Analysis Long-Term and Spatial Changes of Forest Cover in Typical Karst Areas of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Processing
2.2.1. Historical Map
2.2.2. Remote Sensing Images
2.2.3. For the Historical Military Map
2.2.4. For the Remote Sensing Images
2.2.5. Analyzing Spatial–Temporal Evolvement of the Forest Cover
3. Results
3.1. Overall Changed Process and Characteristics in Time
3.1.1. Rate of Change in the Forest Cover under Different Historical Periods
3.1.2. Transfer Direction of the Forest Cover under Different Time Series
3.2. Changes in Forest Cover under Different Influencing Factors
3.2.1. Changes under Different Elevations
3.2.2. Changes under Different Slopes
3.2.3. Changes under Different Soil Types
3.2.4. Changes under Different Lithologies
4. Discussion
4.1. Comparison with Other Studies
4.2. Events and Factors That Dominate Forest Cover Changes in Different Periods
4.3. Limitations and Future Research Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, J.P. The important role of forest ecological system in economic development. For. Econ. 1999, 4, 1–5. [Google Scholar]
- Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Blonska, E.; Malek, S.; Januszek, K.; Józef, B.; Wanic, T. Changes in forest soil properties and spruce stands characteristics after dolomite, magnesite and serpentinite fertilization. Eur. J. For. Res. 2015, 134, 981–990. [Google Scholar] [CrossRef]
- Hansen, M.C.; Stehman, S.V.; Potapov, P.V. Quantification of global gross forest cover loss. Proc. Natl. Acad. Sci. USA 2010, 107, 8650–8655. [Google Scholar] [CrossRef]
- Mayer, A.L.; Kauppi, P.E.; Angelstam, P.K.; Zhang, Y.; Tikka, P.M. Importing timber, exporting ecological impact. Science 2005, 308, 359–360. [Google Scholar] [CrossRef] [PubMed]
- Elbakidze, M.; Andersson, K.; Angelstam, P.; Armstrong, G.W.; Axelsson, R.; Doyon, F.; Hermansson, M.; Jacobsson, J.; Pautov, Y. Sustained yield forestry in Sweden and Russia: How does it correspond to sustainable forest management policy? Ambio 2013, 42, 160–173. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Xiao, F.J.; Yu, L. Review of spatio-temporal distribution of net primary productity in forest ecosystem and its responses to climate change in China. Acta Ecol. Sin. 2020, 40, 4710–4723. [Google Scholar]
- Hu, X.S.; Wu, C.Z.; Hong, W.; Qiu, R.Z.; Li, J.; Hong, T. Forest cover change and its drivers in the upstream area of the Minjiang River, China. Ecol. Indic. 2014, 46, 121–128. [Google Scholar] [CrossRef]
- Lin, Y.Y.; Hu, X.S.; Zheng, X.X.; Hou, X.Y.; Zhang, Z.X.; Zhou, X.N.; Qiu, R.Z.; Lin, J.G. Spatial variations in the relationships between road network and landscape ecological risks in the highest forest coverage region of China. Ecol. Indic. 2019, 96, 392–403. [Google Scholar] [CrossRef]
- He, F.N.; Li, S.C.; Zhang, X.Z. A spatially explicit reconstruction of forest cover in China over 1700–2000. Glob. Planet. Chang. 2015, 131, 73–81. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Pickens, A.H.; Tyukavina, A.; Hernandez-Serna, A.; Zalles, V.; Turubanova, S.; Kommareddy, I.; Stehman, S.V.; Song, X.P.; et al. Global land use extent and dispersion within natural land cover using Landsat data. Environ. Res. Lett. 2022, 17, 034050. [Google Scholar] [CrossRef]
