Combining Flood Risk Mitigation and Carbon Sequestration to Optimize Sustainable Land Management Schemes: Experiences from the Middle-Section of Hungary’s Tisza River
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Description of the Status Quo
3.2. Single Purpose Flood Risk Reduction Performance of the Middle-Tisza Flood-Peak Polders
3.3. Multi-Purpose Cost-Benefit Relationships of Dike Relocation at the Fokorú-Puszta River Section
3.4. Combined Impacts of Flood Mitigation and Land Use Transformation in the Cibakháza-Tiszaföldvár Area
3.5. Linking of the Research Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim. Change 2013, 3, 816–821. [Google Scholar] [CrossRef]
- Barredo, J.I. Normalised flood losses in Europe: 1970–2006. Nat. Hazards Earth Syst. Sci. 2009, 9, 97–104. [Google Scholar] [CrossRef]
- Rojas, R.; Feyen, L.; Watkiss, P. Climate change and river floods in the European Union: Socio-economic consequences and the costs and benefits of adaptation. Glob. Environ. Change 2013, 23, 1737–1751. [Google Scholar] [CrossRef]
- Forzieri, G.; Cescatti, A.; e Silva, F.B.; Feyen, L. Increasing risk over time of weather-related hazards to the European population: A data-driven prognostic study. Lancet Planet. Health 2017, 1, e200–e208. [Google Scholar] [CrossRef]
- Hartmann, T.; Slavíková, L.; Wilkinson, M. Spatial Flood Risk Management; Edward Elgar Publishing: Cheltenham, UK, 2022. [Google Scholar] [CrossRef]
- Hartmann, T.; Slavíková, L.; McCarthy, S. Nature-Based Flood Risk Management on Private Land: Disciplinary Perspectives on a Multidisciplinary Challenge; Springer International Publishing AG: Cham, Switzerland, 2019; Available online: https://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=5922219 (accessed on 10 May 2022).
- Szlávik, L. Enhancement of Flood Safety, Rural and Regional Development in the Hungarian Part of the Tisza Valley (the New Vásárhelyi Plan). In River Basin Management III (Vol. 83); WIT Press: Southampton, UK, 2005; Available online: https://www.witpress.com/elibrary/wit-transactions-on-ecology-and-the-environment/83/15428 (accessed on 10 May 2022).
- Sendzimir, J.; Flachner, Z.; Pahl-Wostl, C.; Knieper, C. Stalled regime transition in the upper Tisza River Basin: The dynamics of linked action situations. Environ. Sci. Policy 2010, 13, 604–619. [Google Scholar] [CrossRef]
- Borsos, B.; Sendzimir, J. The Tisza River: Managing a Lowland River in the Carpathian Basin. In Riverine Ecosystem Management; Schmutz, S., Sendzimir, J., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 541–560. [Google Scholar] [CrossRef] [Green Version]
- Láng, I. Teret a folyóknak! A nagyvízi mederkezelés szerepe a hazai árvízvédelemben. Biztosítás És Kockázat 2017, 4, 42–59. [Google Scholar] [CrossRef] [Green Version]
- Koncsos, L. Árvízvédelem és stratégia. In Magyarország Vízgazdálkodása: Helyzetkép és Stratégiai Feladatok; Somlyódy, L., Ed.; Magyar Tudományos Akadémia: Budapest, Hungary, 2011; pp. 207–232. [Google Scholar]
- Nováky, B. Az Alföld éghajlatának és vízháztartásának változása. Hidrológiai Közlöny 1993, 73, 20–27. [Google Scholar]
- Somlyódy, L.; Aradi, C. (Eds.) A Hazai Vízgazdálkodás Stratégiai Kérdései; Magyar Tudományos Akadémia: Budapest, Hungary, 2002. [Google Scholar]
- Marjainé Szerényi, Z. Az ökoszisztémák, ökoszisztéma szolgáltatások közgazdasági értékelése. In A Fenntarthatósági Politikák Megalapozásának Mérési Eszközei; Budapesti Corvinus Egyetem: Budapest, Hungary, 2021; pp. 163–182. Available online: http://unipub.lib.uni-corvinus.hu/6727/1/BCE_MNB_Fenntarthatosagi_konyv_e_book_final.pdf (accessed on 10 May 2022).
