoric human living preferences in different natural environments, temporal and spatial scales, and cultural backgrounds. Additionally, the human–land interaction relationship must be refined in the context of early human–land relations. From the two dimensions of passive adaptation and active transformation of human habitation, the theory of early human habitation adaptation and the occurrence mode of suitability preference under multiple scales can be summarized.
- SPHE application value verification and limitation research. Based on the evolution of prehistoric natural and social environments, extensive SPHE evaluation and process discussion should be conducted. We need to use multi-parameter dynamic regulation to simulate the dynamic process of SPHE and use space–time comparison and difference verification to demonstrate its space–time application scale, problem-solving utility, and limitations in the study of prehistoric human–land relationships. In addition, it is necessary to accumulate data, determine the influencing factors and technical methods, and screen the obstacles and strengths of theoretical frameworks based on application limitations. In this way, feedback can be formed to improve SPHE theory, logic, methods, and data construction, and promote the application value.
4.2. The Limitations and Uniqueness of SPHE
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piperno, D.R.; Holst, I. The presence of starch grains on prehistoric stone tools from the humid neotropics: Indications of early tuber use and agriculture in Panama. J. Archaeol. Sci. 1998, 25, 765–776. [Google Scholar] [CrossRef]
- Domínguez-Rodrigo, M.; Cobo-Sánchez, L. A spatial analysis of stone tools and fossil bones at FLK Zinj 22 and PTK I (Bed I, Olduvai Gorge, Tanzania) and its bearing on the social organization of early humans. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 488, 21–34. [Google Scholar] [CrossRef]
- Lucarini, G.; Radini, A.; Barton, H.; Barker, G. The exploitation of wild plants in Neolithic North Africa. Use-wear and residue analysis on non-knapped stone tools from the Haua Fteah cave, Cyrenaica, Libya. Quat. Int. 2016, 410, 77–92. [Google Scholar] [CrossRef]
- Fullagar, R.; Hayes, E.; Chen, X.; Ma, X.; Liu, L. A functional study of denticulate sickles and knives, ground stone tools from the early Neolithic Peiligang culture, China. Archaeol. Res. Asia 2021, 26, 100265. [Google Scholar] [CrossRef]
- Yu, C.; You, Y.; Luo, J.; Ruan, Q. The Late Bronze Age pastoralist settlement at Halehaxite in the Tianshan Mountains, Xinjiang, China, a zooarchaeological perspective. J. Archaeol. Sci. Rep. 2022, 45, 103595. [Google Scholar] [CrossRef]
- Ma, M.; Lu, M.; Zhang, S.; Min, R.; Dong, G. Asynchronous transformation of human livelihoods in key regions of the trans-Eurasia exchange in China during 4000-2200 BP. Quat. Sci. Rev. 2022, 193, 266–287. [Google Scholar] [CrossRef]
- McDonald, J.; Reynen, W.; Ditchfield, K.; Dortch, J.; Leopold, M.; Stephenson, B.; Whitley, T.; Ward, I.; Veth, P. Murujuga Rockshelter: First evidence for Pleistocene occupation on the Burrup Peninsula. Quat. Sci. Rev. 2018, 193, 266–287. [Google Scholar] [CrossRef]
- Florin, S.A. Archaeobotanical investigations into 65,000 years of plant food use at Madjedbebe, Mirarr country, northern Australia. Ph.D. Thesis, School of Social Science, The University of Queensland, Brisbane, Australia, 2021. [Google Scholar] [CrossRef]
- Rosenswig, R.M.; Pearsall, D.M.; Masson, M.A.; Culleton, B.J.; Kennett, D.J. Archaic period settlement and subsistence in the Maya lowlands: New starch grain and lithic data from Freshwater Creek, Belize. J. Archaeol. Sci. 2014, 41, 308–321. [Google Scholar] [CrossRef]
- Tao, D.; Xu, J.; Wu, Q.; Gu, W.; Wei, Q.; Zhou, Y.; Richards, M.P.; Zhang, G. Human diets, crop patterns, and settlement hierarchies in third millennium BC China: Bioarchaeological perspectives in Zhengluo region. J. Archaeol. Sci. 2022, 145, 105647. [Google Scholar] [CrossRef]
- Field, J.H.; Kealhofer, L.; Cosgrove, R.A.; Coster, A.C. Human-environment dynamics during the Holocene in the Australian Wet Tropics of NE Queensland: A starch and phytolith study. J. Anthropol. Archaeol. 2016, 44, 216–234. [Google Scholar] [CrossRef]
- Bruegmann, G.; Lockhoff, N.; Roberts, B.W.; Pernicka, E.; Berger, D.; Wang, Q. The salcombe metal cargoes: New light on the provenance and circulation of tin and copper in later bronze age europe provided by trace elements and isotopes. J. Archaeol. Sci. 2022, 138, 105543. [Google Scholar] [CrossRef]
