Rainfall Variability and Rice Sustainability: An Evaluation Study of Two Distinct Rice-Growing Ecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. Standard Rainfall Analysis
2.2.2. Rainfall Trend Analysis
2.2.3. Onset and Withdrawal of Monsoon
2.2.4. Wet- and Dry-Spell Analysis
2.2.5. Probability Distribution for Weekly Rainfall
2.2.6. Irrigation Planning
3. Results
3.1. Standard Rainfall Analysis
3.1.1. Seasonal Rainfall Analysis
3.1.2. Monthly Rainfall Analysis
3.1.3. Weekly Rainfall Analysis
3.2. Rainfall Trend Analysis
3.3. Onset and Withdrawal of Monsoon
Rainfed Rice (Sadivayal) | Normal | Early | Delayed | SD | ||
Kar | Onset | Day | 8-Jun | 10-May | 7-Jul | 29 |
SMW | 23 | 20 | 28 | 4 | ||
Withdrawal | Day | 10-Sep | 26-Aug | 24-Sep | 15 | |
SMW | 37 | 35 | 39 | 2 | ||
Thaladi | Onset | Day | 1-Oct | 19-Sep | 14-Oct | 12 |
SMW | 40 | 38 | 42 | 2 | ||
Withdrawal | Day | 23-Dec | 19-Nov | 25-Jan | 34 | |
SMW | 51 | 47 | 4 | 5 | ||
Irrigated Rice (Karaikal) | Normal | Early | Delayed | SD | ||
Kuruvai | Onset | Day | 2-Aug | 13-Jul | 22-Aug | 20 |
SMW | 31 | 29 | 34 | 3 | ||
Withdrawal | Day | 26-Oct | 22-Oct | 31-Oct | 4 | |
SMW | 44 | 43 | 44 | 1 | ||
Late Thaladi | Onset | Day | 16-Oct | 8-Oct | 25-Oct | 8 |
SMW | 42 | 41 | 43 | 1 | ||
Withdrawal | Day | 10-Jan | 18-Dec | 1-Feb | 23 | |
SMW | 2 | 51 | 5 | 3 |
3.4. Wet- and Dry-Spell Analysis
3.5. Incomplete Gamma Probability
3.6. Rice-Growth Stagewise Irrigation Planning Based on the Rainfall Classification Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Birthal, P.S.; Negi, D.S.; Khan, M.T.; Agarwal, S. Is Indian agriculture becoming resilient to droughts? Evidence from rice production systems. Food Policy 2015, 56, 1–12. [Google Scholar] [CrossRef]
- Singh, R.; Singh, Y.; Xalaxo, S.; Verulkar, S.; Yadav, N.; Singh, S.; Singh, N.; Prasad, K.S.N.; Kondayya, K.; Rao, P.V.R.; et al. From QTL to variety-harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network. Plant Sci. 2015, 242, 278–287. [Google Scholar] [CrossRef]
- Mandal, R.; Nath, H.K. Climate Change and Indian Agriculture: Impacts on Crop Yield. In Indian Agriculture after the Green Revolution; Routledge: London, UK, 2017; pp. 198–215. [Google Scholar]
- Moorthy, A.; Buermann, W.; Rajagopal, D. The Impact of Climate Change on Crop Yields in India from 1961 to 2010. 2012; Volume 282, pp. 29–54. Available online: http://hpccc.gov.in/PDF/Agriculture/Climate%20Change%20and%20Crop%20Yields%20in%20India.pdf (accessed on 2 February 2022).
