Degraded Landscapes in Hillside Systems with Agricultural Use: An Integrated Analysis to Establish Restoration Opportunities in Central Chile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Location and Characteristics of the Study Area
2.1.2. Historical and Current Crop Types in the Rainfed Landscape of Hillside Systems
2.2. Selection of Criteria That Allow the Classification of Slopes
3. Results
3.1. Description of the Hillside Landscape and Its Potential for Agricultural Use
3.2. Identification and Characterization of Hillside Systems that Are Degraded and that Have the Potential to Be Used for Agriculture after a Process of Soil Recovery
3.3. Integrated Analysis: Degraded Hillsides with Potential for Agriculture
3.4. Synthesis of Actions for Hillside Systems in the Coastal Mountain Range
4. Discussion
4.1. Contributions of Integrated Analysis Methodologies in the Location of Sites Suitable for Agriculture
4.2. Importance of Restoration and Conservation in Hillside Systems
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carr, T.W.; Balkovič, J.; Dodds, P.E.; Folberth, C.; Skalský, R. The impact of water erosion on global maize and wheat productivity. Agric. Ecosyst. Environ. 2021, 322, 107655. [Google Scholar] [CrossRef]
- Talukder, B. Multi-Criteria Decision Analysis (MCDA) Technique for Evaluating Health Status of Landscape Ecology. In Landscape Ecology for Sustainable Society; Springer: Cham, Switzerland, 2018; pp. 39–49. [Google Scholar] [CrossRef]
- Borrelli, P.; Lugato, E.; Montanarella, L.; Panagos, P. A New Assessment of Soil Loss Due to Wind Erosion in European Agricultural Soils Using a Quantitative Spatially Distributed Modelling Approach. Land Degrad. Dev. 2017, 28, 335–344. [Google Scholar] [CrossRef] [Green Version]
- Agnoletti, M. Rural landscape, nature conservation and culture: Some notes on research trends and management approaches from a (southern) European perspective. Landsc. Urban Plan. 2014, 126, 66–73. [Google Scholar] [CrossRef]
- Zhang, W.; Li, H.; Pueppke, S.G.; Diao, Y.; Nie, X.; Geng, J.; Chen, D.; Pang, J. Nutrient loss is sensitive to land cover changes and slope gradients of agricultural hillsides: Evidence from four contrasting pond systems in a hilly catchment. Agric. Water Manag. 2020, 237, 106165. [Google Scholar] [CrossRef]
- Yi, J.; Zeng, Q.; Mei, T.; Zhang, S.; Li, Q.; Wang, M.; Tan, W. Disentangling drivers of soil microbial nutrient limitation in intensive agricultural and natural ecosystems. Sci. Total Environ. 2022, 806, 150555. [Google Scholar] [CrossRef] [PubMed]
- Tortora, A.; Statuto, D.; Picuno, P. Rural landscape planning through spatial modelling and image processing of historical maps. Land Use Policy 2015, 42, 71–82. [Google Scholar] [CrossRef]
- Nabiollahi, K.; Golmohamadi, F.; Taghizadeh-Mehrjardi, R.; Kerry, R.; Davari, M. Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate. Geoderma 2018, 318, 16–28. [Google Scholar] [CrossRef]
- García-Llamas, P.; Geijzendorffer, I.R.; García-Nieto, A.P.; Calvo, L.; Suárez-Seoane, S.; Cramer, W. Impact of land cover change on ecosystem service supply in mountain systems: A case study in the Cantabrian Mountains (NW of Spain). Reg. Environ. Chang. 2019, 19, 529–542. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Z.; Robeson, M.D.; Hu, J.; Zhu, Q. Application of erosion-resistant fibers in the recovery of vegetation on steep slopes in the Loess Plateau of China. Catena 2018, 160, 233–241. [Google Scholar] [CrossRef]
- Gobinath, R.; Ganapathy, G.; Gayathiri, E.; Salunkhe, A.A.; Pourghasemi, H.R. Ecoengineering practices for soil degradation protection of vulnerable hill slopes. In Computers in Earth and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2022; pp. 255–270. [Google Scholar] [CrossRef]
- Benites, J.; Saintraint, D.; Morimoto, K. Degradación de Tierras y Producción Agrícola en Argentina, Bolivia, Brasil, Chile y Paraguay; En: Erosión de Suelos en América Latina, Organización delas Naciones Unidas para la Agricultura y la Alimentación; Oficina Regional de la FAO para América Latina y el Caribe: Santiago, Chile, 1994; 219p. [Google Scholar]
- Berasaluce, M.; Díaz-Siefer, P.; Rodríguez-Díaz, P.; Mena-Carrasco, M.; Ibarra, J.T.; Celis-Diez, J.L.; Mondaca, P. Social-Environmental Conflicts in Chile: Is There Any Potential for an Ecological Constitution? Sustainability 2021, 13, 12701. [Google Scholar] [CrossRef]
- Cartes, G. Degradación de Suelos Agrícolas y el SIRSD-S. 2013, pp. 1–6, Oficina de Estudios y Políticas Agrarias. Available online: https://www.odepa.gob.cl/wp-content/uploads/2013/10/SueloAgricola201310.pdf (accessed on 20 October 2021).