- Lu, P.; Tian, Y.; Yang, R. The study of size-grade of prehistoric settlements in the Circum-Songshan area based on SOFM network. J. Geogr. Sci. 2013, 23, 538–548. [Google Scholar] [CrossRef]
- Li, Y.; Lu, P.; Mao, L.; Chen, P.; Yan, L.; Guo, L. Mapping spatiotemporal variations of Neolithic and Bronze Age settlements in the Gansu-Qinghai region, China: Scale grade, chronological development, and social organization. J. Archaeol. Sci. 2021, 129, 105357. [Google Scholar] [CrossRef]
- Hudson, R.; Mazuera, E. Inter-visibility between settlements in pre-hispanic sierra nevada de santa marta, colombia. the relation between hierarchy and control of distant communications. J. Archaeol. Sci. 2021, 129, 105373. [Google Scholar] [CrossRef]
- Lemke, A. Literal niche construction: Built environments of hunter-gatherers and hunting architecture. J. Anthropol. Archaeol. 2021, 62, 101276. [Google Scholar] [CrossRef]
- Spagnolo, V.; Crezzini, J.; Marciani, G.; Capecchi, G.; Arrighi, S.; Aureli, D.; Ekberg, I.; Scaramucci, S.; Tassoni, L.; Boschin, F.; et al. Neandertal camps and hyena dens. Living floor 150A at Grotta dei Santi (Monte Argentario, Tuscany, Italy). J. Archaeol. Sci. Rep. 2020, 30, 102249. [Google Scholar] [CrossRef]
- Duffy, P.R.; Marton, T.; Borić, D. Locating Mesolithic Hunter-Gatherer Camps in the Carpathian Basin. J. Archaeol. Method Theory 2022, 30, 636–677. [Google Scholar] [CrossRef]
- Panja, S. Mobility strategies and site structure: A case study of Inamgaon. J. Anthropol. Archaeol. 2003, 22, 105–125. [Google Scholar] [CrossRef]
- Janzen, A.; Balasse, M.; Ambrose, S.H. Early pastoral mobility and seasonality in Kenya assessed through stable isotope analysis. J. Archaeol. Sci. 2020, 117, 105099. [Google Scholar] [CrossRef]
- Schmaus, T.M.; Doumani Dupuy, P.N.; Frachetti, M. Variability in seasonal mobility patterns in Bronze and Iron Age Kazakhstan through cementum analysis. Quat. Int. 2020, 545, 102–110. [Google Scholar] [CrossRef]
- Kahn, L.; Easton, B. Shelter II; Shelter Publications, Publishers Group West Distributor: Bolinas, CA, USA, 2010. [Google Scholar]
- Swerida, J. Revisiting ‘settlement’: A case study of terminology and early bronze age Southeast Arabia. J. Anthropol. Archaeol. 2022, 65, 101382. [Google Scholar] [CrossRef]
- Garfi, S. Conflict Landscapes: An Archaeology of the International Brigades in the Spanish Civil War; Archaeopress: Oxford, UK, 2019. [Google Scholar] [CrossRef]
- Dong, G.; Jia, X.; Elston, R.G.; Chen, F.; Li, S.; Wang, L.; Cai, L.; An, C. Spatial and temporal variety of prehistoric human settlement and its influencing factors in the upper Yellow River valley, Qinghai Province, China. J. Archaeol. Sci. 2013, 40, 2538–2546. [Google Scholar] [CrossRef]
- Peter, D.; Dagmar, D. Modelling distribution of archaeological settlement evidence based on heterogeneous spatial and temporal data. J. Archaeol. Sci. 2016, 69, 100–109. [Google Scholar] [CrossRef]
- Gayo, E.M.; Latorre, C.; Santoro, C.M. Timing of occupation and regional settlement patterns revealed by time-series analyses of an archaeological radiocarbon database for the South-Central Andes (16°–25°S). Quat. Int. 2014, 356, 4–14. [Google Scholar] [CrossRef]
- Mayr, C.; Matzke-Karasz, R.; Manthe, P.; Arnold, J.; Hänfling, C.; Hilber, J.; Spitzenberger, D.; Schmid, W.; Schönfeld, G. Environmental change in the vicinity of the Neolithic wetland settlement Pestenacker (S-Germany) during the last 6600 years. J. Archaeol. Sci. 2015, 54, 396–409. [Google Scholar] [CrossRef]
- Chen, F.H.; Dong, G.H.; Zhang, D.J.; Liu, X.Y.; Jia, X.; An, C.; Ma, M.; Xie, Y.W.; Barton, L.; Ren, X.; et al. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P. Science 2015, 347, 248–250. [Google Scholar] [CrossRef]
- Tóth, P.; Demján, P.; Griačová, K. Adaptation of settlement strategies to environmental conditions in southern Slovakia in the Neolithic and Eneolithic. Doc. Praehist. 2011, 38, 307–322. [Google Scholar] [CrossRef]
- Spencer, C.; Bevan, A. Settlement location models, archaeological survey data and social change in bronze age crete. J. Anthropol. Archaeol. 2018, 52, 71–86. [Google Scholar] [CrossRef]
- Pwj, A.; Ab, A.; Pndd, B.; Dc, C.; Xj, C. Bronze Age Hill Forts: New evidence for defensive sites in the western Tian Shan, China. Archaeol. Res. Asia 2018, 15, 70–81. [Google Scholar] [CrossRef]
- Chechushkov, I.V.; Valiakhmetov, I.A.; Fitzhugh, W.W. From adaptation to niche construction: Weather as a winter site selection factor in northern mongolia, the quebec lower north shore, and the southern urals. J. Anthropol. Archaeol. 2021, 61, 101258. [Google Scholar] [CrossRef]