- Mishra, A.; Singh, R.; Raghuwanshi, N.S.; Chatterjee, C.; Froebrich, J. Spatial variability of climate change impacts on yield of rice and wheat in the Indian Ganga Basin. Sci. Total Environ. 2013, 468–469, S132–S138. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Khan, S.; Ma, X. Climate change impacts on crop yield, crop water productivity and food security—A review. Prog. Nat. Sci. 2009, 19, 1665–1674. [Google Scholar] [CrossRef]
- Aggarwal, P.K.; Kumar, S.; Pathak, H. Impacts of climate change on growth and yield of rice and wheat in the Upper Ganga Basin. WWF Rep. 2010, 1–44. [Google Scholar]
- Prabhakar, A.K.; Singh, K.K.; Lohani, A.K.; Chandniha, S.K. Long term rainfall variability assessment using modified Mann-Kendall test over Champua watershed, Odisha. J. Agrometeorol. 2017, 19, 288–289. [Google Scholar] [CrossRef]
- Manivasagam, V.S.; Nagarajan, R. Rainfall and crop modeling-based water stress assessment for rainfed maize cultivation in peninsular India. Theor. Appl. Climatol. 2018, 132, 529–542. [Google Scholar] [CrossRef]
- Manalil, S.; Flower, K. Soil water conservation and nitrous oxide emissions from different crop sequences and fallow under Mediterranean conditions. Soil Tillage Res. 2014, 143, 123–129. [Google Scholar] [CrossRef]
- Sharma, K.R.; Sharma, V. Supplemental irrigation from harvested rainwater to enhance yield and economic returns from wheat in sub-montane region of Jammu, India. J. Soil Water Conserv. 2015, 14, 219–226. [Google Scholar]
- Hossain, M.B.; Roy, D.; Mahmud, M.N.H.; Paul, P.L.C.; Yesmin, M.S.; Kundu, P.K. Early transplanting of rainfed rice minimizes irrigation demand by utilizing rainfall. Environ. Syst. Res. 2021, 10, 34. [Google Scholar] [CrossRef]
- Zhao, H.; Fu, Y.H.; Wang, X.; Zhao, C.; Zeng, Z.; Piao, S. Timing of rice maturity in China is affected more by transplanting date than by climate change. Agric. For. Meteorol. 2016, 216, 215–220. [Google Scholar] [CrossRef]
- Sarwary, M.; Samiappan, S.; Saravanakumar, V.; Arivelarasan, T.; Manivasagam, V.S. Climate Risks, Farmers Perception and Adaptation Strategies to Climate Variability in Afghanistan. Emirates J. Food Agric. 2021, 33, 1038–1046. [Google Scholar] [CrossRef]
- Touseef, M.; Chen, L.; Yang, K.; Chen, Y. Long-Term Rainfall Trends and Future Projections over Xijiang River Basin, China. Adv. Meteorol. 2020. [Google Scholar] [CrossRef]
- Panda, A.; Sahu, N. Trend analysis of seasonal rainfall and temperature pattern in Kalahandi, Bolangir and Koraput districts of Odisha, India. Atmos. Sci. Lett. 2019, 20, 1–10. [Google Scholar] [CrossRef]
- Sahu, N.; Saini, A.; Behera, S.; Sayama, T.; Nayak, S.; Sahu, L.; Duan, W.; Avtar, R.; Yamada, M.; Singh, R.B.; et al. Impact of indo-pacific climate variability on rice productivity in Bihar, India. Sustainability 2020, 12, 7023. [Google Scholar] [CrossRef]