- Dobó, K. A hazai árvízvédelmi stratégia főbb irányai. Műszaki Katonai Közlöny 2019, 29, 133–144. [Google Scholar] [CrossRef]
- Koncsos, L.; Balogh, E. A simulation-optimisation methodology for designing the operation of emergency reservoirs in the Hungarian Tisza basin. Period. Polytech. Civ. Eng. 2010, 54, 101. [Google Scholar] [CrossRef]
- Ungvári, G.; Kis, A. Reducing flood risk by effective use of flood-peak polders: A case study of the Tisza River. J. Flood Risk Manag. 2022, e12823. [Google Scholar] [CrossRef]
- Davis, D.; Faber, B.A.; Stedinger, J.R. USACE Experience in Implementing Risk Analysis for Flood Damage Reduction Projects. J. Contemp. Water Res. Educ. 2008, 140, 3–14. [Google Scholar] [CrossRef]
- Huizinga, J.; De Moel, H.; Szewczyk, W. Global Flood Depth-Damage Functions: Methodology and the Database with Guidelines. (EUR 28552 EN). Publications Office of the European Union. 2017. Available online: https://data.europa.eu/doi/10.2760/16510 (accessed on 10 May 2022).
- REKK. Közgazdasági Döntéstámogatás a Tisza-Völgyi Árapasztó Tározók Üzemrendjének Kialakításához; Final Report; REKK: Budapest, Hungary, 2018. [Google Scholar]
- REKK. Danube Floodplain Project, WP 4.4; Hungary: Tisza Pilot CBA. REKK. 2020, p. 44. Available online: https://rekk.hu/downloads/projects/DanubeFloodplain_Hungary_Tisza_CaseStudy_REKK_04.2020.pdf (accessed on 10 May 2022).
- REKK. Costs and Benefits of Land Use Adaptation to Inundation Scenarios in the Cibakháza-Tiszaföldvár Floodplains. 2021. Available online: https://rekk.hu/downloads/projects/Danube%20Floodplain%20Interreg_Hungary%20Tisza%202nd%20analysis%20Cibakh%C3%A1za%20report%20REKK%202021.pdf (accessed on 10 May 2022).
- Halcrow Water. Magyarországi Árvízvédelmi és Helyreállítási Projekt: Megvalósíthatósági Tanulmány; Final Report; Halcrow Water: London, UK, 1999. [Google Scholar]
- Szlávik, L. Az ezredforduló árvizeinek és belvizeinek hidrológiai jellemzése. Vízügyi Közlemények 2003, 85, 561–579. [Google Scholar]
- Schweitzer, F. A magyarországi folyószabályozások geomorfológiai vonatkozásai. Földrajzi Értesítő 2001, 50, 63–72. [Google Scholar]
- Nagy, J.; Kiss, T.; Fehérváry, I. A gyalogakác (Amorpha fruticosa) szerepe a hullámtéri növényzetsűrűség növekedésében és hatása a hullámtér vízvezető képességére. In Földrajzi tanulmányok; MTA DTB Földtudományi Szakbizottság: Debrecen, Hungary, 2018; pp. 263–265. Available online: http://real.mtak.hu/id/eprint/135963 (accessed on 10 May 2022).
- Nagy, J.; Kiss, T.; Fehérváry, I.; Vaszkó, C. Changes in Floodplain Vegetation Density and the Impact of Invasive Amorpha fruticosa on Flood Conveyance. J. Environ. Geogr. 2018, 11, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Ortmann-Ajkai, A.; Csicsek, G.; Hollós, R.; Magyaros, V.; Wágner, L.; Lóczy, D. Twenty-Years’ Changes of Wetland Vegetation: Effects of Floodplain-Level Threats. Wetlands 2018, 38, 591–604. [Google Scholar] [CrossRef]
- Szlávik, L. A Tisza-völgy árvízvédelme és fejlesztése. In A Földrajz Eredményei az új Évezred Küszöbén: A III. Magyar Földrajzi Konferencia Tudományos Közleményei; Szegedi Tudományegyetem TTK Természeti Földrajzi Tanszék: Szeged, Hungary, 2001. [Google Scholar]
- Rátky, I.; Szlávik, L. Perfection of operation control for the emergency reservoirs in the körös valley. Period. Polytech. Civ. Eng. 2001, 45, 93–119. Available online: https://pp.bme.hu/ci/article/view/643/398 (accessed on 10 May 2022).