- Wechsler, N.; Katz, O.; Dray, Y.; Gonen, I.; Marco, S. Estimating location and size of historical earthquake by combining archaeology and geology in Umm-El-Qanatir, dead sea transform. Nat. Hazards 2009, 50, 27–43. [Google Scholar] [CrossRef]
- Demenocal, P.B. Cultural responses to climate change during the late holocene. Science 2001, 292, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Huang, C.C.; Pang, J.; Zhou, Y.; Shang, R. Catastrophic flashflood and mudflow events in the pre-historical lajia ruins at the northeast margin of the Chinese Tibetan Plateau. Quat. Sci. Rev. 2020, 251, 106737. [Google Scholar] [CrossRef]
- Kawahata, H.; Yamamoto, H.; Ohkushi, K.; Yokoyama, Y.; Kimoto, K.; Ohshima, H.; Matsuzaki, H. Changes of environments and human activity at the sannai-maruyama ruins in japan during the mid-holocene hypsithermal climatic interval. Quat. Sci. Rev. 2009, 28, 964–974. [Google Scholar] [CrossRef]
- Doxiadis, C.A. Action for Human Settlements; Athens Publishing Center: Athens, Greece, 1975. [Google Scholar]
- United Nations. The Vancouver Declaration on Human Settlements//HABITAT: United Nations Conference on Human Settlements (Vancouver, Canada); XF2006173834; United Nations: New York, NY, USA, 1976. [Google Scholar]
- Liangyong, W. Sciences of human settlements: Searching for the theory and practice. Ekistics New Habitat 2002, 69, 279–284. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, C.; Lu, M.; Lu, Y. Assessing the suitability of regional human settlements environment from a different preferences perspective: A case study of Zhejiang Province, China. Habitat Int. 2017, 70, 1–12. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, J.; Li, Y.; Dang, X. Human Settlement and Spatial Behavior of Residents; Science Press: Beijing, China, 2016. [Google Scholar]
- Cao, Y.Y.; Li, F.; Xi, X.; Bilsen, D.G.; Xu, L. Urban livability: Agent-based simulation, assessment, and interpretation for the case of Futian District, Shenzhen. J. Clean. Prod. 2021, 320, 128662. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y. Livable China Development Index Report; China Social Sciences Press: Beijing, China, 2017. [Google Scholar]
- Khorrami, Z.; Ye, T.; Sadatmoosavi, A.; Mirzaee, M.; Davarani, M.M.; Khanjani, N. The indicators and methods used for measuring urban liveability: A scoping review. Rev. Environ. Health 2020, 36, 397–441. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, Y.; Tang, X.; Huang, H.; Wang, R. Assessing spatial–temporal evolution and key factors of urban livability in arid zone: The case study of the Loess Plateau, China. Ecol. Indic. 2022, 140, 108995. [Google Scholar] [CrossRef]
- Martínez-Bravo, M.D.; Martínez-del-Río, J.; Antolín-López, R. Trade-offs among urban sustainability, pollution and livability in European cities. J. Clean. Prod. 2019, 224, 651–660. [Google Scholar] [CrossRef]
- Marans, R.W. Quality of urban life & environmental sustainability studies: Future linkage opportunities. Habitat Int. 2015, 45, 47–52. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, C. Quality evaluation and division of regional types of rural human settlements in China. Habitat Int. 2020, 105, 102278. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Yu, M. Evaluation and determinants of satisfaction with rural livability in China’s less-developed eastern areas: A case study of Xianju County in Zhejiang Province. Ecol. Indic. 2019, 104, 711–722. [Google Scholar] [CrossRef]
- Faiz, A.; Faiz, A.; Wang, W.; Bennett, C.R. Sustainable rural roads for livelihoods and livability. Procedia-Soc. Behav. Sci. 2012, 53, 1–8. [Google Scholar] [CrossRef]
- Nanor, M.A.; Poku-Boansi, M.; Adarkwa, K.K. Determinants of subjective wellbeing in rural communities: Evidence from the Juaben Municipality, Ghana. Cities 2021, 113, 103140. [Google Scholar] [CrossRef]
- Li, Y.; Liu, C.; Zhang, H.; Gao, X. Evaluation on the human settlements environment suitability in the three Gorges reservoir area of Chongqing based on RS and GIS. J. Geogr. Sci. 2011, 21, 346–358. [Google Scholar] [CrossRef]
- Yassin, M.F.; Althaqeb, B.; Al-Mutiri, E.A. Assessment of indoor PM2.5 in different residential environments. Atmos. Environ. 2012, 56, 65–68. [Google Scholar] [CrossRef]
- Mohit, M.A.; Azim, M. Assessment of Residential Satisfaction with Public Housing in Hulhumale’, Maldives. Procedia-Soc. Behav. Sci. 2012, 50, 756–770. [Google Scholar] [CrossRef]
- Wang, Y.; Miao, Z. Towards the analysis of urban livability in China: Spatial–temporal changes, regional types, and influencing factors. Environ. Sci. Pollut. Res. 2022, 29, 60153–60172. [Google Scholar] [CrossRef]