- Duhan, D.; Pandey, A. Statistical analysis of long term spatial and temporal trends of precipitation during 1901-2002 at Madhya Pradesh, India. Atmos. Res. 2013, 122, 136–149. [Google Scholar] [CrossRef]
- Pandey, P.K.; van der Zaag, P.; Soupir, M.L.; Singh, V.P. A New Model for Simulating Supplemental Irrigation and the Hydro-Economic Potential of a Rainwater Harvesting System in Humid Subtropical Climates. Water Resour. Manag. 2013, 27, 3145–3164. [Google Scholar] [CrossRef]
- Hasan, M.R.; Nuruzzaman, M.; Al Mamun, A. Contribution of Rainwater to the Irrigation Requirement for Paddy Cultivation at Tanore Upazila in Rajshahi, Bangladesh. Air Soil Water Res. 2019, 12, 1–8. [Google Scholar] [CrossRef]
- Halder, D.; Kheroar, S.; Srivastava, R.K.; Panda, R.K. Assessment of future climate variability and potential adaptation strategies on yield of peanut and Kharif rice in eastern India. Theor. Appl. Climatol. 2020, 140, 823–838. [Google Scholar] [CrossRef]
- Mandal, S.; Choudhury, B.U.; Mondal, M.; Bej, S. Trend analysis of weather variables in Sagar Island, West Bengal, India: A long-term perspective (1982–2010). Curr. Sci. 2013, 105, 947–953. [Google Scholar]
- Manivasagam, V.S.; Nagarajan, R. Assessing the supplementary irrigation for improving crop productivity in water stress region using spatial hydrological model. Geocarto Int. 2017, 32, 1–17. [Google Scholar] [CrossRef]
- Geethalakshmi, V.; Lakshmanan, A.; Rajalakshmi, D.; Jagannathan, R.; Sridhar, G.; Ramaraj, A.P.; Bhuvaneswari, K.; Gurusamy, L.; Anbhazhagan, R. Climate change impact assessment and adaptation strategies to sustain rice production in Cauvery basin of Tamil Nadu. Curr. Sci. 2011, 342–347. [Google Scholar]
- Neelakantan, T.R.; Suribabu, C.R.; Selvakumar, R. Opportunity to restore irrigation tanks in the Cauvery delta by mining and deepening. Environ. Dev. Sustain. 2017, 19, 1463–1472. [Google Scholar] [CrossRef]
- Cerdà, A.; Daliakopoulos, I.N.; Terol, E.; Novara, A.; Fatahi, Y.; Moradi, E.; Salvati, L.; Pulido, M. Long-term monitoring of soil bulk density and erosion rates in two Prunus Persica (L) plantations under flood irrigation and glyphosate herbicide treatment in La Ribera district, Spain. J. Environ. Manag. 2021, 282, 111965. [Google Scholar] [CrossRef] [PubMed]
- Cerdà, A.; Terol, E.; Daliakopoulos, I.N. Weed cover controls soil and water losses in rainfed olive groves in Sierra de Enguera, eastern Iberian Peninsula. J. Environ. Manag. 2021, 290, 112516. [Google Scholar] [CrossRef] [PubMed]
- Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2018, 610–611, 997–1009. [Google Scholar] [CrossRef] [PubMed]
