Fires in Raised Bog: Their Influence and Changes to Geochemical Elements in Peat Layers
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Morris, J.L.; Valiranta, M.; Sillasoo, U.; Tuittila, E.S.; Korhola, A. Re-evaluation of late Holocene fire histories of three boreal bogs suggest a link between bog fire and climate. Boreas 2014, 44, 60–67. [Google Scholar] [CrossRef]
- Bond, W.J.; Keeley, J.E. Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 2005, 20, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Belcher, C.M. Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science; John Wiley & Sons: Hoboken, NJ, USA, 2013; p. 579. [Google Scholar] [CrossRef]
- Kruger, L.M.; Charles-Dominique, T.; Bond, W.J.; Midgley, J.J.; Balfour, D.A.; Mkhwanazi, A. Woody plant traits and life-history strategies across disturbance gradients and biome boundaries in the Hluhluwe–iMfolozi Park. In Conserving Africa’s Megadiversity in the Anthropocene: The Hluhluwe–iMfolozi Park Story; Cromsigt, J.P.G.M., Archibald, S., Owen-Smith, N., Eds.; Cambridge University Press: Cambridge, UK, 2017; pp. 189–210. [Google Scholar]
- Weddell, B.J. Conserving Living Natural Resources: In the Context of a Changing World; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Pausas, J.G. Evolutionary fire ecology: Lessons learned from pines. Trends Plant Sci. 2015, 20, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Alcañiz, M.; Outeiro, L.; Francos, M.; Farguell, J.; Úbeda, X. Long-term dynamics of soil chemical properties after a prescribed fire in a Mediterranean forest (Montgrí Massif, Catalonia, Spain). Sci. Total Environ. 2016, 572, 1329–1335. [Google Scholar] [CrossRef]
- Archibald, S.; Hempson, G.P.; Lehmann, C. A unified framework for plant life-history strategies shaped by fire and herbivory. New Phytol. 2019, 224, 1490–1503. [Google Scholar] [CrossRef]
- Pullin, A.S. Conservation Biology; Cambridge University Press: Cambridge, UK, 2002; p. 444. [Google Scholar]
- Aguilar, S.; Montiel, C. The challenge of applying governance and sustainable development to wildland fire management in Southern Europe. J. For. Res. 2011, 22, 627–639. [Google Scholar] [CrossRef]
- Ascoli, D.; Lonati, M.; Marzano, R.; Bovio, G.; Cavallero, A.; Lombardi, G. Prescribed burning and browsing to control tree encroachment in southern European heathlands. For. Ecol. Manag. 2013, 289, 69–77. [Google Scholar] [CrossRef]
- Lee, H.; Alday, J.G.; Rosenburgh, A.; Harris, M.; McAllister, H.; Marrs, R.H. Change in propagule banks during prescribed burning: A tale of two contrasting moorlands. Biol. Conserv. 2013, 165, 187–197. [Google Scholar] [CrossRef]
- Hutchinson, S.M.; Armitage, R.P. A peat profile record of recent environmental events in the South Pennines (UK). Water Air Soil Pollut. 2009, 199, 247–259. [Google Scholar] [CrossRef]
- Worrall, F.; Clay, G.D.; Marrs, R.; Reed, M.S. Impacts of Burning Management on Peatlands. Scientific Review. IUCN Peatland Programme. 2009. Available online: https://www.iucn-uk-peatlandprogramme.org/sites/www.iucn-uk-peatlandprogramme.org/files/images/Review%20Impacts%20of%20Burning%20on%20Peatlands%2C%20June%202011%20Final.pdf (accessed on 11 April 2023).