- Blanco, V.; Brown, C.; Rounsevel, M. Characterising forest owners through their objectives, attributes and management strategies. Eur. J. For. Res. 2015, 134, 1027–1041. [Google Scholar] [CrossRef]
- Luo, G.J.; Wang, S.J.; Bai, X.Y.; Liu, X.M.; Liu, X.M.; Cheng, A.Y. Delineating small karst watersheds based on digital elevation model and eco-hydrogeological principles. Solid Earth 2016, 7, 457–468. [Google Scholar] [CrossRef]
- Skaloš, J.; Engstová, B. Methodology for mapping non-forest wood elements using historic cadastral maps and orthophoto maps as a basis for management. J. Environ. Manag. 2010, 91, 831–843. [Google Scholar] [CrossRef]
- Skaloš, J.; Engstová, B.; Trpáková, I.; Šantrůčková, M.; Podrázský, V. Long-term changes in forest cover 1780–2007 in central Bohemia, Czech Republic. Eur. J. For. Res. 2012, 131, 871–884. [Google Scholar] [CrossRef]
- Zhang, J. Extraction of Rocky Desertification Information in Karst Area of Southwest China Based on Time-Series Remote Sensing Data. Master’s Thesis, China University of Geosciences, Beijing, China, 2021. [Google Scholar]
- Bai, X.Y.; Wang, S.J.; Xiong, K.N. Assessing spatial-temporal evolution processes of karst rocky desertification land: Indications for restoration strategies. Land Degrad. Dev. 2013, 24, 47–56. [Google Scholar] [CrossRef]
- Li, Y.B.; Shao, J.A.; Yang, H.; Bai, X.Y. The relations between land use and karst rocky desertification in a typical karst area, China. Environ. Geol. 2009, 57, 621–627. [Google Scholar] [CrossRef]
- Li, Y.B.; Luo, G.J.; Bai, X.Y.; Wang, Y.Y.; Wang, S.J.; Xie, J.; Yang, G.B. The correlations among arable land, settlement and karst rocky desertification-cases study based on typical peak-cluster depression. Acta Ecol. Sin. 2014, 34, 2195–2207. [Google Scholar]
- Andraž, Č.; Marjan, J.; Krištof, O.S. Past and Present Forest Vegetation in NE Slovenia Derived from Old Maps. Appl. Veg. Sci. 1998, 1, 253–258. [Google Scholar]
- Alfonso, T.; Dina, S.; Pietro, P. Rural landscape planning through spatial modelling and image processing of historical maps. Land Use Policy 2015, 42, 71–82. [Google Scholar]
- Zámolyi, A.; Szekely, B.; Draganits, E.; Timar, G. Neotectonic control on river sinuosity at the western margin of the Little Hungarian Plain. Geomorphology 2009, 122, 231–243. [Google Scholar] [CrossRef]
- Lieskovsky, J.; Kaim, D.; Balazs, P.; Boltiziar, M.; Chmiel, M.; Grabska, E.; Kiraly, G.; Konkoly-Gyuro, E.; Kozak, J.; Antalova, K.; et al. Historical land use dataset of the Carpathian region (1819–1980). J. Maps 2018, 14, 644–651. [Google Scholar] [CrossRef]
- Roccati, A.; Faccini, F.; Luino, F.; De Graff, J.V.; Turconi, L. Morphological changes and human impact in the Entella River floodplain (Northern Italy) from the 17th century. Catena 2019, 182, 104122. [Google Scholar] [CrossRef]
- Fernandes, M.R.; Aguiar, F.C.; Martins, M.J.; Rivaes, R.; Ferreira, M.T. Long-term human-generated alterations of Tagus River: Effects of hydrological regulation and land-use changes in distinct river zones. Catena 2020, 188, 104466. [Google Scholar] [CrossRef]