- Cerdà, A.; Novara, A.; Moradi, E. Long-term non-sustainable soil erosion rates and soil compaction in drip-irrigated citrus plantation in Eastern Iberian Peninsula. Sci. Total Environ. 2021, 787, 147549. [Google Scholar] [CrossRef] [PubMed]
- Sreeni, K.R.R. Sadivayal Village Development Model: A Smart Sustainable Tribal Hamlet for Community. Int. J. Incl. Dev. 2020, 6, 23–29. [Google Scholar] [CrossRef]
- Lalitha, M.; Dharumarajan, S.; Kalaiselvi, B.; Shivanand, K.; Koyal, A.; Kaliraj, S.; Hegde, R. Hydrochemical characterization and groundwater quality in Cauvery deltaic fluvial plains of Southern India. Environ. Sci. Pollut. Res. 2021, 28, 44861–44876. [Google Scholar] [CrossRef]
- Asfaw, A.; Simane, B.; Hassen, A.; Bantider, A. Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather Clim. Extrem. 2018, 19, 29–41. [Google Scholar] [CrossRef]
- Boling, A.A.; Garrity, D.P.; Franco, D.T.; Ramirez, A.M. Historical Trends in Rainfall Distribution in the PHilippines. Philipp. J. Crop Sci. 1991, 16, 113–119. [Google Scholar]
- Gopinath, S.; Srinivasamoorthy, K.; Saravanan, K.; Prakash, R.; Karunanidhi, D. Characterizing groundwater quality and seawater intrusion in coastal aquifers of Nagapattinam and Karaikal, South India using hydrogeochemistry and modeling techniques. Hum. Ecol. Risk Assess. 2019, 25, 314–334. [Google Scholar] [CrossRef]
- Rani, B.; Manikandan, N.; Maragatham, N. Trend analysis of rainfall and frequency of rainy days over Coimbatore. Mausam 2014, 65, 379–384. [Google Scholar]
- Dhar, O.N.; Rakhecha K., A.; Kulkarni, P.R. Fluctuations in Northeast monsoon rainfall of Tamil Nadu. Int. J. Climatol. 1982, 2, 339–345. [Google Scholar] [CrossRef]
- Geetha, B.; Raj, Y.E. A 140 year data archive of dates of onset and withdrawal of northeast monsoon over coastal Tamil Nadu: 1871–2010 (re-determination for 1901–2000). Mausam 2015, 66, 7–18. [Google Scholar] [CrossRef]
- Zaveri, E.; Russ, J.; Damania, R. Rainfall anomalies are a significant driver of cropland expansion. Proc. Natl. Acad. Sci. USA 2020, 117, 10225–10233. [Google Scholar] [CrossRef]
- Alemu, M.M.; Bawoke, G.T. Analysis of spatial variability and temporal trends of rainfall in Amhara Region, Ethiopia. J. Water Clim. Chang. 2019, 11, 1505–1520. [Google Scholar] [CrossRef]
- Anand, B.; Karunanidhi, D.; Anand, B.; Karunanidhi, D.; Anand, B.; Karunanidhi, D. Long term spatial and temporal rainfall trend analysis using GIS and statistical methods in Lower Bhavani basin, Tamil Nadu, India. Indian J. Geo-Marine Sci. 2020, 49, 419–427. [Google Scholar]
- Raj, P.P.N.; Azeez, P.A. Changing rainfall in the palakkad plains of South India. Atmosfera 2010, 23, 75–82. [Google Scholar]
- Rahman, M.A.; Kang, S.C.; Nagabhatla, N.; Macnee, R. Impacts of temperature and rainfall variation on rice productivity in major ecosystems of Bangladesh. Agric. Food Secur. 2017, 6, 10. [Google Scholar] [CrossRef]