- Xue, Q.; Yang, X.; Wu, F. A two-stage system analysis of real and pseudo urban human settlements in China. J. Clean. Prod. 2021, 293, 126272. [Google Scholar] [CrossRef]
- Kuzmin, Y.V.; Nakazawa, Y.; Ono, A. Human behavioral variability in prehistoric Eurasia. Quat. Int. 2017, 442, 1–4. [Google Scholar] [CrossRef]
- Finkel, M.; Barkai, R. Technological persistency following faunal stability during the Pleistocene: A model for reconstructing Paleolithic adaptation strategies based on mosaic evolution. L’Anthropologie 2021, 125, 102839. [Google Scholar] [CrossRef]
- Ponkratova, I.Y.; Chlachula, J.; Clausen, I. Chronology and environmental context of the early prehistoric peopling of Kamchatka, the Russian North Far East. Quat. Sci. Rev. 2021, 252, 106702. [Google Scholar] [CrossRef]
- Henry, D.O.; Mraz, V. Lithic economy and prehistoric human behavioral ecology viewed from southern Jordan. J. Archaeol. Sci. Rep. 2020, 29, 102089. [Google Scholar] [CrossRef]
- Chen, H.; Xue, L.P.; Chen, R.; Si, H.; Jin, Y.; Tang, Y. A functional study of ground stone tools from the Bronze Age site of Dingjiacun in South China: Based on use-wear evidence. J. Archaeol. Sci. Rep. 2021, 40, 103215. [Google Scholar] [CrossRef]
- Ramírez, I.O.; Galili, E.; Beeri, R.; Golan, D.; Krakovsky, M.; Dayan, A.; Shalem, D.; Shahack-Gross, R. Heated mud bricks in submerged and coastal Southern Levant Pre-Pottery Neolithic C and Late Pottery Neolithic/Early Chalcolithic settlements: Diachronic changes in technology and their social implications. J. Archaeol. Sci. Rep. 2020, 30, 102220. [Google Scholar] [CrossRef]
- Hou, G.; Lai, Z.; Cao, G.; ChongYi, E.; Sun, Y.; Rhode, D.; James, F.H. The earliest prehistoric pottery in the qinghai-tibetan plateau and its archaeological implications. Quat. Geochronol. 2015, 30, 431–437. [Google Scholar] [CrossRef]
- Cohen, D.J.; Bar-Yosef, O.; Wu, X.; Patania, I.; Goldberg, P. The emergence of pottery in china: Recent dating of two early pottery cave sites in south china. Quat. Int. 2016, 441, 36–48. [Google Scholar] [CrossRef]
- Derenne, E.; Ard, V.; Besse, M. Pottery technology as a revealer of cultural and symbolic shifts: Funerary and ritual practices in the Sion ‘Petit-Chasseur’ megalithic necropolis (3100–1600 BC, Western Switzerland). J. Anthropol. Archaeol. 2020, 58, 101170. [Google Scholar] [CrossRef]
- Courel, B.; Meadows, J.; Carretero, L.G.; Lucquin, A.; Craig, O.E. The use of early pottery by hunter-gatherers of the eastern european forest-steppe. Quat. Sci. Rev. 2021, 269, 107143. [Google Scholar] [CrossRef]
- Gibbs, K. The emergence of ceramics in southwest asia: Early pottery in farming communities—Sciencedirect. Quat. Int. 2020, 608–609, 194–202. [Google Scholar] [CrossRef]
- García-Alix, A.; Jiménez-Espejo, F.J.; Lozano, J.A.; Jiménez-Moreno, G.; Martínez-Ruiz, F.; García Sanjuán, L.; Aranda Jiménez, G.; García Alfonso, E.; Ruiz-Puertas, G.; Anderson, R.S. Anthropogenic impact and lead pollution throughout the Holocene in Southern Iberia. Sci. Total Environ. 2013, 449, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Barsky, D.; Carbonell, E.; Sala-Ramos, R.; Castro, J.M.; García-Vadillo, F. Late Acheulian multiplicity in manufactured stone culture at the end of the Middle Pleistocene in Western Europe. Quat. Int. 2021, 601, 66–81. [Google Scholar] [CrossRef]
- Marx, K.; Engels, F. Marx & Engels Collected Works Vol 09: Marx and Engels:1849; Lawrence & Wishart: Lundon, UK, 1977. [Google Scholar]
- Zhang, W.; Wu, H.; Cheng, J.; Geng, J.; Li, Q.; Sun, Y.; Yu, Y.; Lu, H.; Guo, Z. Holocene seasonal temperature evolution and spatial variability over the Northern Hemisphere landmass. Nat. Commun. 2022, 13, 5334. [Google Scholar] [CrossRef]
- Bova, S.; Rosenthal, Y.; Liu, Z.; Godad, S.P.; Yan, M. Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature 2021, 589, 548–553. [Google Scholar] [CrossRef]
- Gilmer, G.; Moy, C.M.; Riesselman, C.R.; Vandergoes, M.; Jacobsen, G.; Gorman, A.R.; Tidey, E.J.; Wilson, G.S. Late Pleistocene and Holocene climate and environmental evolution of a subantarctic fjord ingression basin in the southwest Pacific. Quat. Sci. Rev. 2021, 253, 106698. [Google Scholar] [CrossRef]
- Larsen, D.J.; Miller, G.H.; Geirsdóttir, Á.; Ólafsdóttir, S. Non-linear Holocene climate evolution in the North Atlantic: A high-resolution, multi-proxy record of glacier activity and environmental change from Hvítárvatn, central Iceland. Quat. Sci. Rev. 2012, 39, 14–25. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, F.; Fang, X.; Meng, Q.; Cai, D. Global climate change drove terrestrial ecosystem evolution during the late Paleocene-middle Miocene in the Lanzhou Basin, northeast Tibetan Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2022, 598, 111045. [Google Scholar] [CrossRef]