- Bartkowiak, A.; Lemanowicz, J. Effect of forest fire on changes in the content of total and available forms of selected heavy metals and catalase activity in soil. Soil Sci. Annu. 2017, 68, 140–148. [Google Scholar] [CrossRef]
- Carter, M.C.; Foster, C.D. Prescribed burning and productivity in southern pine forests: A review. For. Ecol. Manag. 2004, 191, 93–109. [Google Scholar] [CrossRef]
- Zaccone, C.; Rein, G.; D’Orazio, V.; Hadden, R.M.; Belcher, C.M.; Miano, T.M. Smouldering fire signatures in peat and their implications for palaeoenvironmental reconstructions. Geochim. Cosmochim. Acta 2014, 137, 134–146. [Google Scholar] [CrossRef]
- Rosenburgh, A.; Alday, J.G.; Harris, M.P.; Allen, K.A.; Connor, L.; Blackbird, S.J.; Marrs, R.H. Changes in peat chemical properties during post-fire succession on blanket bog moorland. Geoderma 2013, 211, 98–106. [Google Scholar] [CrossRef]
- Kettridge, N.; Humphrey, R.E.; Smith, J.E.; Lukenbach, M.C.; Devito, K.J.; Petrone, R.M.; Waddington, J.M. Burned and unburned peat water repellency: Implications for peatland evaporation following wildfire. J. Hydrol. 2014, 513, 335–341. [Google Scholar] [CrossRef]
- Sakalauskienė, G.; Ignatavičius, G. Effect of drought and fires on the quality of water in Lithuanian rivers. Hydrol. Earth Syst. Sci. 2003, 7, 423–427. [Google Scholar] [CrossRef][Green Version]
- Campos, I.; Abrantes, N.; Keizer, J.J.; Vale, C.; Pereira, P. Major and trace elements in soils and ashes of eucalypt and pine forest plantations in Portugal following a wildfire. Sci. Total Environ. 2016, 572, 1363–1376. [Google Scholar] [CrossRef]
- Abraham, J.; Dowling, K.; Florentine, S. Controlled burn and immediate mobilization of potentially toxic elements in soil, from a legacy mine site in Central Victoria, Australia. Sci. Total Environ. 2018, 616, 1022–1034. [Google Scholar] [CrossRef]
- Burton, E.D.; Choppala, G.; Karimian, N.; Johnston, S.G. A new pathway for hexavalent chromium formation in soil: Fire-induced alteration of iron oxides. Environ. Pollut. 2019, 247, 618–625. [Google Scholar] [CrossRef]
- Wieder, R.K.; Vitt, D.H. Boreal Peatland Ecosystems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; Volume 188. [Google Scholar]
- Rezanezhad, F.; Price, J.S.; Quinton, W.L.; Lennartz, B.; Milojevic, T.; Van Cappellen, P. Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists. Chem. Geol. 2016, 429, 75–84. [Google Scholar] [CrossRef]
- Shuttleworth, E.L.; Clay, G.D.; Evans, M.G.; Hutchinson, S.M.; Rothwell, J.J. Contaminated sediment dynamics in peatland headwater catchments. J. Soils Sediments 2017, 17, 2637–2647. [Google Scholar] [CrossRef]
- Pereira, P.; Ubeda, X. Spatial distribution of heavy metals released from ashes after a wildfire. J. Environ. Eng. Landsc. Manag. 2010, 18, 13–22. [Google Scholar] [CrossRef]
- Zhuang, P.; Lu, H.; Li, Z.; Zou, B.; McBride, M.B. Multiple exposure and effects assessment of heavy metals in the population near mining area in South China. PLoS ONE 2014, 9, e94484. [Google Scholar] [CrossRef] [PubMed]