- Zdenek, K.; Marika, S.; Jan, S. Analyzing Land Cover Change—The Impact of the Motorway Construction and Their Operation on Landscape Structure. J. Geogr. Inf. Syst. 2014, 6, 559–571. [Google Scholar]
- Skaloš, J.; Weber, M.; Lipský, Z.; Trpakova, I.; Santruckova, M.; Uhlirova, L.; Kukla, P. Using old military survey maps and orthophotograph maps to analyse long-term land cover changes—Case study (Czech Republic). Appl. Geogr. 2011, 31, 426–438. [Google Scholar] [CrossRef]
- Pelorosso, R.; Leone, A.; Boccia, L. Land cover and land use change in the Italián central Appeninnes: A comparison of assessment methods. Appl. Geogr. 2009, 29, 35–48. [Google Scholar] [CrossRef]
- Petek, F.; Urbanc, M. The Franziscean Land Cadaster as a key to understanding the 19th-Century cultural landscape in Slovenia—Franciscejski kataster kot ključ za razumevanje kulturne pokrajinev Slovenijiv 19. Acta Geogr. Slov. 2004, 44, 89–112. [Google Scholar] [CrossRef]
- Rajšp, V.; Ticho, M.; Grabnar, M.; Kološa, V.; Serše, A.; Trpin, D. Joseske mapovani Slovenija na vojaškem zemljevidu 1763–1787 opisi. (Josephinische Landesaufnahme 1763–1787 für das Gebiet der Republik Slowenien Landesbeschreibung). Ljublana 1995, 345, 19. [Google Scholar]
- Bender, O.; Boehmerb, H.J.; Jens, D.; Schumacher, K.P. Using GIS to analyse long-term cultural landscape change in Southern Germany. Landsc. Urban Plan 2005, 70, 111–125. [Google Scholar] [CrossRef]
- Cousins, S.A.O.; Eriksson, Å.; Franzén, D. Reconstructing past land use and vegetation patterns using palaeogeographical and archaeological data. A focus on grasslands in Nynäs by the Baltic Sea in south-eastern Sweden. Landsc. Urban Plan 2002, 61, 1–18. [Google Scholar] [CrossRef]
- Domaas, S.T. The reconstruction of past patterns of tilled fields from historical Cadastral Maps using GIS. Landsc. Res 2007, 32, 23–43. [Google Scholar] [CrossRef]
- Hamre, L.N.; Domaas, S.T.; Austad, I.; Rydgren, K. Land-cover and structural changes in a western Norwegian cultural landscape since 1865, based on an old cadastral map and a field survey. Landsc. Ecol. 2007, 22, 1563–1574. [Google Scholar] [CrossRef]
- Sklenička, P.; Molnarova, K.; Brabec, E.; Kumble, P.; Pittnerova, B.; Pixova, K.; Salek, M. Remnants of medieval field patterns in the Czech Republic: Analysis of driving forces behind their disappearance with special attention to the role of hedgerows. Agric. Ecosyst. Environ. 2009, 129, 465–473. [Google Scholar] [CrossRef]
- Trpák, P.; Trpáková, I. Landscape function analysis based on evaluation of indicator maps and sketches of stable cadastre maps, Krajina 2002. In Krajina 2002—Od Poznání k Integraci; Ministerstvo Životního Prostředí: Ústí nad Labem, The Czech Republic, 2002; pp. 85–91. (In Czech) [Google Scholar]
- Yang, F.; He, F.N.; Li, M.J.; Li, S.C. Evaluating the reliability of global historical land use scenarios for forest data in China. J. Geogr. Sci. 2020, 30, 1083–1094. [Google Scholar] [CrossRef]
- Li, S.C.; He, F.N.; Zhang, X.Z. An approach to spatially explicit reconstruction of historical forest in Northeast China. J. Geogr. Sci. 2014, 24, 1022–1034. [Google Scholar] [CrossRef]
