Impact of Conservation Tillage Technologies on the Biological Relevance of Weeds
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lal, R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Baumhardt, R.L.; Stewart, B.A.; Sainju, U.M. North American Soil Degradation: Processes, Practices, and Mitigating Strategies. Sustainability 2015, 7, 2936–2960. [Google Scholar] [CrossRef]
- Lal, R. Soils and Food Sufficiency: A Review. Sustainable Agriculture; Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 25–49. [Google Scholar] [CrossRef]
- Mitchell, J.P.; Carter, L.M.; Reicosky, D.C.; Shrestha, A.; Pettygrove, G.S.; Klonsky, K.M.; Marcum, D.B.; Chessman, D.; Roy, R.; Hogan, P.; et al. A history of tillage in California’s Central Valley. Soil Tillage Res. 2016, 157, 52–64. [Google Scholar] [CrossRef]
- Hobbs, P.R.; Sayre, K.; Gupta, R. The role of conservation agriculture in sustainable agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 543–555. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Derpsch, R.; Lahmar, R.; Mrabet, R.; Basch, G.; González Sánchez, E.J.; Serraj, R. Conservation agriculture in the dry Mediterranean climate. Field Crop. Res. 2012, 132, 7–17. [Google Scholar] [CrossRef]
- El Titi, A. Soil Tillage in Agroecosystems; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar] [CrossRef]
- Holland, J.M. The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agric. Ecosyst. Environ. 2004, 103, 1–25. [Google Scholar] [CrossRef]
- Vogeler, I.; Horn, R.; Wetzel, H.; Kruemmelbein, J. Tillage effects on soil strength and solute transport. Soil Tillage Res. 2006, 88, 193–204. [Google Scholar] [CrossRef]
- Derpsch, R. The extent of conservation agriculture worldwide.Implications and impact. In Proceedings of the III World Congress on Conservation Agriculture, Nairobi, Kenya, 4–8 October 2005. [Google Scholar]
- NASS. 2017 Census of Agriculture; United States Department of Agriculture, National Agricultural Statistics Service: Phoenix, AZ, USA, 2019. [Google Scholar]
- Kassam, A.; Friedrich, T.; Derpsch, R.; Kienzle, J. Overview of the worldwide spread of conservation agriculture. Field actions science reports. J. Field Actions 2015, 8, 1–11. [Google Scholar]
- Kassam, A.; Friedrich, T.; Derpsch, R. Global spread of conservation agriculture. Int. J. Environ. Stud. 2019, 76, 29–51. [Google Scholar] [CrossRef]
- Findlater, K.M.; Kandlikar, M.; Satterfield, T. Misunderstanding conservation agriculture: Challenges in promoting, monitoring and evaluating sustainable farming. Environ. Sci. Policy 2019, 100, 47–54. [Google Scholar] [CrossRef]
- Giller, K.E.; Andersson, J.A.; Corbeels, M.; Kirkegaard, J.; Mortensen, D.; Erenstein, O.; Vanlauwe, B. Beyond conservation agriculture. Front. Plant Sci. 2015, 6, 870. [Google Scholar] [CrossRef] [PubMed]
- Nichols, V.; Verhulst, N.; Cox, R.; Govaerts, B. Weed dynamics and conservation agriculture principles: A review. Field Crop. Res. 2015, 183, 56–68. [Google Scholar] [CrossRef]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. Notill in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef]
- Kirkegaard, J.A.; Conyers, M.K.; Hunt, J.R.; Kirkby, C.A.; Watt, M.; Rebetzke, G.J. Sense and nonsense in conservation agriculture: Principles, pragmatism and productivity in Australian mixed farming systems. Agric. Ecosyst. Environ. 2014, 187, 133–145. [Google Scholar] [CrossRef]
- Murphy, S.D.; Clements, D.R.; Belaoussoff, S.; Kevan, P.G.; Swanton, C.J. Promotion of weed species diversity and reduction of weed seedbanks with conservation tillage and crop rotation. Weed Sci. 2006, 54, 69–77. [Google Scholar] [CrossRef]
- Weisberger, D.; Nichols, V.; Liebman, M. Does diversifying crop rotations suppress weeds? A meta-analysis. PLoS ONE 2019, 14, e0219847. [Google Scholar] [CrossRef] [PubMed]