- Soliman, N.F.; Nasr, S.M.; Okbah, M.A. Potential ecological risk of heavy metals in sediments from the Mediterranean coast. Egypt. J. Environ. Health Sci. Eng. 2015, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Popovych, V.; Gapalo, A. Monitoring of Ground Forest Fire Impact on Heavy Metals Content in Edafic Horizons. J. Ecol. Eng. 2021, 22, 96–103. [Google Scholar] [CrossRef]
- Howard, D.; Macsween, K.; Edwards, G.C.; Desservettaz, M.; Guérette, E.A.; Paton-Walsh, C.; Meyer, C.M. Investigation of mercury emissions from burning of Australian eucalypt forest surface fuels using a combustion wind tunnel and field observations. Atmos. Environ. 2019, 202, 17–27. [Google Scholar] [CrossRef]
- Opekunova, M.G.; Opekunov, A.Y.; Kukushkin, S.Y.; Ganul, A.G. Background contents of heavy metals in soils and bottom sediments in the north of Western Siberia. Eurasian Soil Sci. 2019, 52, 380–395. [Google Scholar] [CrossRef]
- Grigal, D. Mercury sequestration in forests and peatlands. J. Environ. Qual. 2003, 32, 393–405. [Google Scholar] [CrossRef]
- Yong, J.; Jie, Z.; Liwei, Z.; Xiaoli, L.; Dingding, W.; Jiali, L.; Jing, L. Analysis of heavy metals in the surface sediments of shallow lakes in Nanjishan (Poyang Lake) Natural Wetland in China. J. Environ. Biol. 2017, 38, 561. [Google Scholar] [CrossRef]
- Ignatavičius, G.; Satkūnas, J.; Grigienė, A.; Nedveckytė, I.; Hassan, H.R.; Valskys, V. Heavy metals in sapropel of lakes in suburban territories of Vilnius (Lithuania): Reflections of paleoenvironmental conditions and anthropogenic influence. Minerals 2022, 12, 17. [Google Scholar] [CrossRef]
- Lawlor, A.J.; Tipping, E. Metals in bulk deposition and surface waters at two upland locations in northern England. Environ. Pollut. 2003, 121, 153–167. [Google Scholar] [CrossRef]
- Fernandes, P.; Botelho, H. Analysis of the prescribed burning practice in the pine forest of northwestern Portugal. J. Environ. Manag. 2004, 70, 15–26. [Google Scholar] [CrossRef] [PubMed]
- García-Marco, S.; González-Prieto, S. Short-and medium-term effects of fire and fire-fighting chemicals on soil micronutrient availability. Sci. Total Environ. 2008, 407, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Rau, B.M.; Chambers, J.C.; Blank, R.R.; Johnson, D.W. Prescribed fire, soil, and plants: Burn effects and interactions in the central Great Basin. Rangel. Ecol. Manag. 2008, 61, 169–181. [Google Scholar] [CrossRef]
- Toledo, D.; Kreuter, U.P.; Sorice, M.G.; Taylor, C.A., Jr. The role of prescribed burn associations in the application of prescribed fires in rangeland ecosystems. J. Environ. Manag. 2014, 132, 323–328. [Google Scholar] [CrossRef]
- Abraham, J.; Dowling, K.; Florentine, S. The unquantified risk of post-fire metal concentration in soil: A review. Water Air Soil Pollut. 2017, 228, 175. [Google Scholar] [CrossRef]
- Nabulo, G.; Young, S.; Black, C. Assessing risk to human health from tropical leafy vegetables grown on contaminated urban soils. Sci. Total Environ. 2010, 408, 5338–5351. [Google Scholar] [CrossRef]
- Pearce, D.C.; Dowling, K.; Sim, M.R. Cancer incidence and soil arsenic exposure in a historical gold mining area in Victoria, Australia: A geospatial analysis. J. Expo. Sci. Environ. Epidemology 2012, 22, 248–257. [Google Scholar] [CrossRef]