- Liu, D.; Toman, E.; Zane Fuller, Z.; Chen, G.; Londo, A.; Zhang, X.S.; Zhao, K.G. Integration of historical map and aerial imagery to characterize long-term land-use change and landscape dynamics: An object-based analysis via Random Forests. Ecol. Indic. 2018, 95, 595–605. [Google Scholar] [CrossRef]
- Tanacs, E.; Szmorad, F.; Barany-Kevei, I. A review of the forest management history and present state of the Haragistya karst plateau (Aggtelek Karst, Hungary). Acta Carsolog. 2007, 36, 441–451. [Google Scholar] [CrossRef]
- Zhao, Z.Q.; Hou, L.S.; Cai, Y.L. The process and mechanism of soil degradation in karst area in Southwest China. Earth Sci. Front. 2006, 13, 185–189. [Google Scholar]
- Yuan, D.X. Rock desertification in the sutbtropical karst of South China. Z. Für Geomorphol. Neue Folge 1997, 108 (Suppl. Bd), 81–90. [Google Scholar]
- Cao, J.H.; Yuan, D.X.; Pan, G.X. Some soil features in karst ecosystem. Adv. Earth Sci. 2003, 18, 37–44. [Google Scholar]
- Wang, S.J.; Sun, C.X.; Feng, Z.G.; Liu, X.M. Mineralogical and geochemical characteristics of the limestone weathering profile. Acta Mineral. Sin. 2002, 22, 19–29. [Google Scholar]
- Cao, J.H.; Yuan, D.X.; Zhang, C.; Pan, G.X. Karst Ecosystem constrained by geological conditions in southwest China. Earth Environ. 2004, 32, 1–8. [Google Scholar]
- Wang, S.J.; Ji, H.B.; Ouyang, Z.Y.; Zhou, D.Q. The Preliminary Study of Carbonate Rock Weathering and Soil Formation. Sci. Sin. (Terrae) 1999, 5, 441–449. [Google Scholar]
- Cao, J.H.; Jiang, Z.C.; Yang, D.S.; Pei, J.G.; Yang, H.; Luo, W.Q. Soil loss tolerance and prevention and measurement of Karst area in southwest China. Soil Water Conserv. China 2008, 12, 40–45+72. [Google Scholar]
- Wang, S.J.; Li, R.L.; Sun, C.X.; Zhang, D.F.; Li, F.Q.; Zhou, D.Q.; Xiong, K.N.; Zhou, Z.F. How types of carbonate rock assemblages constrain the distribution of Karst rocky desertified land in Guizhou Province, PR China. Land Degrad. Dev. 2004, 15, 123–131. [Google Scholar] [CrossRef]
- Li, Y.B.; Bai, X.Y.; Qiu, X.C.; Zhou, G.F.; Lan, A.J.; Zhou, X.; Xiong, K.N. Karst rocky desertification and land use of correlation studies. Resour. Sci. 2006, 28, 67–73. [Google Scholar]
- Li, Y.B.; Bai, X.Y.; Wang, S.J.; Qin, L.Y.; Tian, Y.C.; Luo, G.J. Evaluating of the spatial heterogeneity of soil loss tolerance and its effects on erosion risk in the carbonate areas of southern China. Solid Earth 2017, 8, 661–669. [Google Scholar] [CrossRef]
- Chen, F.; Zhou, D.Q.; Bai, X.Y.; Xiao, J.Y.; Qian, Q.H. Spatial-temporal evolution of karst rocky desertification and future trends based on CA-Markov methods in typical karst valley. J. Agric. Resour. Environ. 2018, 35, 174–180. [Google Scholar]
- Li, H.W.; Wang, S.J.; Bai, X.Y.; Cao, Y.; Tian, Y.C.; Luo, G.J.; Chen, F.; Li, Q.; Wu, L.H.; Wang, J.F.; et al. Effects of climate change and ecological restoration on carbonate rock weathering carbon sequestration in the karst valley of Southwest China. Acta Ecol. Sin. 2019, 39, 6158–6172. [Google Scholar]