- Cooper, J.; Baranski, M.; Stewart, G.; Nobel-de Lange, M.; Bàrberi, P.; Fließbach, A.; Peigné, J.; Berner, A.; Brock, C.; Casagrande, M.; et al. Shallow noninversion tillage in organic farming maintains crop yields and increases soil C stocks: A meta-analysis. Agron. Sustain. Dev. 2016, 36, 22. [Google Scholar] [CrossRef]
- Barberi, P.; Lo Cascio, B. Long-term tillage and crop rotation effects on weed seedbank size and composition. Weed Res. 2001, 41, 325–340. [Google Scholar] [CrossRef]
- Ruisi, P.; Frangipane, B.; Amato, G.; Badagliacca, G.; Di Miceli, G.; Plaia, A.; Giambalvo, D. Weed seedbank size and composition in a long-term tillage and crop sequence experiment. Weed Res. 2015, 55, 320–328. [Google Scholar] [CrossRef]
- Mashingaidze, N.; Madakadze, C.; Twomlow, S.; Nyamangara, J.; Hove, L. Crop yield and weed growth under conservation agriculture in semi-arid Zimbabwe. Soil Tillage Res. 2012, 124, 102–110. [Google Scholar] [CrossRef]
- Cardina, J.; Herms, C.P.; Doohan, D.J. Crop rotation and tillage system effects on weed seedbanks. Weed Sci. 2002, 50, 448–460. [Google Scholar] [CrossRef]
- Blaix, C.; Moonen, A.C.; Dostatny, D.F.; Izquierdo, J.; Le Corff, J.; Morrison, J.; Von Redwitz, C.; Schumacher, M.; Westerman, P.R. Quantification of regulating ecosystem services provided by weeds in annual cropping systems using a systematic map approach. Weed Res. 2018, 58, 151–164. [Google Scholar] [CrossRef]
- Batten, K.M.; Scow, K.M.; Davies, K.F.; Harrison, S.P. Two invasive plants alter soil microbial community composition in serpentine grasslands. Biol. Invasions 2006, 8, 217–230. [Google Scholar] [CrossRef]
- Lutgen, E.R.; Rillig, M.C. Influence of spotted knapweed (Centaurea maculosa) managementtreatments on arbuscular mycorrhizae and soil aggregation. Weed Sci. 2004, 52, 172–177. Available online: https://www.jstor.org/stable/4046808 (accessed on 1 November 2022). [CrossRef]
- Marler, M.J.; Zabinski, C.A.; Callaway, R.M. Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology 1999, 80, 1180–1186. [Google Scholar] [CrossRef]
- O’Donovan, J.T.; McAndrew, D.W. Effect of Tillage on Weed Populations in Continuous Barley (Hordeum vulgare). Weed Technol. 2000, 14, 726–733. Available online: http://www.jstor.org/stable/3988661 (accessed on 1 November 2022). [CrossRef]
- Froud-Williams, R.J.; Chancellor, R.J.; Drennan, D.S.H. Influence of Cultivation Regime Upon Buried Weed Seeds in Arable Cropping Systems. J. Appl. Ecol. 1983, 20, 199–208. [Google Scholar] [CrossRef]
- Benech-Arnold, R.L.; Sánchez, R.A.; Forcella, F.; Kruk, B.C.; Ghersa, C.M. Environmental control of dormancy in weed seed banks in soil. Field Crops Res. 2000, 67, 105–122. [Google Scholar] [CrossRef]
- Martinez-Ghersa, M.A.; Ghersa, C.M.; Benech-Arnold, R.L.; Donough, R.M.; Sanchez, R.A. Adaptive traits regulating dormancy and germination of invasive species. Plant Species Biol. 2000, 15, 127–137. [Google Scholar] [CrossRef]
- Drijber, R.A.; Doran, J.W.; Parkhurst, A.M.; Lyon, D.J. Changes in soil microbial community structure with tillage under long-term wheat-fallow management. Soil Biol. Biochem. 2000, 32, 1419–1430. [Google Scholar] [CrossRef]
- Wortman, S.E.; Drijber, R.A.; Francis, C.A.; Lindquist, J.L. Arable weeds, cover crops, and tillage drive soil microbial community composition in organic cropping systems. Appl. Soil Ecol. 2013, 72, 232–241. [Google Scholar] [CrossRef]
- Marshall, E.J.P.; Brown, V.K.; Boatman, N.D.; Lutman, P.J.W.; Squire, G.R.; Ward, L.K. The role of weeds in supporting biological diversity within crop fields. Weed Res. 2003, 43, 77–89. [Google Scholar] [CrossRef]
- Andreasen, C.; Stryhn, H.; Streibig, J. Decline of the flora in Danish arable fields. J. Appl. Ecol. 1996, 33, 619–626. [Google Scholar] [CrossRef]
- Baessler, C.; Klotz, S. Effects of changes in agricultural land-use on landscape structure and arable weed vegetation over the last 50 years. Agric. Ecosyst. Environ. 2006, 115, 43–50. [Google Scholar] [CrossRef]
- FAO. Conservation Agriculture. 2022. Available online: http://www.fao.org/conservation-agriculture/en/ (accessed on 1 November 2022).