- Van Der Hoek, W.; Sakthivadivel, R.; Renshaw, M.; Was, J.B.S.; Birley, M.H.; Konradsen, F. Alternate Wet/Dry Irrigation in Rice Cultivation: A Practical Way to Save Water and Control Malaria and Japanese Encephalitis? Research Report 47; International Water Management Institute: Colombo, Sri Lanka, 2001. [Google Scholar]
- Kannan, P.; Natarajan, S.; Sivasamy, R.; Kumaraperumal, R.; Muthumanickam, D. Crop water balance model for suggesting suitable crops on major soils of Cauvery delta of Tiruvarur district, Tail Nadu. Agropedology 2010, 20, 165–174. [Google Scholar]
District | Season | Sowing Time | Harvesting Time | Duration (Days) |
---|---|---|---|---|
Rainfed rice (Western zone) | Kar | May–Jun | Aug–Sep | <120 |
Samba | Aug | Dec–Jan | 130–135 and >150 | |
Thaladi | Sep–Oct | Jan–Feb | 130–135 | |
Navarai | Dec–Jan | March–Apr | <120 | |
Irrigated rice (Cauvery Delta zone) | Samba | Aug | Dec–Jan | 130–135 and >150 |
Late Thaladi | Oct–Nov | Jan–Feb | 115–120 | |
Kuruvai | Jun–July | Sep–Oct | <120 | |
Navarai | Dec–Jan | March–Apr | <120 |
Rainfed Rice (Sadivayal) | Kar Season | Thaladi Season | ||||||||||||
Ave. | Max. | Min. | SD | CV % | Z | Q | Ave. | Max. | Min. | SD | CV % | Z | Q | |
Seasonal rainfall (mm) | 281.43 | 1512.9 | 98.6 | 179.45 | 63.7 | −2.31 | −1.52 | 368.7 | 832.4 | 78.4 | 158.2 | 42.9 | 2.1 | 2.27 |
Rainy day a | 23.05 | 52 | 10 | 8.25 | 35.8 | −2.55 | −0.14 | 21.27 | 42 | 7 | 6.77 | 31.84 | −3.38 ** | −0.23 |
Wet day a | 56.06 | 138 | 20 | 32.27 | 57.5 | −3.99 ** | −0.58 | 34.53 | 62 | 12 | 11.8 | 34.16 | −4.59 ** | −0.63 |
Wet spell | 21.38 | 112 | 0 | 32.55 | 152.2 | −3.66 ** | −0.24 | 11.14 | 37 | 0 | 9.14 | 82 | −4.39 ** | −0.39 |
Dry day a | 96.94 | 133 | 15 | 32.27 | 33.29 | 3.99 ** | 0.58 | 116.72 | 139 | 89 | 11.81 | 10.11 | 4.64 | 0.63 |
Dry spell | 54 | 98 | 0 | 24.13 | 44.68 | 3.99 ** | 0.64 | 87.3 | 117 | 55 | 13.43 | 15.38 | 5.06 ** | 0.69 |
Irrigated Rice (Karaikal) | Kuruvai Season | Late Thaladi Season | ||||||||||||
Ave. | Max. | Min. | SD | CV % | Z | Q | Ave. | Max. | Min. | SD | CV % | Z | Q | |
Seasonal rainfall (mm) | 275.56 | 681.8 | 100.7 | 101.85 | 36.96 | −0.39 | −0.28 | 781.46 | 1343.6 | 234.9 | 253.97 | 32.5 | 2.36 | 4.15 |
Rainy day a | 22.62 | 35 | 10 | 6.76 | 29.87 | −1.83 | −0.09 | 37.09 | 58 | 18 | 9.15 | 24.66 | 0.3 | 0 |
Wet day a | 56.51 | 83 | 10 | 19.33 | 34.2 | −3.11 * | −0.4 | 61.84 | 93 | 26 | 13.84 | 22.38 | −3.17 * | −0.25 |
Wet spell | 14.89 | 32 | 0 | 9.35 | 62.81 | −2.94 * | −0.21 | 31.56 | 65 | 5 | 12.81 | 40.59 | −1.9 | −0.18 |
Dry day a | 96.49 | 143 | 70 | 19.33 | 20.03 | 3.11 * | 0.4 | 89.41 | 126 | 58 | 13.84 | 15.48 | 3.14 * | 0.25 |