- Huang, Q.; Cai, Y.; Xing, X. Rocky desertification, anti desertification, and sustainable development in the karst mountain region of Southwest China. Ambio 2008, 37, 390–392. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.H.; Liu, H.Y.; Wang, H.Y.; Peng, J.; Meersmans, J.; Green, S.M.; Quine, T.A.; Wu, X.C.; Song, Z.L. Bedrock geochemistry influences vegetation growth by regulating the regolith water holding capacity. Nat. Commun. 2020, 11, 2392. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.X. Global view on Karst rock desertification and integrating control measures and experiences of China. Pratacult. Sci. 2008, 25, 19–25. [Google Scholar]
- Jiang, Y.J.; Liu, X.M.; He, S.Y.; He, B.H.; Xie, J.P.; Luo, W.J.; Bai, X.Y.; Xiao, Q. Research and development of comprehensive rehabilitation measures for land rocky desertification in Karst trough valley area. Acta Ecol. Sin. 2016, 36, 7092–7097. [Google Scholar]
- Yu, M.; Li, Y.B.; Luo, G.J. Evolution trend of rocky desertification in karst mountain areas of southwest China. Acta Ecol. Sin. 2022, 42, 4267–4283. [Google Scholar]
- Liu, Y.S.; Wang, J.Y.; Deng, X.Z. Rocky land desertification and its driving forces in the karst areas of rural Guangxi, Southwest China. J. Mt. Sci. 2008, 5, 350–357. [Google Scholar] [CrossRef]
- Liu, H.Y.; Jiao, F.S.; Yin, J.Q.; Li, T.Y.; Gong, H.B.; Wang, Z.Y.; Lin, Z.S. Nonlinear relationship of vegetation greening with nature and human factors and its forecast—A case study of Southwest China. Ecol. Indic. 2020, 111, 106009. [Google Scholar] [CrossRef]
- Jiang, Z.C.; Lian, Y.Q.; Qin, X.Q. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth-Sci. Rev. 2014, 132, 1–12. [Google Scholar] [CrossRef]
- Chen, F.; Wang, S.J.; Bai, X.Y.; Liu, F.; Zhou, D.Q.; Tian, Y.C.; Luo, G.J.; Li, Q.; Wu, L.H.; Zheng, C.; et al. Assessing spatial-temporal evolution processes and driving forces of karst rocky desertification. Geocarto Int. 2021, 36, 262–280. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Hu, G.; Zhu, J.D.; Luo, D.H.; Ni, J. Spatial patterns and interspecific associations of dominant tree species in two old-growth karst forests, SW China. Ecol. Res. 2010, 25, 1151–1160. [Google Scholar] [CrossRef]
- Xu, E.Q.; Zhang, H.Q.; Li, M.X. Mining spatial information to investigate the evolution of karst rocky desertification and its human driving forces in Chang Shun, China. Sci. Total Environ. 2013, 458–460, 419–426. [Google Scholar] [CrossRef]
- Chen, H.S.; Fu, Z.Y.; Zhang, W. Soil water processes and vegetation restoration in karst regions of southwest China. Chin. J. Nat. 2018, 40, 41–46. [Google Scholar]
- Zhu, X.C.; Ma, M.G.; Tateno, R.; He, X.H.; Shi, W.Y. Effects of vegetation restoration on soil carbon dynamics in Karst and non-karst regions in Southwest China: A synthesis of multi-source data. Plant Soil 2021, 1–15. [Google Scholar] [CrossRef]
- He, F.N.; Ge, Q.S.; Dai, J.H.; Rao, Y.J. Forest change of China in recent 300 years. J. Geogr. Sci. 2008, 18, 59–72. [Google Scholar] [CrossRef]
- Yang, X.; Jin, X.; Yang, Y.; Yang, Y.K.; Song, J.N.; Zhang, T.; Zhou, Y.K. Spatially explicit changes of forestland in Taiwan Province from 1910 to 2010. J. Geogr. Sci. 2022, 32, 441–457. [Google Scholar] [CrossRef]