- Potts, R.; Dommain, R.; Moerman, J.W.; Behrensmeyer, A.K.; Deino, A.L.; Riedl, S.; Beverly, E.J.; Brown, E.T.; Deocampo, D.M.; Kinyanjui, R.; et al. Increased ecological resource variability during a critical transition in hominin evolution. Sci. Adv. 2020, 6, eabc8975. [Google Scholar] [CrossRef]
- Owen, R.B.; Muiruri, V.; Lowenstein, T.K.; Renaut, R.W.; Rabideaux, N.; Luo, S.; Deino, A.L.; Sier, M.J.; Dupont-Nivet, G.; Mcnulty, E.; et al. Progressive aridification in East Africa over the last half million years and implications for human evolution. Proc. Natl. Acad. Sci. USA 2018, 115, 11174–11179. [Google Scholar] [CrossRef]
- Nicoll, K. Recent environmental change and prehistoric human activity in Egypt and Northern Sudan. Quat. Sci. Rev. 2004, 23, 561–580. [Google Scholar] [CrossRef]
- Muñoz, S.E.; Gajewski, K.; Peros, M.C. Synchronous environmental and cultural change in the prehistory of the northeastern United States. Proc. Natl. Acad. Sci. USA 2010, 107, 22008–22013. [Google Scholar] [CrossRef] [PubMed]
- Nigst, P.R.; Haesaerts, P.; Damblon, F.; Frank-Fellner, C.; Mallol, C.; Viola, B.; Götzinger, M.; Niven, L.; Trnka, G.; Hublin, J. Early modern human settlement of Europe north of the Alps occurred 43,500 years ago in a cold steppe-type environment. Proc. Natl. Acad. Sci. USA 2014, 111, 14394–14399. [Google Scholar] [CrossRef] [PubMed]
- Blockley, S.; Candy, I.; Matthews, I.; Langdon, P.; Langdon, C.; Palmer, A.; Lincoln, P.; Abrook, A.; Taylor, B.; Conneller, C.; et al. The resilience of postglacial hunter-gatherers to abrupt climate change. Nat. Ecol. Evol. 2018, 2, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Lu, H.; Chu, G.; Liu, L.; Shen, C.; Li, F.; Wang, C.; Wu, N. Synchronous 500-year oscillations of monsoon climate and human activity in Northeast Asia. Nat. Commun. 2019, 10, 4105. [Google Scholar] [CrossRef]
- Seong, C.; Kim, J. Moving in and moving out: Explaining final Pleistocene-Early Holocene hunter-gatherer population dynamics on the Korean Peninsula. J. Anthropol. Archaeol. 2022, 66, 101407. [Google Scholar] [CrossRef]
- Horta, L.R.; Belardi, J.B.; Georgieff, S.M.; Carballo Marina, F. Late Quaternary evolution of Viedma Lake and implications for hunter-gatherer mobility in the Southern Andean Patagonia, Argentina. Quat. Int. 2022, 628, 18–27. [Google Scholar] [CrossRef]
- Kuznetsov, A.M.; Rogovskoi, E.O.; Klementiev, A.M.; Mamontov, A.M. North Angara Early Holocene hunter–gatherers: Archaeological evidence of the collector strategy. Archaeol. Res. Asia 2022, 31, 100369. [Google Scholar] [CrossRef]
- Beresford-Jones, D.G.; Friesem, D.E.; Sturt, F.; Pullen, A.; Chauca, G.; Moat, J.; Gorriti, M.; Maita, P.K.; Joly, D.; Huaman, O.; et al. Insights into changing coastlines, environments and marine hunter-gatherer lifestyles on the Pacific coast of South America from the La Yerba II shell midden, Río Ica estuary, Peru. Quat. Sci. Rev. 2022, 285, 107509. [Google Scholar] [CrossRef]
- Carré, M.; Klaric, L.; Lavallée, D.; Julien, M.; Bentaleb, I.; Fontugne, M.; Kawka, O.E. Insights into early Holocene hunter-gatherer mobility on the Peruvian Southern Coast from mollusk gathering seasonality. J. Archaeol. Sci. 2009, 36, 1173–1178. [Google Scholar] [CrossRef]
- Hufthammer, A.K.; Høie, H.; Folkvord, A.; Geffen, A.J.; Andersson, C.; Ninnemann, U.S. Seasonality of human site occupation based on stable oxygen isotope ratios of cod otoliths. J. Archaeol. Sci. 2010, 37, 78–83. [Google Scholar] [CrossRef]
- Hohenstein, U.T.; Turrini, M.C.; Guerreschi, A.; Fontana, F. Red deer vs. ibex hunting at a seasonal base camp in the Dolomites: Mondeval de Sora, site 1, sector I. Quat. Int. 2016, 423, 92–101. [Google Scholar] [CrossRef]
- Loftus, E.; Lee-Thorp, J.A.; Leng, M.J.; Marean, C.W.; Sealy, J. Seasonal scheduling of shellfish collection in the Middle and Later Stone Ages of southern Africa. J. Hum. Evol. 2019, 128, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Binford, L.R. Willow Smoke and Dogs’ Tails: Hunter-Gatherer Settlement Systems and Archaeological Site Formation. Am. Antiq. 1980, 45, 4–20. [Google Scholar] [CrossRef]
- Speer, C.A. A blended model of mobility behavior: Clovis period hunter-gatherers at the Gault Site. Quat. Sci. Rev. 2019. [Google Scholar] [CrossRef]
- Archila, S.; Groot, A.M.; Ospina, J.P.; Mejía, M.C.; Zorro, C. Dwelling the hill: Traces of increasing sedentism in hunter-gatherers societies at Checua site, Colombia (9500-5052 cal BP). Quat. Int. 2021, 578, 102–119. [Google Scholar] [CrossRef]