- Cobbina, S.J.; Myilla, M.; Michael, K. Small scale gold mining and heavy metal pollution: Assessment of drinking water sources in Datuku in the Talensi-Nabdam district. Int. J. Sci. Technol. Res. 2013, 2, 96–100. [Google Scholar]
- Mažeika, J.; Guobytė, R.; Kibirkštis, G.; Petrošius, R.; Skuratovič, Ž.; Taminskas, J. The use of carbon-14 and tritium for peat and water dynamics characterization: Case of Čepkeliai peatland, southeastern Lithuania. Geochronometria 2009, 34, 41–48. [Google Scholar] [CrossRef]
- Manton, M.; Ruffner, C.; Kibirkštis, G.; Brazaitis, G.; Marozas, V.; Pukienė, R.; Angelstam, P. Fire Occurrence in Hemi-Boreal Forests: Exploring Natural and Cultural Scots Pine Fire Regimes Using Dendrochronology in Lithuania. Land 2002, 11, 260. [Google Scholar] [CrossRef]
- Dumontet, S.; Levesque, M.; Mathur, S.P. Limited downward migration of pollutant metals (Cu, Zn, Ni, and Pb) in acidic virgin peat soils near a smelter. Water Air Soil Pollut. 1990, 49, 329–342. [Google Scholar] [CrossRef]
- González, A.Z.I.; Krachler, M.; Cheburkin, A.K.; Shotyk, W. Spatial distribution of natural enrichments of arsenic, selenium, and uranium in a minerotrophic peatland, Gola di Lago, Canton Ticino, Switzerland. Environ. Sci. Technol. 2006, 40, 6568–6574. [Google Scholar] [CrossRef] [PubMed]
- Davies, G.M.; Gray, A.; Rein, G.; Legg, C.J. Peat consumption and carbon loss due to smouldering wildfire in a temperate peatland. For. Ecol. Manag. 2013, 308, 169–177. [Google Scholar] [CrossRef]
- Magnan, G.; Lavoie, M.; Payette, S. Impact of fire on long-term vegetation dynamics of ombrotrophic peatlands in northwestern Québec, Canada. Quat. Res. 2012, 77, 110–121. [Google Scholar] [CrossRef]
- Domaševičius, A.; Kadūnas, K. Ūkio Subjektų Požeminio Vandens Monitoringas: Programų Rengimo Metodinės Rekomendacijos; Lietuvos Geologijos Tarnyba: Vilnius, Lithuania, 2000; p. 28. [Google Scholar]
- Fisher, R.A. The Use of Multiple Measurements in Taxonomic Problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Jobson, J.D. Applied Multivariate Data Analysis. Volume II: Categorical and Multivariate Methods; Springer: New York, NY, USA, 1992. [Google Scholar]
- Gower, J.C.; Hand, D.J. Biplots. In Monographs on Statistics and Applied Probability; Chapman and Hall: London, UK, 1996. [Google Scholar]
- Legendre, P.; Legendre, L. Numerical Ecology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 1998; pp. 403–406. [Google Scholar]
- Everitt, B.S.; Landau, S.; Leese, M. Cluster Analysis, 4th ed.; Arnold: London, UK, 2001. [Google Scholar]
- Dutilleul, P.; Stockwell, J.D.; Frigon, D.; Legendre, P. The Mantel Test versus Pearson’s Correlation Analysis: Assessment of the Differences for Biological and Environmental Studies. J. Agric. Biol. Environ. Stat. 2000, 5, 131–150. [Google Scholar] [CrossRef]
- Order of the Minister of Health Protection of the Republic of Lithuania Approval of Lithuanian Hygiene Standards HN 60:2015 “Maximum Allowable Concentrations of Dangerous Chemical Substances in Soil”. Available online: https://e-seimas.lrs.lt/portal/legalAct/lt/TAD/TAIS.228693/asr (accessed on 14 July 2023).