- Ginocchio, R.; Melo, O.; Pliscoff, P.; Camus, P.; Arellano, E.C. Conflicto entre la intensificación de la agricultura y la conservación de la biodiversidad en Chile: Alternativas para la conciliación. Temas Agenda Pública 2019, 15, 1–24. [Google Scholar]
- Zúñiga, F.; Jaime, M.; Salazar, C. Crop farming adaptation to droughts in small-scale dryland agriculture in Chile. Water Resour. Econ. 2021, 34, 100176. [Google Scholar] [CrossRef]
- Muñoz Castillo, C.G. Rol de la Orografía Costera en la Precipitación de Chile Central: Análisis y Simulación para Casos de Tormenta Cálida y Tormenta Fría. Tesis para Optar al Grado de Magisterio en Ciencias Mención Geofísica. Master’s Thesis, Universidad de Chile, Santiago, Chile, 2014. [Google Scholar]
- Goudie, A. Encyclopedia of Geomorphology; Routledge, Taylor and Francis Group: New York, NY, USA, 2006; Volume 2, p. 1156. [Google Scholar]
- Dehn, M.; Gärtner, H.; Dikau, R. Principles of semantic modeling of landform structures. Comput. Geosci. 2001, 27, 1005–1010. [Google Scholar] [CrossRef]
- Canales, A.; Canales, M.; Hernández, M. Trabajo y territorio en el nuevo agro chileno. Un estudio de commuters en tres comarcas del Valle Central. EURE 2018, 44, 5–28. [Google Scholar] [CrossRef]
- Huang, J.; Yu, H.; Guan, X.; Wang, G.; Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Chang. 2016, 6, 166–171. [Google Scholar] [CrossRef]
- Feddema, J.; Freire, S.M. Soil degradation, global warming and climate impacts. Clim. Res. 2001, 17, 209–216. [Google Scholar] [CrossRef]
- Tercan, E.; Dereli, M.A.; Tapkin, S. A GIS–based multi–criteria evaluation for MSW landfill site selection in Antalya, Burdur, Isparta planning zone in Turkey. Environ. Earth Sci. 2020, 79, 246. [Google Scholar] [CrossRef]
- Selim, S.; Koc-San, D.; Selim, C.; San, B.T. Site selection for avocado cultivation using GIS and multi-criteria decision analyses: Case study of Antalya, Turkey. Comput. Electron. Agric. 2018, 154, 450–459. [Google Scholar] [CrossRef]
- De Cos Guerra, O. SIG y evaluación multicriterio: Propuesta metodológica para cuantificar el grado de metropolización en el territorio. Mapping 2007, 116, 6–12. [Google Scholar]
- Principi, N. Evaluación Multicriterio para la obtención de zonas aptitud para el desarrollo urbano en la cuenca del río Luján (Provincia de Buenos Aires, Argentina) con Sistemas de Información Geográfica. Investig. Ens. Geográficos 2017, 14, 78–91. [Google Scholar]
- Baeza, G.E. Marco Regulatorio Aplicable a las Plantaciones Frutales en Laderas de Cerro en Chile y el Extranjero; Biblioteca del Congreso Nacional de Chile: Santiago, Chile, 2019; Available online: https://obtienearchivo.bcn.cl/obtienearchivo?id=repositorio/10221/27187/2/Informe_Cultivos_en_Ladera.pdf (accessed on 20 October 2021).