Dry spell | 48.45 | 125 | 11 | 26.34 | 54.37 | 2.75 * | 0.48 | 56.73 | 97 | 18 | 15.18 | 26.76 | 3.37 ** | 0.33 |
Rainfed Rice (Sadivayal) | Kar Season | Thaladi Season | ||
Test Z | Q | Test Z | Q | |
3 WS | −4.00 *** | −0.31 | −2.53 * | −0.20 |
5 WS | −3.62 *** | −0.16 | −2.42 * | −0.12 |
7 WS | −4.05 *** | −0.10 | −2.34 * | −0.30 |
3 DS | 3.60 *** | 0.56 | 2.90 ** | 0.30 |
5 DS | 3.75 *** | 0.56 | 3.21 ** | 0.30 |
7 DS | 4.15 *** | 0.50 | 3.33 *** | 0.32 |
Irrigated Rice (Karaikal) | Kuruvai Season | Late Thaladi Season | ||
Test Z | Q | Test Z | Q | |
3 WS | −3.01 ** | −0.3 | −2.21 * | −0.22 |
5 WS | −2.85 ** | −0.15 | −1.80 + | −0.16 |
7 WS | −3.07 ** | −0.07 | −1.69 + | −0.13 |
3 DS | 2.74 ** | 0.48 | 3.53 *** | 0.31 |
5 DS | 2.81 ** | 0.47 | 3.26 ** | 0.33 |
7 DS | 2.68 ** | 0.39 | 3.17 ** | 0.31 |
Dry Days in Sadivayal | Dry Days in Karaikal | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
NEM Season | <5 | 6–10 | 11–15 | 16–20 | >20 | <5 | 6–10 | 11–15 | 16–20 | >20 |
October | 29 | 3 | 1 | 0 | 0 | 31 | 1 | 1 | 0 | 0 |
November | 25 | 5 | 2 | 1 | 0 | 30 | 2 | 0 | 0 | 0 |
December | 17 | 7 | 4 | 2 | 3 | 28 | 4 | 1 | 0 | 0 |
January | 6 | 4 | 5 | 4 | 15 | 18 | 7 | 4 | 2 | 3 |
February | 5 | 2 | 2 | 2 | 19 | 9 | 5 | 4 | 3 | 10 |
SWM Season | <5 | 6–10 | 11–15 | 16–20 | >20 | <5 | 6–10 | 11–15 | 16–20 | >20 |
May | 24 | 6 | 2 | 1 | 0 | 21 | 5 | 3 | 1 | 4 |
June | 24 | 5 | 2 | 1 | 0 | 23 | 5 | 2 | 1 | 2 |
July | 27 | 4 | 2 | 1 | 0 | 26 | 3 | 1 | 1 | 2 |
August | 26 | 5 | 2 | 1 | 0 | 29 | 3 | 1 | 0 | 1 |
September | 23 | 5 | 3 | 1 | 1 | 29 | 3 | 1 | 0 | 0 |
(A) Kar season (Sadivayal) | |||||||||||||||||||||
Classification | Normal | VS | RES | RIS | |||||||||||||||||
Early | VS | RES | RIS | ||||||||||||||||||
Late sowing | VS | RES | RIS | ||||||||||||||||||
WR (mm) | Kar SMW | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 |
<5 | Water stress | 20 | 22 | 16 | 17 | 21 | 17 | 26 | 26 | 28 | 22 | 23 | 19 | 23 | 15 | 17 | 16 | 16 | 15 | 15 | 13 |
5–25 | Avoid stress | 7 | 10 | 16 | 13 | 10 | 16 | 8 | 10 | 8 | 12 | 12 | 12 | 12 | 14 | 12 | 16 | 11 | 13 | 10 | 7 |
25–50 | Sufficient | 11 | 4 | 5 | 7 | 5 | 3 | 4 | 3 | 3 | 3 | 4 | 4 | 3 | 8 | 6 | 1 | 5 | 5 | 5 | 5 |
>50 | Excess | 2 | 4 | 3 | 3 | 4 | 4 | 2 | 1 | 1 | 3 | 1 | 5 | 2 | 3 | 5 | 7 | 8 | 7 | 10 | 15 |
(B) Thaladi season (Sadivayal) | |||||||||||||||||||||
Classification | Normal | VS | RES | RIS | |||||||||||||||||
Early | VS | RES | RIS | ||||||||||||||||||
Late sowing | VS | RES | RIS | ||||||||||||||||||
WR (mm) | Thaladi SMW | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 1 | 2 | 3 | 4 |
<5 | Water stress | 15 | 15 | 13 | 15 | 4 | 12 | 2 | 8 | 7 | 16 | 19 | 22 | 25 | 28 | 31 | 33 | 36 | 37 | 36 | 38 |
5–25 | Avoid stress | 13 | 10 | 7 | 7 | 15 | 6 | 11 | 8 | 5 | 11 | 5 | 8 | 12 | 8 | 7 | 4 | 1 | 1 | 1 | 1 |