- De Kok, J.-L.; Grossmann, M. Large-scale assessment of flood risk and the effects of mitigation measures along the Elbe River. Nat. Hazards 2010, 52, 143–166. [Google Scholar] [CrossRef]
- Pohl, R.; Bezak, N. Technical and hydrological effects across scales and thresholds of polders, dams and levees. In Spatial Flood Risk Management; Edward Elgar Publishing: Cheltenham, UK, 2022; pp. 68–88. [Google Scholar]
- Teichmann, M.; Berghöfer, A. TEEBcase River Elbe Flood Regulation Options with Ecological Benefits, Germany, Mainly based on Grossmann et al., (2010). TEEBweb.org. 2010. Available online: http://www.teebweb.org/wp-content/uploads/2013/01/River-Elbe-flood-regulation-options-with-ecological-benefits-Germany.pdf (accessed on 10 May 2022).
- Weikard, H.-P.; Kis, A.; Ungvári, G. A simple compensation mechanism for flood protection services on farmland. Land Use Policy 2017, 65, 128–134. [Google Scholar] [CrossRef]
- EBRD. Methodology for the Economic Assessment of EBRD Projects with High Greenhouse Gas Emissions; Technical Note; EBRD. 2019. Available online: https://www.ebrd.com/news/publications/institutional-documents/methodology-for-the-economic-assessment-of-ebrd-projects-with-high-greenhouse-gasemissions.html (accessed on 10 May 2022).
- Hartmann, T. Contesting land policies for space for rivers—Rational, viable, and clumsy floodplain management. J. Flood Risk Manag. 2011, 4, 165–175. [Google Scholar] [CrossRef]
- Kis, A.; Schindelegger, A.; Zupanc, V. Financial compensation and legal restrictions for using land for flood retention. In Spatial Flood Risk Management; Edward Elgar Publishing: Cheltenham, UK, 2022; pp. 89–105. [Google Scholar]
- Ungvári, G.; Collentine, D. Implementation of measures in the hinterland: Transaction costs and economic instruments. In Spatial Flood Risk Management; Edward Elgar Publishing: Cheltenham, UK, 2022; pp. 52–66. [Google Scholar]
- Kovács, A.D.; Gulyás, P.; Farkas, J.Z. Tájhasználati érdekek és ellenérdekek az Alföldön—A természetvédelem, a mezőgazdaság és a turizmus kapcsolata a Kiskunsági Nemzeti Park példáján. Földrajzi Közlemények 2021, 145, 317–334. [Google Scholar] [CrossRef]
- EUA Futures. Sandbag, Smarter Climate Policy. 2022. Available online: https://sandbag.be/index.php/carbon-price-viewer/ (accessed on 10 May 2022).
- Puskás, L. Élőhelyrekonstrukció a Körös-völgyi erdőkben. In Crisicum; A Körös-Maros Nemzeti Park Igazgatóság: Szarvas, Hungary, 2000; pp. 217–224. Available online: http://real.mtak.hu/126646/1/217_224_Puskas_Crisicum_3_2000_HU.pdf (accessed on 10 May 2022).
- Puskás, L. A Fekete-Körös Erdeinek Vízpótlása és 15 Éves Ökológiai Eredményei. 2010, pp. 429–443. Available online: https://library.hungaricana.hu/hu/view/HidrologiaiVandorgyules_2010_28/?query=SZO%3D(R%C3%B3th)&pg=428&layout=s (accessed on 10 May 2022).
- Szixtin, B.; Ganszky, M.; Szombati, D. Árvízkockázat-Kezelés Kockázati Témakörének Felülvizsgálata; Módszertani Változások és Fejlesztések Összefoglalása; Technical Report; ÁKK Konzorcium: Budapest, Hungary, 2020; p. 78. [Google Scholar]
- Macintosh, A.; Roberts, G.; Buchan, S. Improving Carbon Markets to Increase Farmer Participation; AgriFutures Australia Publication No. 19-026; AgriFutures Australia: Wagga Wagga, NSW, Australia, 2019; ISBN ISBN 978-1-76053-047-1. Available online: https://agrifutures.com.au/wp-content/uploads/2019/07/19-026-Digital-1.pdf (accessed on 10 May 2022).