- Lasanta Martínez, T.; García-Ruíz, J.M.; Ortigosa Izquierdo, L.M. Distribución espacial de diferentes modelos de campos de cultivos en el Pirineo central español. Ería 1994, 33, 63–72. [Google Scholar]
- Durán, T. Análisis del Paisaje Asociado al Cultivo del Chirimoyo en la Región de Valparaíso Mediante la Metodología Integral para la Valoración de Paisajes Rurales. Master’s Thesis, Universidad de Concepción, Concepción, Chile, 2020. [Google Scholar]
- Seddon, N.; Turner, B.; Berry, P.; Chausson, A.; Girardin, C.A.J. Grounding nature-based climate solutions in sound biodiversity science. Nat. Clim. Chang. 2019, 9, 84–87. [Google Scholar] [CrossRef]
- Panagopoulos, Y.; Dimitriou, E. A Large-Scale Nature-Based Solution in Agriculture for Sustainable Water Management: The Lake Karla Case. Sustainability 2020, 12, 6761. [Google Scholar] [CrossRef]
- Yeomans, P.A. The Keyline Plan; P.A. Yeomans: Sidney, Australia, 1954; 120p. [Google Scholar]
- Chen, M.; Voinov, A.; Ames, D.P.; Kettner, A.J.; Goodall, J.L.; Jakeman, A.J.; Barton, M.C.; Harpham, Q.; Cuddy, S.M.; DeLuca, C.; et al. Position paper: Open web-distributed integrated geographic modelling and simulation to enable broader participation and applications. Earth-Sci. Rev. 2020, 207, 103223. [Google Scholar] [CrossRef]
- Majid, M.; Mir, B.A. Landfill site selection using GIS based multi criteria evaluation technique. A case study of Srinagar city, India. Environ. Chall. 2021, 3, 100031. [Google Scholar] [CrossRef]
- Song, T.; Pu, H.; Schonfeld, P.; Zhang, H.; Li, W.; Peng, X.; Hu, J.; Liu, W. GIS-based multi-criteria railway design with spatial environmental considerations. Appl. Geogr. 2021, 131, 102449. [Google Scholar] [CrossRef]
- Veisi, H.; Deihimfard, R.; Shahmohammadi, A.; Hydarzadeh, Y. Application of the analytic hierarchy process (AHP) in a multi-criteria selection of agricultural irrigation systems. Agric. Water Manag. 2022, 267, 107619. [Google Scholar] [CrossRef]
- Ustaoglu, E.; Sisman, S.; Aydınoglu, A. Determining agricultural suitable land in peri-urban geography using GIS and Multi Criteria Decision Analysis (MCDA) techniques. Ecol. Model. 2021, 455, 109610. [Google Scholar] [CrossRef]
- Djuma, H.; Bruggeman, A.; Zissimos, A.; Christoforou, I.; Eliades, M.; Zoumides, C. The effect of agricultural abandonment and mountain terrace degradation on soil organic carbon in a Mediterranean landscape. Catena 2020, 195, 104741. [Google Scholar] [CrossRef]
- Feng, W.; Liu, Y.; Chen, Z.; Li, Y.; Huang, Y. Theoretical and practical research into excavation slope protection for agricultural geographical engineering in the Loess Plateau: A case study of China’s Yangjuangou catchment. J. Rural Stud. 2022, 93, 309–317. [Google Scholar] [CrossRef]
- Zhu, H.; Wu, J.; Guo, S.; Huang, D.; Zhu, Q.; Ge, T.; Lei, T. Land use and topographic position control soil organic C and N accumulation in eroded hilly watershed of the Loess Plateau. Catena 2014, 120, 64–72. [Google Scholar] [CrossRef]
- Zhang, X.; Yao, G.; Vishwakarma, S.; Dalin, C.; Komarek, A.M.; Kanter, D.R.; Davis, K.F.; Pfeifer, K.; Zhao, J.; Zou, T.; et al. Quantitative assessment of agricultural sustainability reveals divergent priorities among nations. One Earth 2021, 4, 1262–1277. [Google Scholar] [CrossRef]
- Jhariya, M.K.; Banerjee, A.; Meena, R.S.; Kumar, S.; Raj, A. Sustainable Intensification for Agroecosystems Services and Management: An Overview; Gateway East: Singapore, 2021; 873p. [Google Scholar]
- de Mendonça, G.C.; Costa, R.C.A.; Parras, R.; de Oliveira, L.C.M.; Abdo, M.T.V.N.; Pacheco, F.A.L.; Pissarra, T.C.T. Spatial indicator of priority areas for the implementation of agroforestry systems: An optimization strategy for agricultural landscapes restoration. Sci. Total Environ. 2022, 839, 156185. [Google Scholar] [CrossRef] [PubMed]
Types of Hillsides in the Study Area | Criteria for Identification | Sources for Classification |
---|---|---|
Plain areas | All areas with a slope < 5% represent plain areas. | DEM Alos Palsar |