- Komissarov, M.A.; Klik, A. The Impact of no-Till, conservation, and conventional tillage systems on erosion and soil properties in lower Austria. Eurasian Soil Sci. 2020, 53, 503–511. [Google Scholar] [CrossRef]
- Carretta, L.; Tarolli, P.; Cardinali, A.; Nasta, P.; Romano, N.; Masin, R. Evaluation of runoff and soil erosion under conventional tillage and no-till management: A case study in northeast Italy. Catena 2021, 197, 104972. [Google Scholar] [CrossRef]
- Derpsch, R.; Friedrich, T.; Kassam, A.; Li, H. Current status of adoption of no-till farming in the world and some of its main benefits. Int. J. Agric. Biol. Eng. 2010, 3, 1–25. [Google Scholar] [CrossRef]
- Baveye, P.C.; Rangel, D.; Jacobson, A.R.; Laba, M.; Darnault, C.; Otten, W.; Radulovich, R.; Camargo, F.A.O. From Dust Bowl to Dust Bowl: Soils are Still Very Much a Frontier of Science. Soil Sci. Soc. Am. J. 2011, 75, 2037–2048. [Google Scholar] [CrossRef]
- Palm, C.; Blanco-Canqui, H.; DeClerck, F.; Gatere, L.; Grace, P. Conservation agriculture and ecosystem services: An overview. Agric. Ecosyst. Environ. 2014, 187, 87–105. [Google Scholar] [CrossRef]
- CGS. Map of Soil Types of the Czech Republic, 1:50,000; Czech Geological Society: Prague, Czech Republic, 2017; Available online: https://mapy.geology.cz/pudy/ (accessed on 8 November 2022).
- CGS. Geological Map of the Czech Republic, 1:50,000; Czech Geological Society: Prague, Czech Republic, 2018; Available online: https://mapy.geology.cz/geocr50/ (accessed on 8 November 2022).