- Hartmann, T.; Jílková, J.; Schanze, J. Land for flood risk management: A catchment-wide and cross-disciplinary perspective. J. Flood Risk Manag. 2018, 11, 3–5. [Google Scholar] [CrossRef] [Green Version]
- Merk, C.; Grunau, J.; Riekhof, M.-C.; Rickels, W. The Need for Local Governance of Global Commons: The Example of Blue Carbon Ecosystems. (Working Paper No. 2201). Kiel Working Paper. 2021. Available online: http://hdl.handle.net/10419/247706 (accessed on 10 May 2022).
- Szigeti, P.D. A sketch of ecological property: Toward a law of biogeochemical cycles. Environ. Law 2021, 51, 41–87. [Google Scholar]
- Rakonczai, J. Elfogyasztott Jövőnk?: Globális Környezeti és Geopolitikai Kihívásaink. Budapesti Corvinus Egyetem. 2021. Available online: http://unipub.lib.uni-corvinus.hu/6726/ (accessed on 10 May 2022).
- García-León, D.; Casanueva, A.; Standardi, G.; Burgstall, A.; Flouris, A.D.; Nybo, L. Current and projected regional economic impacts of heatwaves in Europe. Nat. Commun. 2021, 12, 5807. [Google Scholar] [CrossRef]
- Láng, I. A duzzasztómű meg a szivacs. Avagy miért akarunk öngólt lőni? Vízügyi Közlemények 2021, 103, 15–24. [Google Scholar]
Value of Flood Risk Reduction Service in A 50 Year Time Period | Size of the Polder | Value of Flood Risk Reduction Service in A 50 Year Time Period/Hectare | Value of Flood Risk Reduction Service Below the Break-Even Point | Value of Flood Risk Reduction Service Below the Break-Even Point/Hectare | Price Of Land in The Region | Per Hectar Value of Flood Reduction Service Below the Break-Even Point/Price of Land | |
---|---|---|---|---|---|---|---|
Polders | Million EUR | Hectare | EUR/ha | Million EUR | EUR/ha | EUR/ha | Ratio |
Nagykunsági | 72.6 | 4006 | 18,128 | 13.6 | 3400 | 4277 | 0.80 |
Hanyi-Tiszasülyi | 99.4 | 5437 | 18,279 | 19.3 | 3545 | 4277 | 0.83 |
Tiszaroffi | 81.3 | 2336 | 34,818 | 8.3 | 3548 | 4277 | 0.83 |
Size of the Delineated ES Service Area | Net Present Value of the ES Service | |
---|---|---|
CBA elements | Hectare | Million EUR |
Investment costs | −15.8 | |
Flood risk reduction as benefit | 325 | 18.0 |
CO2 sink (forest) | 20 | 0.8 |
Fish spawning area | 35 | 0.9 |
Meadow maintenance | 270 | −0.5 |
SUM | 3.4 |
Impact of the Fokorú-Puszta Dike Relocation | |||
---|---|---|---|
Flood risk mitigation impact | Flood risk mitigation and other ESS impacts | ||
EUR/ha | EUR/ha | ||
6857 | 10,475 | ||
Flood risk mitigation impact of the flood-peak polders | EUR/ha | Ratio of per hectare efficiency: dike relocation/flood-peak polder Only flood risk mitigation | Ratio of per hectare efficiency: dike relocation/flood-peak polder Including ES service of dike relocation |
Nagykunsági flood-peak polder flood risk mitigation impact | 18,128 | 0.38 | 0.58 |
Hanyi-Tiszasülyi flood-peak polder flood risk mitigation impact | 18,279 | 0.38 | 0.57 |
Tiszaroffi flood-peak polder flood risk mitigation impact | 34,818 | 0.20 | 0.30 |
Land Use (LU) | Current LU | Adapted LU | Forest LU |
---|---|---|---|
Arable land (crops) | 94% | 59% | 0% |
Grassland | 5% | 28% | 0% |
Deciduous forest | 1% | 13% | 100% |
Total (hectare) | 2067 | 2067 | 2067 |
Flood scenarios on LU scenarios | |||
No flood, the area is protected | Current LU, no flood | Adapted LU, no flood | Forest LU, no flood |
All floods, the area is open to inundations | Current LU, all floods | Adapted LU, all floods | Forest LU, all floods |