- Pacifico, L.R.; Pizzolante, A.; Guarino, A.; Lannone, A.; Esposito, M.; Albanese, S. Wildfires as a Source of Potentially Toxic Elements (PTEs) in Soil: A Case Study from Campania Region (Italy). Int. J. Environ. Res. Public Health 2023, 20, 4513. [Google Scholar] [CrossRef]
- Dimitrios, E.A. Suburban areas in flames: Dispersion of potentially toxic elements from burned vegetation and buildings. Estimation of the associated ecological and human health risk. Environ. Res. 2020, 183, 109153. [Google Scholar]
- Wolf, M.; Lehndorff, E.; Wiesenberg, L.B.; Stockhausen, M.; Schwark, L.; Amelung, W. Towards reconstruction of past fire regimes from geochemical analysis of charcoal. Org. Geochem. 2013, 55, 11–21. [Google Scholar] [CrossRef]
- Unterbrunner, R.; Puschenreiter, M.; Sommer, P.; Wieshammer, G.; Zupan, M.; Tlustos, P.; Wenzel, W.W. Heavy metal accu-mulation in trees growing on contaminated sites in Central Europe. Environ. Pollut. 2007, 148, 107–114. [Google Scholar] [CrossRef]
- Pugh, R.E.; Dick, D.G.; Fredeen, A.L. Heavy metal (Pb, Zn, Cd, Fe, and Cu) contents of plant foliage near the Anvil Range lead/zinc mine, Faro, Yukon Territory. Ecotoxicol. Environ. Saf. 2002, 52, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Peng, Y.; Chen, G. Accumulation and partitioning of heavy metals in mangrove rhizosphere sediments. Environ. Earth Sci. 2011, 64, 799–807. [Google Scholar] [CrossRef]
- Ritchie, M.W.; Knapp, E.E.; Skinner, C.N. Snag longevity and surface fuel accumulation following post-fire logging in a ponderosa pine dominated forest. For. Ecol. Manag. 2013, 287, 113–122. [Google Scholar] [CrossRef]
- Hessburg, P.F.; Spies, T.A.; Perry, D.A.; Skinner, C.N.; Taylor, A.H.; Brown, P.M.; Riegel, G. Tamm review: Management of mixed-severity fire regime forests in Oregon, Washington, and Northern California. For. Ecol. Manag. 2016, 366, 221–250. [Google Scholar] [CrossRef]
- Ager, A.A.; Vaillant, N.M.; Finney, M.A. A comparison of landscape fuel treatment strategies to mitigate wildland fire risk in the urban interface and preserve old forest structure. For. Ecol. Manag. 2010, 259, 1556–1570. [Google Scholar] [CrossRef]
- Franklin, J.F.; Graber, D.; Fites-Kaufmann, J.A.; Menning, K.; Parsons, D.; Sessions, J.; Spies, T.A.; Tappeiner, J.C.; Thornburgh, D.A. Alternative approaches to conservation of late-successional forests in the Sierra Nevada and their evaluation. In Sierra Nevada Ecosystem Project: Status of the Sierra Nevada: Final Report to Congress: Addendum, Wildland Resource Center Report; University of California, Centers for Water and Wildland Resources: Davis, CA, USA, 1997; Volume 40, pp. 53–70. [Google Scholar]
- Jones, G.M. Fire, Forest Restoration, and Spotted Owl Conservation in the Sierra Nevada, CA; The University of Wisconsin-Madison: Madison, WI, USA, 2019. [Google Scholar]
Variables | Cu | Zr | Pb | Se | Fe |
---|---|---|---|---|---|
Cu | 1 | 0.6671 | −0.3408 | 0.7827 | 0.3698 |
Zr | 1 | −0.0909 | 0.7443 | 0.4126 | |
Pb | 1 | −0.1940 | −0.1189 | ||
Se | 1 | 0.6526 | |||
Fe | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valskys, V.; Kibirkštis, G.; Taminskas, J.; Ulevičius, A.; Ignatavičius, G. Fires in Raised Bog: Their Influence and Changes to Geochemical Elements in Peat Layers. Land 2023, 12, 1948. https://doi.org/10.3390/land12101948
Valskys V, Kibirkštis G, Taminskas J, Ulevičius A, Ignatavičius G. Fires in Raised Bog: Their Influence and Changes to Geochemical Elements in Peat Layers. Land. 2023; 12(10):1948. https://doi.org/10.3390/land12101948
Chicago/Turabian StyleValskys, Vaidotas, Gintautas Kibirkštis, Julius Taminskas, Alius Ulevičius, and Gytautas Ignatavičius. 2023. "Fires in Raised Bog: Their Influence and Changes to Geochemical Elements in Peat Layers" Land 12, no. 10: 1948. https://doi.org/10.3390/land12101948
APA StyleValskys, V., Kibirkštis, G., Taminskas, J., Ulevičius, A., & Ignatavičius, G. (2023). Fires in Raised Bog: Their Influence and Changes to Geochemical Elements in Peat Layers. Land, 12(10), 1948. https://doi.org/10.3390/land12101948