- Culek, M.; Grulich, V.; Povolný, D. Biogeographical Division of the Czech Republic; Enigma: Prague, Czech Republic, 1996; 347p. (In Czech) [Google Scholar]
- Kaplan, Z.; Danihelka, J.; Chrtek, J.; Kirschner, J.; Kubát, K.; Štech, M.; Štěpánek, J. (Eds.) Key to the Flora of the Czech Republic; Academia: Prague, Czech Republic, 2019; (In Czech). 1168p. [Google Scholar]
- Tyler, T.; Herbertsson, L.; Olofsson, J.; Olsson, P.A. Ecological indicator and traits values for swedish vascular plants. Ecol. Indic. 2021, 120, 106923. [Google Scholar] [CrossRef]
- Ter Braak, C.J.F.; Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination (Version 5.0); Microcomputer Power: Ithaca, NY, USA, 2012. [Google Scholar]
- Feledyn-Szewczyk, B.; Matyka, M.; Staniak, M. Comparison of the Effect of Perennial Energy Crops and Agricultural Crops on Weed Flora Diversity. Agronomy 2019, 9, 695. [Google Scholar] [CrossRef]
- Gawęda, D.; Haliniarz, M.; Bronowicka-Mielniczuk, U.; Łukasz, J. Weed Infestation and Health of the Soybean Crop Depending on Cropping System and Tillage Systém. Agriculture 2020, 10, 208. [Google Scholar] [CrossRef]
- Gawęda, D.; Haliniarz, M. The Yield and Weed Infestation of Winter Oilseed Rape (Brassica napus L. ssp. oleifera Metzg) in Two Tillage Systems. Agriculture 2022, 12, 563. [Google Scholar] [CrossRef]
- Chovancová, S.; Neudert, L.; Winkler, J. The efect of three soil tillage treatments on weed infestation in forage maize. Acta Agrobot. 2019, 72, 1756. [Google Scholar] [CrossRef]
- Sebayang, H.T.; Fatimah, S. The effect of tillage systems and dosages of cow manure on weed and soybeans yield (Glycine max Merrill). J. Degrade. Min. Land Manag. 2019, 7, 1959–1963. [Google Scholar] [CrossRef]
- Torreson, R.Z.; Cabello, C.; Conde, D.M.; Brenelli, H.B. Impact of the Preservation of the Intercostobrachial Nerve in Axillary Lymphadenectomy due to Breast Cancer. Breast J. 2003, 9, 389–392. [Google Scholar] [CrossRef]
- Armengot, L.; Berner, A.; Blanco-Moreno, J.M.; Mader, P.; Sans, F.X. Long-term feasibility of reduced tillage in organic farming. Agron. Sustain. Dev. 2015, 35, 339–346. [Google Scholar] [CrossRef]
- Winkler, J.; Kopta, T.; Ferby, V.; Neudert, L.; Vaverková, M.D. Effect of Tillage Technology Systems for Seed Germination Rate in a Laboratory Tests. Environments 2022, 9, 13. [Google Scholar] [CrossRef]
- Chovancová, S.; Illek, F.; Winkler, J. The effect of three tillage treatments on weed infestation in maize monoculture. Pak. J. Bot. 2020, 52, 697–701. [Google Scholar] [CrossRef]
- Winkler, J.; Trojan, V.; Hrubešová, V. Effects of the tillage technology and the forecrop on weeds in stands of winter wheat. Acta Univ. Agric. Silvic. Mendel. Brun. 2015, 63, 477–483. [Google Scholar] [CrossRef]
- Singh, M.; Bhullar, M.S.; Chauhan, B.S. Seed bank dynamics and emergence pattern of weeds as affected by tillage systems in dry direct-seeded rice. Crop Protect. 2015, 67, 168–177. [Google Scholar] [CrossRef]
- Vakali, C.; Zaller, J.G.; Kopke, U. Reduced tillage effects on soil properties and growth of cereals and associated weeds under organic farming. Soil Tillage Res. 2011, 111, 133–141. [Google Scholar] [CrossRef]
- Siegrist, S.; Schaub, D.; Pfiffner, L.; Mäder, P. Does organic agriculture reduce soil erodibility? The results of a long-term study on loess in Switzerland. Agric. Ecosyst. Environ. 1998, 69, 253–264. [Google Scholar] [CrossRef]
- Farmer, J.A.; Bradley, K.W.; Young, B.G.; Steckel, L.E.; Johnson, W.G.; Norsworthy, J.K.; Davis, V.M.; Loux, M.M. Influence of tillage method on management of Amaranthus species in Soybean. Weed Technol. 2017, 31, 10–20. [Google Scholar] [CrossRef]