- Lin, S.L.; Jiang, Y.Z.; He, J.K.; Ma, G.Z.; Xu, Y.; Jiang, H.S. Changes in the spatial and temporal pattern of natural forest cover on Hainan Island from the 1950s to the 2010s: Implications for natural forest conservation and management. PeerJ 2017, 5, e3320. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, Z.; Liu, D.Y.; Xiong, Q.; Yang, N.; Ren, T.W.; Zhang, C.; Zhang, X.D.; Li, S.M. Crop Mapping Based on Historical Samples and New Training Samples Generation in Heilongjiang Province, China. Sustainability 2019, 11, 5052. [Google Scholar] [CrossRef]
- Tong, X.W.; Wang, K.L.; Yue, Y.M.; Brandt, M.; Liu, B.; Zhang, C.H.; Liao, C.J.; Fensholt, R. Quantifying the effectiveness of ecological restoration projects on long-term vegetation dynamics in the Karst regions of Southwest China. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 105–113. [Google Scholar] [CrossRef]
- Zhang, X.M.; Yue, Y.M.; Tong, X.W.; Wang, K.L.; Qi, X.K.; Deng, C.X.; Brandt, M. Eco-engineering controls vegetation trends in southwest China Karst. Sci. Total Environ. 2021, 770, 145160. [Google Scholar] [CrossRef]
- Xu, X.J.; Liu, H.Y.; Lin, Z.S.; Jiao, F.S.; Gong, H.B. Relationship of Abrupt Vegetation Change to Climate Change and Ecological Engineering with Multi-Timescale Analysis in the Karst Region, Southwest China. Remote Sens. 2019, 11, 1564. [Google Scholar] [CrossRef]
- Piao, S.L.; Yin, G.D.; Tan, J.G.; Cheng, L.; Huang, M.T.; Li, Y.; Liu, R.G.; Mao, J.F.; Myneni, R.B.; Peng, S.S.; et al. Detection and attribution of vegetation greening trend in China over the last 30 years. Glob. Chang. Biol. 2015, 21, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.D.; Wang, S.; Li, C.J.; Ye, C.C.; Gao, D.X.; Chen, P. The trend shift caused by ecological restoration accelerates the vegetation greening of China’s drylands since the 1980s. Environ. Res. Lett. 2022, 17, 044062. [Google Scholar] [CrossRef]
- Zhao, H.W.; Wu, C.Y.; Wang, X.Y. Large-scale forest conservation and restoration programs significantly contributed to land surface greening in China. Environ. Res. Lett. 2022, 17, 024023. [Google Scholar] [CrossRef]
- Wang, C.X.; Liang, W.; Yan, J.W.; Jin, Z.; Zhang, W.B.; Li, X.F. Effects of vegetation restoration on local microclimate on the Loess Plateau. J. Geogr. Sci. 2022, 32, 291–316. [Google Scholar] [CrossRef]
- Brandt, M.; Yue, Y.M.; Wigneron, J.P.; Tong, X.W.; Tian, F.; Jepsen, M.R.; Xiao, X.M.; Verger, A.; Mialon, A.; Al-Yaari, A.; et al. Satellite-observed major greening and biomass increase in South China karst during recent decade. Earth’s Future 2018, 6, 1017–1028. [Google Scholar] [CrossRef]
- Qiao, Y.N.; Chen, H.; Jiang, Y.J. Quantifying the impacts of lithology on vegetation restoration using a random forest model in a karst trough valley, China. Ecol. Eng. 2020, 156, 105973. [Google Scholar] [CrossRef]
- Li, Y.; Piao, S.L.; Laurent, Z.X.; Chen, A.P.; Wang, X.H.; Ciais, P.; Huang, L.; Lian, X.; Peng, S.S.; Zeng, Z.Z.; et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci. Adv. 2018, 4, eaar4182. [Google Scholar] [CrossRef]
- Wang, J.; Liu, P.; Gao, Z.; Bai, S.B.; Cao, G.J.; Qu, G.X. Temporal-spatial variation of the channel in Jiangsu reach of the Yangtze River during the last 44 years. Dili Xuebao/Acta Geogr. Sin. 2007, 62, 1185–1193. [Google Scholar]