- Qiu, Q.; Wang, L.; Wang, K.; Yang, Y.; Ma, T.; Wang, Z.; Zhang, X.; Ni, Z.; Hou, F.; Long, R.; et al. Yak whole-genome resequencing reveals domestication signatures and prehistoric population expansions. Nat. Commun. 2015, 6, 10283. [Google Scholar] [CrossRef]
- Mascher, M.; Schuenemann, V.J.; Davidovich, U.; Marom, N.; Himmelbach, A.; Hübner, S.; Korol, A.; David, M.; Reiter, E.; Riehl, S.; et al. Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley. Nat. Genet. 2016, 48, 1089–1093. [Google Scholar] [CrossRef]
- Zheng, Y.; Sun, G.; Qin, L.; Li, C.; Wu, X.; Chen, X. Events of reclaiming marshes for rice fields between 7000BP and 4500 BP in east China. Nat. Prec. 2009. [Google Scholar] [CrossRef]
- Wilkin, S.; Miller, A.V.; Taylor, W.T.T.; Miller, B.K.; Hagan, R.W.; Bleasdale, M.; Scott, A.; Gankhuyg, S.; Ramsøe, A.; Uliziibayar, S.; et al. Dairy pastoralism sustained eastern Eurasian steppe populations for 5,000 years. Nat. Ecol. Evol. 2020, 4, 346–355. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, J.; Spengler, R.N.; Shen, H.; Zhao, K.; Ge, J.; Bao, Y.; Liu, J.; Yang, Q.; Chen, G.; et al. 5,200-year-old cereal grains from the eastern Altai Mountains redate the trans-Eurasian crop exchange. Nat. Plants 2020, 6, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Wu, T. The challenge of high altitude hypoxic environment to humans. J. Med. Res. 2006, 35, 1–3. [Google Scholar] [CrossRef]
- Mehren, A.; Luque, C.D.; Brandes, M.; Lam, A.P.; Zyurt, J. Intensity-dependent effects of acute exercise on executive function. Neural Plast. 2019, 2019, 8608317. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Wu, J.; Yang, L.; Gu, Y.; Ren, H. Physiological and perceptual responses of exposure to different altitudes in extremely cold environment. Energy Build. 2021, 242, 110844. [Google Scholar] [CrossRef]
- Sánchez, M.A.; Foyo, A.; Tomillo, C.; Iriarte, E. Geological risk assessment of the area surrounding Altamira Cave: A proposed Natural Risk Index and Safety Factor for protection of prehistoric caves. Eng. Geol. 2007, 94, 180–200. [Google Scholar] [CrossRef]
- Taylor, K.J.; Potito, A.P.; Beilman, D.W.; Ghilardi, B.; O’Connell, M. Palaeolimnological impacts of early prehistoric farming at Lough Dargan, County Sligo, Ireland. J. Archaeol. Sci. 2013, 40, 3212–3221. [Google Scholar] [CrossRef]
- Starkovich, B.M. Optimal foraging, dietary change, and site use during the Paleolithic at Klissoura Cave 1 (southern Greece). J. Archaeol. Sci. 2014, 52, 39–55. [Google Scholar] [CrossRef]
- Richards, M.P.; Jacobi, R.M.; Cook, J.; Pettitt, P.B.; Stringer, C.B. Isotope evidence for the intensive use of marine foods by Late Upper Palaeolithic humans. J. Hum. Evol. 2005, 49, 390–394. [Google Scholar] [CrossRef]
- Reshef, H.; Barkai, R. A taste of an elephant: The probable role of elephant meat in Paleolithic diet preferences. Quat. Int. 2015, 379, 28–34. [Google Scholar] [CrossRef]
- Stiner, M.C.; Munro, N.D. On the evolution of diet and landscape during the Upper Paleolithic through Mesolithic at Franchthi Cave (Peloponnese, Greece). J. Hum. Evol. 2011, 605, 618–636. [Google Scholar] [CrossRef]
- Florin, S.A.; Fairbairn, A.S.; Nango, M.; Djandjomerr, D.; Marwick, B.; Fullagar, R.; Smith, M.; Wallis, L.A.; Clarkson, C. The first Australian plant foods at Madjedbebe, 65,000–53,000 years ago. Nat. Commun. 2020, 11, 924. [Google Scholar] [CrossRef] [PubMed]
- Hardy, K.; Bocherens, H.; Miller, J.B.; Copeland, L. Reconstructing Neanderthal diet: The case for carbohydrates. J. Hum. Evol. 2022, 162, 103105. [Google Scholar] [CrossRef] [PubMed]
- Freeman, J.; Anderies, J.M. The Socioecology of Hunter-gatherer Territory Size. J. Anthropol. Archaeol. 2015, 39, 110–123. [Google Scholar] [CrossRef]
- Stutz, A.J. A niche of their own: Population dynamics, niche diversification, and biopolitics in the recent biocultural evolution of hunter-gatherers. J. Anthropol. Archaeol. 2020, 57, 101120. [Google Scholar] [CrossRef]
- Cariola, L.A. Encyclopedia of Personality and Individual Differences; Springer: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Lester, D. Maslow’s hierarchy of needs and personality. Personal. Individ. Differ. 1990, 11, 1187–1188. [Google Scholar] [CrossRef]
- Field, J.S.; Lape, P.V. Paleoclimates and the emergence of fortifications in the tropical Pacific islands. J. Anthropol. Archaeol. 2010, 29, 113–124. [Google Scholar] [CrossRef]
- Lahr, M.M.; Rivera, F.; Power, R.K.; Mounier, A.; Copsey, B.; Crivellaro, F.; Edung, J.E.; Fernandez, J.M.M.; Kiarie, C.; Lawrence, J.; et al. Inter-group violence among early Holocene hunter-gatherers of West Turkana, Kenya. Nature 2016, 529, 394–398. [Google Scholar] [CrossRef]