- Naeem, M.; Hussain, M.; Farooq, M.; Farooq, S. Weed flora composition of different barley-based cropping systems under conventional and conservation tillage practices. Phytoparasitica 2021, 49, 751–769. [Google Scholar] [CrossRef]
- Bilalis, D.; Efthimiadis, P.; Sidiras, N. Effect of Three Tillage Systems on Weed Flora in a 3-Year Rotation with Four Crops. J. Agron. Crop Sci. 2001, 186, 135–141. [Google Scholar] [CrossRef]
- Wilson, J.D.; Morris, A.J.; Arroyo, B.E.; Clark, S.C.; Bradbury, R.B. A review of the abundance and diversity of invertebrate and plant foods of granivorous birds in northern Europe in relation to agricultural change. Agric. Ecosyst. Environ. 1999, 75, 13–30. [Google Scholar] [CrossRef]
- Petit, S.; Boursault, A.; Le Guilloux, M.; Munier-Jolain, N.; Reboud, X. Weeds in agricultural landscapes: A review. Agron. Sustainable Dev. 2011, 31, 309–317. [Google Scholar] [CrossRef]
- Requier, F.; Odoux, J.; Tamic, T.; Moreau, N.; Henry, M.; Decourtye, A.; Bretagnolle, V. Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds. Ecol. Appl. 2015, 25, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Bretagnolle, V.; Gaba, S. Weeds for bees? A review. Agron. Sustain. Dev. 2015, 35, 891–909. [Google Scholar] [CrossRef]
- Tylianakis, J.M.; Didham, R.K.; Wratten, S.D. Improved fitness of aphid parasitoids receiving resource subsidies. Ecology 2004, 85, 658–666. [Google Scholar] [CrossRef]
- DiTommaso, A.; Averill, K.M.; Hoffmann, M.P.; Fuchsberg, J.R.; Losey, J.E. Integrating insect resistance and floral resource management in weed control decision-making. Weed Sci. 2016, 64, 743–756. [Google Scholar] [CrossRef]
- Nakamoto, T.; Yamagishi, J.; Miura, F. Efect of reduced tillage on weeds and soil organisms in winter wheat and summer maize cropping on humic andosols in central Japan. Soil Tillage Res. 2006, 85, 94–106. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Linquist, B.A.; Lundy, M.E.; Liang, X.; van Groenigen, K.J.; Lee, J.; van Gestel, N.; Six, J.; Ventereae, R.T.; Kessel, C. When does no-till yield more? A global meta-analysis. Field Crop. Res. 2015, 183, 156–168. [Google Scholar] [CrossRef]
- Peixoto, D.S.; da Silva, L.d.C.M.; de Melo, L.B.B.; Azevedo, R.P.; Araújo, B.C.L.; Carvalho, T.S.; de Moreira, S.G.; Curi, N.; Silva, B.M. Occasional tillage in notillage systems: A global meta-analysis. Sci. Total Environ. 2020, 745, 140887. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Canqui, H.; Wortmann, C.S. Does occasional tillage undo the ecosystem services gained with no-till? A review. Soil Tillage Res. 2020, 198, 104534. [Google Scholar] [CrossRef]
- Ali, S.; Malik, M.A.; Ansar, M.; Qureshi, R. Weed growth dynamics associated with rainfed wheat (Triticum aestivum L.) establishment under diferent tillage systems in pothwar. Int. J. Plant Anim. Environ. Sci. 2014, 4, 146–154. [Google Scholar]
- Deike, S.; Pallutt, B.; Melander, B.; Strassemeyer, J.; Christen, O. Long-term productivity and environmental effects of arable farming as affected by crop rotation, soil tillage and strategy of pesticide use: A case-study of two long-term field experiments in Germany and Denmark. Eur. J. Agron. 2008, 29, 191–199. [Google Scholar] [CrossRef]
- Raup, D.M. Extinction: Bad Genes or Bad Luck? WW Norton & Company: New York, NY, USA, 1991; 355p. [Google Scholar]
Crop | After Harvesting the Pre-Crops | Crops Prior to Sowing | After Sowing and Crop Emergence |
---|---|---|---|