- Tong, X.W.; Brandt, M.; Yue, Y.M.; Horion, S.; Wang, K.L.; De, K.W.; Tian, F.; Schurgers, G.; Xiao, X.M.; Luo, Y.Q.; et al. Increased vegetation growth and carbon stock in China Karst via ecological engineering. Nat. Sustain. 2018, 1, 44–50. [Google Scholar] [CrossRef]
- Tong, X.W.; Brandt, M.; Yue, Y.M.; Ciais, P.; Jepsen, M.R.; Penuelas, J.; Wigneron, J.P.; Xiao, X.M.; Song, X.P.; Horion, S.; et al. Forest management in southern China generates short term extensive carbon sequestration. Nat. Commun. 2020, 11, 129. [Google Scholar] [CrossRef] [PubMed]
Time | The Annual Changing Rates | Changing Rates |
---|---|---|
1944–1977 | −0.32% | −10.43% |
1977–1986 | −0.48% | −5.29% |
1986–2000 | 0.51% | 7.61% |
2000–2007 | 0.26% | 1.82% |
2007–2013 | 0.33% | 1.97% |
Background Conditions | Classification | Time Sequence | |||||
---|---|---|---|---|---|---|---|
1944 | 1977 | 1986 | 2000 | 2007 | 2013 | ||
Elevations | 1000–1500 m | 2.80 | 0.09 | 0.00 | 1.72 | 1.88 | 0.00 |
1500–2000 m | 358.17 | 119.16 | 52.02 | 169.28 | 114.50 | 160.79 | |
2000–2500 m | 1103.26 | 712.82 | 458.77 | 800.70 | 951.19 | 1042.31 | |
2500–3000 m | 11.78 | 14.74 | 12.49 | 16.91 | 31.76 | 10.27 | |
Slope | ≤6° | 200.60 | 40.50 | 29.86 | 66.50 | 93.88 | 105.95 |
6–15° | 813.51 | 467.45 | 302.35 | 552.54 | 616.94 | 681.42 | |
15–25° | 356.83 | 273.19 | 157.31 | 281.28 | 277.53 | 313.62 | |
>25° | 96.87 | 61.11 | 31.00 | 82.96 | 104.82 | 105.68 | |
Soil Tapes | Other soil | 116.01 | 47.83 | 22.14 | 59.29 | 43.84 | 58.08 |
Rock soil | 168.49 | 50.77 | 22.86 | 91.01 | 39.01 | 59.19 | |
Red soil | 966.61 | 610.70 | 386.99 | 677.95 | 816.22 | 943.19 | |
Yellow soil | 217.27 | 133.13 | 88.62 | 155.32 | 194.30 | 146.60 | |
Lithologies | Dolomite Mixed | 375.64 | 200.78 | 115.28 | 172.80 | 270.57 | 305.81 |
dolomite-limestone | 2.27 | 1.31 | 0.34 | 1.80 | 4.59 | 4.99 | |
Limestone | 427.23 | 183.21 | 86.07 | 221.99 | 210.99 | 239.53 | |
Non-karst | 663.23 | 457.12 | 318.91 | 586.97 | 607.22 | 656.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, F.; Bai, X.; Liu, F.; Luo, G.; Tian, Y.; Qin, L.; Li, Y.; Xu, Y.; Wang, J.; Wu, L.; et al. Analysis Long-Term and Spatial Changes of Forest Cover in Typical Karst Areas of China. Land 2022, 11, 1349. https://doi.org/10.3390/land11081349
Chen F, Bai X, Liu F, Luo G, Tian Y, Qin L, Li Y, Xu Y, Wang J, Wu L, et al. Analysis Long-Term and Spatial Changes of Forest Cover in Typical Karst Areas of China. Land. 2022; 11(8):1349. https://doi.org/10.3390/land11081349
Chicago/Turabian StyleChen, Fei, Xiaoyong Bai, Fang Liu, Guangjie Luo, Yichao Tian, Luoyi Qin, Yue Li, Yan Xu, Jinfeng Wang, Luhua Wu, and et al. 2022. "Analysis Long-Term and Spatial Changes of Forest Cover in Typical Karst Areas of China" Land 11, no. 8: 1349. https://doi.org/10.3390/land11081349
APA StyleChen, F., Bai, X., Liu, F., Luo, G., Tian, Y., Qin, L., Li, Y., Xu, Y., Wang, J., Wu, L., Li, C., Zhang, S., & Ran, C. (2022). Analysis Long-Term and Spatial Changes of Forest Cover in Typical Karst Areas of China. Land, 11(8), 1349. https://doi.org/10.3390/land11081349