25–50 | Sufficient | 5 | 5 | 5 | 12 | 7 | 5 | 10 | 8 | 10 | 4 | 7 | 8 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
>50 | Excess | 7 | 10 | 15 | 5 | 13 | 16 | 16 | 15 | 17 | 8 | 8 | 1 | 2 | 3 | 1 | 1 | 1 | 0 | 1 | 0 |
(C) Kuruvai season (Karaikal) | |||||||||||||||||||||
Classification | Normal | VS | RES | RIS | |||||||||||||||||
Early | VS | RES | RIS | ||||||||||||||||||
Late sowing | VS | RES | RIS | ||||||||||||||||||
WR (mm) | Kuruvai SMW | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | |||
<5 | Water stress | 24 | 21 | 21 | 18 | 18 | 13 | 14 | 11 | 13 | 11 | 11 | 11 | 12 | 6 | 7 | 3 | 3 | |||
5–25 | Avoid stress | 13 | 13 | 15 | 17 | 16 | 17 | 13 | 19 | 19 | 17 | 16 | 13 | 12 | 15 | 5 | 7 | 8 | |||
25–50 | Sufficient | 2 | 6 | 0 | 3 | 5 | 7 | 8 | 7 | 7 | 11 | 9 | 8 | 13 | 10 | 14 | 10 | 6 | |||
>50 | Excess | 1 | 0 | 4 | 2 | 1 | 3 | 5 | 3 | 1 | 1 | 4 | 8 | 2 | 8 | 13 | 19 | 22 | |||
(D) Late Thaladi season (Karaikal) | |||||||||||||||||||||
Classification | Normal | VS | RES | RIS | |||||||||||||||||
Early | VS | RES | RIS | ||||||||||||||||||
Late sowing | VS | RES | RIS | ||||||||||||||||||
WR (mm) | Late Thaladi SMW | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 1 | 2 | 3 | 4 | 5 | |||
<5 | Water stress | 6 | 7 | 3 | 3 | 5 | 12 | 6 | 9 | 7 | 14 | 16 | 17 | 28 | 26 | 31 | 36 | 35 | |||
5–25 | Avoid stress | 15 | 5 | 7 | 8 | 4 | 7 | 6 | 5 | 8 | 7 | 7 | 12 | 8 | 9 | 4 | 3 | 3 | |||
25–50 | Sufficient | 10 | 14 | 10 | 6 | 6 | 3 | 4 | 6 | 10 | 8 | 6 | 4 | 1 | 2 | 4 | 0 | 0 | |||
>50 | Excess | 8 | 13 | 19 | 22 | 24 | 17 | 23 | 19 | 14 | 10 | 10 | 6 | 2 | 2 | 0 | 0 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barati, M.K.; Manivasagam, V.S.; Nikoo, M.R.; Saravanane, P.; Narayanan, A.; Manalil, S. Rainfall Variability and Rice Sustainability: An Evaluation Study of Two Distinct Rice-Growing Ecosystems. Land 2022, 11, 1242. https://doi.org/10.3390/land11081242
Barati MK, Manivasagam VS, Nikoo MR, Saravanane P, Narayanan A, Manalil S. Rainfall Variability and Rice Sustainability: An Evaluation Study of Two Distinct Rice-Growing Ecosystems. Land. 2022; 11(8):1242. https://doi.org/10.3390/land11081242
Chicago/Turabian StyleBarati, Masoud K., V. S. Manivasagam, Mohammad Reza Nikoo, Pasoubady Saravanane, Alagappan Narayanan, and Sudheesh Manalil. 2022. "Rainfall Variability and Rice Sustainability: An Evaluation Study of Two Distinct Rice-Growing Ecosystems" Land 11, no. 8: 1242. https://doi.org/10.3390/land11081242
APA StyleBarati, M. K., Manivasagam, V. S., Nikoo, M. R., Saravanane, P., Narayanan, A., & Manalil, S. (2022). Rainfall Variability and Rice Sustainability: An Evaluation Study of Two Distinct Rice-Growing Ecosystems. Land, 11(8), 1242. https://doi.org/10.3390/land11081242