Winter wheat (pre-crop: winter rapeseed) | Roundup Forte (glyphosate) | - | Aurora (carfentrazone-ethyl), Mustang (florasulam; 2,4-D) |
Winter wheat (pre-crop: winter wheat) | Roundup Forte (glyphosate) | - | Aurora (carfentrazone-ethyl), Mustang (florasulam; 2,4-D) |
Corn for grain | Roundup Forte (glyphosate) | Guardian (acetochlor, furilazole), Atrazin (Metolachlor) | Cobra (lactofen), Granstar (tribenuron methyl) |
Spring barley | - | - | Aurora (carfentrazone-ethyl), Mustang (florasulam; 2,4-D) |
Labeling | Number of Species Dependent on Plants |
---|---|
BR1 | <6 |
BR2 | 6–12 |
BR3 | 13–24 |
BR4 | 25–50 |
BR5 | 51–100 |
BR6 | 101–200 |
Title 1 | Soil Tillage Variant (Pieces.m−2) | ||
---|---|---|---|
CT | MT | NT | |
BR1 | 0.0 | 0.0 | 0.0 |
BR2 | 0.1 | 0.1 | 0.3 |
BR3 | 5.6 | 3.3 | 5.4 |
BR4 | 1.3 | 1.1 | 5.0 |
BR5 | 1.8 | 2.0 | 1.0 |
BR6 | 0.0 | 0.0 | 0.0 |
BR unknown values | 0.5 | 1.2 | 0.6 |
Soil Tillage | Weed Groups | Weed Taxa |
---|---|---|
CT | Spring weeds | Anagallis arvensis (AnaArve); Fallopia convolvulus (FalConv); Silene noctiflora (SilNoct); Sinapis arvensis (SinArve) |
Summer weeds | Euphorbia helioscopia (EupHeli); Kickxia elatine (KicElat); Persicaria lapathifolia (PerLapa); Sonchus oleraceus (SonOler) | |
Winter weeds | Brassica napus (BraNapu); Consolida hispanica (ConHisp); Fumaria officinalis (FumOffi), Veronica persica (VerPers); Viola arvensis (VioArve) | |
Perennial weed | Medicago sativa (MedSati) | |
MT | Spring weeds | Polygonum aviculare (PolAvic) |
Summer weeds | Amaranthus retroflexus (AmaRetr); Chenopodium album (CheAlbu); Chenopodium hybridum (CheHybr); Persicaria maculosa (PerMacu); Stachys annuam (StaAnnu) | |
Winter weeds | Galium aparine (GalApar); Lamium purpureum (LamPurp) | |
Perennial weed | Arctium tomentosum (ArcTome); Lathyrus tuberosus (LatTube); Sambucus nigra (SamNigr); Sonchus asper (SonAspe) | |
NT | Spring weeds | Anagallis foemina (AnaFoem) |
Summer weeds | Echinochloa crus-galli (EchCrus); Microrrhinum minus (MicMinu); Setaria pumila (SetPumi) | |
Winter weeds | Apera spica-venti (ApeSpic); Bromus sterilis (BroSter); Capsella bursa-pastoris (CapBurs); Conyza canadensis (ConCana); Descurainia sophia (DesSoph); Lactuca serriola (LacSerr); Lamium amplexicaule (LamAmpl); Myosotis arvensis (MyoArve); Papaver rhoeas (PapRhoe); Stellaria media (SteMedi); Thlaspi arvense (ThlArve); Tripleurospermum inodorum (TriInod); Veronica agrestis (VerAgre); Veronica hederifolia (VerHede); Veronica polita (VerPoli) | |
Perennial weed | Carduus acanthoides (CarAcan); Cirsium arvense (CirArve); Convolvulus arvensis (ConArve); Plantago major (PlaMajo); Taraxacum sect. Taraxacum (TarSect); Urtica dioica (UrtDioi) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winkler, J.; Dvořák, J.; Hosa, J.; Martínez Barroso, P.; Vaverková, M.D. Impact of Conservation Tillage Technologies on the Biological Relevance of Weeds. Land 2023, 12, 121. https://doi.org/10.3390/land12010121
Winkler J, Dvořák J, Hosa J, Martínez Barroso P, Vaverková MD. Impact of Conservation Tillage Technologies on the Biological Relevance of Weeds. Land. 2023; 12(1):121. https://doi.org/10.3390/land12010121
Chicago/Turabian StyleWinkler, Jan, Jiří Dvořák, Jiří Hosa, Petra Martínez Barroso, and Magdalena Daria Vaverková. 2023. "Impact of Conservation Tillage Technologies on the Biological Relevance of Weeds" Land 12, no. 1: 121. https://doi.org/10.3390/land12010121
APA StyleWinkler, J., Dvořák, J., Hosa, J., Martínez Barroso, P., & Vaverková, M. D. (2023). Impact of Conservation Tillage Technologies on the Biological Relevance of Weeds. Land, 12(1), 121. https://doi.org/10.3390/land12010121