Floods through a sluiceway above the 30 year return period floods | Current LU, spillway | Adapted LU, spillway | Forest LU, spillway |
Polder-like operation, only the 100 year return period floods | Current LU, flood gate | Adapted LU, flood gate | Forest LU, flood gate |
Land Use (LU) and Flood Mitigation Scenarios | ||||||||
---|---|---|---|---|---|---|---|---|
BAU: Current LU—No Flood | Current LU, All Floods | Current LU, Spillway | Current LU, Flood Gate | Adapted LU, No Flood | Adapted LU, All Floods | Adapted LU, Sluiceway | Adapted LU, Flood Gate | |
Million EUR | Million EUR | Million EUR | Million EUR | Million EUR | Million EUR | Million EUR | Million EUR | |
Investment cost | 0.0 | −20.1 | −20.1 | −31.8 | 0.0 | −20.1 | −20.1 | −31.8 |
Flood risk benefit minus agricultural damage | 0.0 | −18.2 | 0.8 | 8.0 | 0.0 | −10.8 | 1.2 | 8.5 |
Agricultural activities' income | 8.7 | 8.7 | 8.7 | 8.7 | 8.5 | 8.5 | 8.5 | 8.5 |
Financial transfers for agricultural activities | 14.7 | 14.7 | 14.7 | 14.7 | 14.1 | 14.1 | 14.1 | 14.1 |
Value of CO2 emission -sink balance | −4.5 | −4.5 | −4.5 | −4.5 | −1.5 | −1.5 | −1.5 | −1.5 |
Sum | 18.8 | −19.4 | −0.4 | −4.9 | 21.2 | −9.7 | 2.3 | −2.1 |
Land Use (LU) and Flood Scenarios | |||||||||
---|---|---|---|---|---|---|---|---|---|
Current LU, No Flood (BAU) | Forest LU, No Flood | Forest LU, All Floods | Forest LU, Spillway | Forest LU, Flood Gate | Forest LU, No Flood | Forest LU, All Floods | Forest LU, Spillway | Forest LU, Flood Gate | |
NPV results of selected items | Million EUR | Million EUR | Million EUR | Million EUR | Million EUR | Ratio x BAU | Ratio x BAU | Ratio x BAU | Ratio x BAU |
Individual balance with Transfers | 23.4 | 32.7 | 32.7 | 32.7 | 32.7 | 1.4 | 1.4 | 1.4 | 1.4 |
Individual balance without Transfers | 8.7 | 22.5 | 22.5 | 22.5 | 22.5 | 2.6 | 2.6 | 2.6 | 2.6 |
Public benefits | −4.5 | 11.2 | 12.3 | 13.1 | 20.3 | −2.5 | −2.7 | −2.9 | −4.5 |
Sum of all CBA items | 18.8 | 44.0 | 24.9 | 25.8 | 21.3 | 2.3 | 1.3 | 1.4 | 1.1 |
Sum without CO2 benefits | 23.4 | 32.7 | 13.7 | 14.5 | 10.0 | 1.4 | 0.6 | 0.6 | 0.4 |
Forest LU, No Flood | Forest LU, All Floods | Forest LU, Spillway | Forest LU, Flood Gate | |
---|---|---|---|---|
Balance: The sum of all items without CO2 benefits compared to BAU (EUR/ha/year) | 144.2 | −148.9 | −136.1 | −205.3 |
CO2 emission difference between forest and arable (ton/ha/year) | −2.33 | −2.33 | −2.33 | −2.33 |
Monetary value of CO2 mitigation necessary for breakeven economic position of the scenario (EUR/CO2 ton) | −62 | 64 | 58 | 88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ungvári, G. Combining Flood Risk Mitigation and Carbon Sequestration to Optimize Sustainable Land Management Schemes: Experiences from the Middle-Section of Hungary’s Tisza River. Land 2022, 11, 985. https://doi.org/10.3390/land11070985
Ungvári G. Combining Flood Risk Mitigation and Carbon Sequestration to Optimize Sustainable Land Management Schemes: Experiences from the Middle-Section of Hungary’s Tisza River. Land. 2022; 11(7):985. https://doi.org/10.3390/land11070985
Chicago/Turabian StyleUngvári, Gábor. 2022. "Combining Flood Risk Mitigation and Carbon Sequestration to Optimize Sustainable Land Management Schemes: Experiences from the Middle-Section of Hungary’s Tisza River" Land 11, no. 7: 985. https://doi.org/10.3390/land11070985