Hillside systems | All areas with a slope > 5% represent hillside systems (the rest are plain areas). | DEM Alos Palsar (raster data of 12.5-m of spatial resolution. Available from https://www.ide.cl/index.php/imagenes-y-mapas-base/item/1571-dem-alos-palsar-region-de-valparaiso (accessed on 8 September 2021); https://www.ide.cl/index.php/imagenes-y-mapas-base/item/1576-dem-alos-palsar-region-metropolitana-de-santiago (accessed on 8 September 2021)); Network of channels National Irrigation Commission. |
Hillside systems in need of conservation and/or protection | All officially protected natural areas. Hillside systems with a concentration of ecosystems in a good ecological state (i.e., in advanced stage of ecological succession):
| Officially protected natural areas from https://ide.minagri.gob.cl/geoweb/2019/11/21/medio-ambiente/ (accessed on 8 September 2021). Land cover of Chile (raster data of land cover at the entire Chilean extension of 2014, at 30-m of spatial resolution. Available from http://www.gep.uchile.cl/Landcover_CHILE.html (accessed on 8 September 2021) [10]. |
Hillside systems without need of conservation or protection | Areas with active and permanent antropic uses:
| Land cover of Chile (see above) [10] |
Hillside systems incompatible for agriculture | ||
Hillside systems currently used for agriculture | Areas with soils that are actually cultivated and are located on slopes < 5%. | Land cover Chile (see above) [10] |
Detail | Area [ha] | % Study Area |
---|---|---|
Hillside systems (slope > 5%) | 823,340 | 74.0% |
Plain areas (slope < 5%) | 289,318 | 26.0% |
Total study area | 1,112,658 | 100.0% |
Detail | Area [ha] | % Hillside Systems | % Study Area |
---|---|---|---|
Hillside systems in need conservation and/or protection | 773,132 | 93.9% | 69.4% |
Hillside systems without need of conservation or protection | 50,208 | 6.1% | 4.5% |
Hillside systems (slope > 5%) | 823,340 | 100.0% | 74.0% |
Detail | Area [ha] | % Hillside Systems | % Study Area |
---|---|---|---|
Hillside systems (slope > 5%) | 800,886 | 97.2% | 71.9% |
Hillside systems incompatible for agriculture | 8981 | 1.1% | 0.8% |
Hillside systems currently used for agriculture | 13,473 | 1.6% | 1.2% |
Hillside systems (slope > 5%) | 823,340 | 100.0% | 74.0% |
Criteria | Area (ha) | % Study Area |
---|---|---|
Slopes (>5% to <30%) | 224,790 | 20.2 |
Exposure (Solana and mixed) | 685,7807 | 61.6 |
Altitude (<500 m) | 101,556 | 9.1 |
Potential areas because they do not have other permanent uses. | 156,718 | 14.1 |
Criteria | Area (ha) | % |
---|---|---|
Solana | 2132.0 | 65.4 |
Mixed (sun exposure) | 1129.2 | 34.6 |
Total area of degraded hillside systems (slope 5–30%) with potential for agriculture | 3261.2 | 100% |
Criteria | Area (ha) | % |
---|---|---|
Prairies and grasslands | 2635.0 | 80.8 |
Soils with little or no vegetation | 626.2 | 19.20 |
Total area of degraded hillside systems (slope 5–30%) with potential for agriculture | 3261.2 | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebuy, R.; Mancilla-Ruiz, D.; Manríquez, H.; De la Barrera, F. Degraded Landscapes in Hillside Systems with Agricultural Use: An Integrated Analysis to Establish Restoration Opportunities in Central Chile. Land 2023, 12, 5. https://doi.org/10.3390/land12010005
Lebuy R, Mancilla-Ruiz D, Manríquez H, De la Barrera F. Degraded Landscapes in Hillside Systems with Agricultural Use: An Integrated Analysis to Establish Restoration Opportunities in Central Chile. Land. 2023; 12(1):5. https://doi.org/10.3390/land12010005
Chicago/Turabian StyleLebuy, Roxana, Diana Mancilla-Ruiz, Hermann Manríquez, and Francisco De la Barrera. 2023. "Degraded Landscapes in Hillside Systems with Agricultural Use: An Integrated Analysis to Establish Restoration Opportunities in Central Chile" Land 12, no. 1: 5. https://doi.org/10.3390/land12010005
APA StyleLebuy, R., Mancilla-Ruiz, D., Manríquez, H., & De la Barrera, F. (2023). Degraded Landscapes in Hillside Systems with Agricultural Use: An Integrated Analysis to Establish Restoration Opportunities in Central Chile. Land, 12(1), 5. https://doi.org/10.3390/land12010005