- Spencer, C.S. War and early state formation in Oaxaca, Mexico. Proc. Natl. Acad. Sci. USA 2003, 100, 11185–11187. [Google Scholar] [CrossRef]
- Meyer, C.; Knipper, C.; Nicklisch, N.; Münster, A.; Kürbis, O.; Dresely, V.; Meller, H.; Alt, K.W. Early Neolithic executions indicated by clustered cranial trauma in the mass grave of Halberstadt. Nat. Commun. 2018, 9, 2472. [Google Scholar] [CrossRef]
- Wrangham, R.W.; Glowacki, L. Intergroup Aggression in Chimpanzees and War in Nomadic Hunter-Gatherers. Hum. Nat. 2012, 23, 5–29. [Google Scholar] [CrossRef]
- Fry, D.P.; Söderberg, P. Lethal Aggression in Mobile Forager Bands and Implications for the Origins of War. Science 2013, 341, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Redmond, E.M.; Spencer, C.S. Chiefdoms at the threshold: The competitive origins of the primary state. J. Anthropol. Archaeol. 2012, 31, 22–37. [Google Scholar] [CrossRef]
- Erdal, Y.S.; Erdal, Ö.D. Organized violence in Anatolia: A retrospective research on the injuries from the Neolithic to Early Bronze Age. Int. J. Paleopathol. 2012, 2, 78–92. [Google Scholar] [CrossRef] [PubMed]
- Kornienko, T.V. On the problem of human sacrifice in northern mesopotamia in the pre-pottery neolithic. Archaeol. Ethnol. Anthropol. Eurasia 2015, 43, 42–49. [Google Scholar] [CrossRef]
- Parry, T.W. Prehistoric man and his early efforts to combat disease. Lancet 1914, 183, 183–1699. [Google Scholar] [CrossRef]
- Lallo, J.W.; Rose, J.C. Patterns of stress, disease and mortality in two prehistoric populations from North American. J. Hum. Evol. 1979, 8, 323–335. [Google Scholar] [CrossRef]
- Kozieł, M.; Kozieł, W. The environmental conditionings of the location of primeval settlements in the Wieprz River valley. Ann. Umcs Geogr. Geol. Mineral. Petrogr. 2012, 67, 123–140. [Google Scholar] [CrossRef]
- Sakaguchi, T.; Morin, J.; Dickie, R. Defensibility of large prehistoric sites in the Mid-Fraser region on the Canadian Plateau. J. Archaeol. Sci. 2010, 37, 1171–1185. [Google Scholar] [CrossRef]
- Pozorski, S.; Pozorski, T. Insult to veneration: The evolution of prehistoric intrusiveness within the Casma Valley of Peru. J. Anthropol. Archaeol. 2018, 49, 51–64. [Google Scholar] [CrossRef]
- Esquivel, J.A.; Navas, E. Geometric architectural pattern and constructive energy analysis at Los Millares Copper Age Settlement (Santa Fé de Mondújar, Almería, Andalusia). J. Archaeol. Sci. 2007, 34, 894–904. [Google Scholar] [CrossRef]
- Payne, C. 700 years of Bronze Age inequality. Nat. Hum. Behav. 2019, 3, 1248. [Google Scholar] [CrossRef] [PubMed]
- Schulting, R.J.; Mannermaa, K.; Tarasov, P.E.; Higham, T.; Ramsey, C.B.; Khartanovich, V.; Moiseyev, V.; Gerasimov, D.; O’shea, J.; Weber, A. Radiocarbon dating from Yuzhniy Oleniy Ostrov cemetery reveals complex human responses to socio-ecological stress during the 8.2 ka cooling event. Nat. Ecol. Evol. 2022, 6, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Mooder, K.; Weber, A.W.; Bamforth, F.; Lieverse, A.R.; Schurr, T.; Bazaliiski, V.I.; Savel’ev, N.A. Matrilineal affinities and prehistoric Siberian mortuary practices: A case study from Neolithic Lake Baikal. J. Archaeol. Sci. 2005, 32, 619–634. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, F. Progress in Paleolithic environmental archaeology in northern China. Mar. Geol. Quat. Geol. 2013, 33, 12. [Google Scholar] [CrossRef]
- Dong, G.H.; Liu, F.W.; Chen, F.H. Environmental and technological effects on ancient social evolution at different spatial scales. Sci. China Earth Sci. 2017, 60, 2067–2077. [Google Scholar] [CrossRef]
- Guo, L.; Xiong, S.; Ding, Z.; Jin, G.; Wu, J.; Ye, W. Role of the mid-Holocene environmental transition in the decline of late Neolithic cultures in the deserts of NE China. Quat. Sci. Rev. 2018, 190, 98–113. [Google Scholar] [CrossRef]
- Gurjazkaite, K.; Routh, J.; Djamali, M.; Vaezi, A.; Poher, Y.; Beni, A.N.; Tavakoli, V.; Kylin, H. Vegetation history and human-environment interactions through the late Holocene in Konar Sandal, SE Iran. Quat. Sci. Rev. 2018, 194, 143–155. [Google Scholar] [CrossRef]
- Steward, J.H. Theory of Culture Change: The Methodology of Multilinear Evolution; University of Illinois Press: Champaign, IL, USA, 1955. [Google Scholar] [CrossRef]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Anselin, L. What is Special About Spatial Data? Alternative Perspectives on Spatial Data Analysis (89-4). UC Santa Barbara: National Center for Geographic Information and Analysis. 1989. Available online: https://escholarship.org/uc/item/3ph5k0d4 (accessed on 12 October 2023).
- Roperd, C. The Method and Theory of Site Catchment Analysis: A Review. Adv. Archaeol. Method Theory 1979, 2, 119–140. [Google Scholar]
- Morgan, C. Reconstructing prehistoric hunter–gatherer foraging radii: A case study from California’s southern Sierra Nevada. J. Archaeol. Sci. 2008, 35, 247–258. [Google Scholar] [CrossRef]
- Morgan, C.; Webb, D.; Sprengeler, K.; Black, M.L.; George, N. Experimental construction of hunter-gatherer residential features, mobility, and the costs of occupying “persistent places”. J. Archaeol. Sci. 2018, 91, 65–76. [Google Scholar] [CrossRef]
- Nash, R. High Altitude Fremont Adaptation and the Tactical Role of Maize in the Northeastern Uinta Mountains. 2020. Available online: https://www.researchgate.net/publication/349121173_High_Altitude_Fremont_Adaptation_and_the_Tactical_Role_of_Maize_in_the_Northeastern_Uinta_Mountains (accessed on 12 October 2023).
- Morgan, C. Optimal Foraging Patterns in the Sierra Nevada, Alta California. Calif. Archaeol. 2009, 1, 205–226. [Google Scholar] [CrossRef]
- Lancaster, J.; Matney, T. Digitally constructing a late Early Bronze Age roof. Observations and conclusions. Digit. Appl. Archaeol. Cult. Herit. 2023, 28, e00258. [Google Scholar] [CrossRef]
- Canuto, M.A.; Auld-Thomas, L. Taking the high ground: A model for lowland Maya settlement patterns. Journal of Anthropological Archaeology 2021, 64, 101349. [Google Scholar] [CrossRef]
- Dreslerová, D.; Demján, P. Modelling prehistoric settlement activities based on surface and subsurface surveys. Archaeol. Anthropol. Sci. 2019, 11, 5513–5537. [Google Scholar] [CrossRef]
- Harrower, M.J.; Mazzariello, J.C.; D’Andrea, A.C.; Nathan, S.; Taddesse, H.M.; Dumitru, I.A.; Priebe, C.E.; Zerue, K.; Park, Y.; Gebreegziabher, G. Aksumite Settlement Patterns: Site Size Hierarchies and Spatial Clustering. J. Archaeol. Res. 2022, 31, 103–146. [Google Scholar] [CrossRef]
- Frachetti, M.D.; Benecke, N.; Mar’yashev, A.N.; Doumani, P.N. Eurasian pastoralists and their shifting regional interactions at the steppe margin: Settlement history at Mukri, Kazakhstan. World Archaeol. 2010, 42, 622–646. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, Y.; Ma, M. Spatiotemporal evolution of prehistoric Neolithic-Bronze Age settlements and influencing factors in the Guanting Basin, northeast Tibetan Plateau. Sci. China Earth Sci. 2018, 61, 149–162. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, B.; An, C.; Lu, C.; Tang, L.; Jiang, L. The Suitability of Prehistoric Human Settlements from the Perspective of the Residents. Land 2023, 12, 2094. https://doi.org/10.3390/land12122094
Tan B, An C, Lu C, Tang L, Jiang L. The Suitability of Prehistoric Human Settlements from the Perspective of the Residents. Land. 2023; 12(12):2094. https://doi.org/10.3390/land12122094
Chicago/Turabian StyleTan, Bo, Chengbang An, Chao Lu, Lei Tang, and Lai Jiang. 2023. "The Suitability of Prehistoric Human Settlements from the Perspective of the Residents" Land 12, no. 12: 2094. https://doi.org/10.3390/land12122094
APA StyleTan, B., An, C., Lu, C., Tang, L., & Jiang, L. (2023). The Suitability of Prehistoric Human Settlements from the Perspective of the Residents. Land, 12(12), 2094. https://doi.org/10.3390/land12122094