Species Composition Affects the Accuracy of Stand-Level Biomass Models in Hemiboreal Forests
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neumann, M.; Moreno, A.; Mues, V.; Härkönen, S.; Mura, M.; Bouriaud, O.; Lang, M.; Achten, W.M.J.; Thivolle-Cazat, A.; Bronisz, K.; et al. Comparison of Carbon Estimation Methods for European Forests. For. Ecol. Manag. 2016, 361, 397–420. [Google Scholar] [CrossRef]
- Martin, A.R.; Doraisami, M.; Thomas, S.C. Global Patterns in Wood Carbon Concentration across the World’s Trees and Forests. Nat. Geosci. 2018, 11, 915–920. [Google Scholar] [CrossRef]
- Lu, J.; Feng, Z.; Zhu, Y. Estimation of Forest Biomass and Carbon Storage in China Based on Forest Resources Inventory Data. Forests 2019, 10, 650. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef]
- Ni, Y.; Eskeland, G.S.; Giske, J.; Hansen, J.P. The Global Potential for Carbon Capture and Storage from Forestry. Carbon Balance Manag. 2016, 11, 8. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Jackson, R.B. The Structure, Distribution, and Biomass of the World’s Forests. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 593–622. [Google Scholar] [CrossRef]
- Bārdule, A.; Petaja, G.; Butlers, A.; Purviņa, D.; Lazdiņš, A. Estimation of Litter Input in Hemiboreal Forests with Drained Organic Soils for Improvement of GHG Inventories. Balt. For. 2021, 29, 232–246. [Google Scholar]
- Gschwantner, T.; Alberdi, I.; Bauwens, S.; Bender, S.; Borota, D.; Bosela, M.; Bouriaud, O.; Breidenbach, J.; Donis, J.; Fischer, C.; et al. Growing Stock Monitoring by European National Forest Inventories: Historical Origins, Current Methods and Harmonisation. For. Ecol. Manag. 2022, 505, 119868. [Google Scholar] [CrossRef]
- Repo, A.; Rajala, T.; Henttonen, H.M.; Lehtonen, A.; Peltoniemi, M.; Heikkinen, J. Age-Dependence of Stand Biomass in Managed Boreal Forests Based on the Finnish National Forest Inventory Data. For. Ecol. Manag. 2021, 498, 119507. [Google Scholar] [CrossRef]
- Castedo-Dorado, F.; Gómez-García, E.; Diéguez-Aranda, U.; Barrio-Anta, M.; Crecente-Campo, F. Aboveground Stand-Level Biomass Estimation: A Comparison of Two Methods for Major Forest Species in Northwest Spain. Ann. For. Sci. 2012, 69, 735–746. [Google Scholar] [CrossRef]
- Di Cosmo, L.; Gasparini, P.; Tabacchi, G. A National-Scale, Stand-Level Model to Predict Total above-Ground Tree Biomass from Growing Stock Volume. For. Ecol. Manag. 2016, 361, 269–276. [Google Scholar] [CrossRef]
- Fang, J.-Y.; Wang, G.G.; Liu, G.-H.; Xu, S.-L. Forest Biomass of China: An Estimate Based on the Biomass-Volume Relationship. Ecol. Appl. 1998, 8, 1084. [Google Scholar]
- Lehtonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R.; Liski, J. Biomass Expansion Factors (BEFs) for Scots Pine, Norway Spruce and Birch According to Stand Age for Boreal Forests. For. Ecol. Manag. 2004, 188, 211–224. [Google Scholar] [CrossRef]
- Jagodziński, A.M.; Zasada, M.; Bronisz, K.; Bronisz, A.; Bijak, S. Biomass Conversion and Expansion Factors for a Chronosequence of Young Naturally Regenerated Silver Birch (Betula Pendula Roth) Stands Growing on Post-Agricultural Sites. For. Ecol. Manag. 2017, 384, 208–220. [Google Scholar] [CrossRef]
- Konôpka, B.; Pajtík, J.; Šebeň, V. Biomass Functions and Expansion Factors for Young Trees of European Ash and Sycamore Maple in the Inner Western Carpathians. Austrian J. For. Sci. 2015, 132, 1–26. [Google Scholar]
- Khan, M.N.I.; Islam, M.R.; Rahman, A.; Azad, M.S.; Mollick, A.S.; Kamruzzaman, M.; Sadath, M.N.; Feroz, S.M.; Rakkibu, M.G.; Knohl, A. Allometric Relationships of Stand Level Carbon Stocks to Basal Area, Tree Height and Wood Density of Nine Tree Species in Bangladesh. Glob. Ecol. Conserv. 2020, 22, e01025. [Google Scholar] [CrossRef]
- Forrester, D.I.; Tachauer, I.H.H.; Annighoefer, P.; Barbeito, I.; Pretzsch, H.; Ruiz-Peinado, R.; Stark, H.; Vacchiano, G.; Zlatanov, T.; Chakraborty, T.; et al. Generalized Biomass and Leaf Area Allometric Equations for European Tree Species Incorporating Stand Structure, Tree Age and Climate. For. Ecol. Manag. 2017, 396, 160–175. [Google Scholar] [CrossRef]
- Smith, A.; Granhus, A.; Astrup, R. Functions for Estimating Belowground and Whole Tree Biomass of Birch in Norway. Scand. J. For. Res. 2016, 31, 568–582. [Google Scholar] [CrossRef]
- Wirth, C.; Schumacher, J.; Schulze, E.D. Generic Biomass Functions for Norway Spruce in Central Europe-a Meta-Analysis Approach toward Prediction and Uncertainty Estimation. Tree Physiol. 2004, 24, 121–139. [Google Scholar] [CrossRef]
- Jalkanen, A.; Makipaa, R.; Stahl, G.; Lehtonen, A.; Petersson, H. Estimation of the Biomass Stock of Trees in Sweden: Comparison of Biomass Equations and Age-Dependent Biomass Expansion Factors. Ann. For. Sci. 2005, 62, 845–851. [Google Scholar] [CrossRef]
- Shi, L. Methods of Estimating Forest Biomass: A Review; Tumuluru, S.L.E.-J.S., Ed.; IntechOpen: Rijeka, Croatia, 2017. [Google Scholar]
- Liepiņš, J.; Liepiņš, K.; Lazdiņš, A. Equations for Estimating the Above- and Belowground Biomass of Grey Alder (Alnus Incana (L.) Moench.) and Common Alder (Alnus Glutinosa L.) in Latvia. Scand. J. For. Res. 2021, 36, 389–400. [Google Scholar] [CrossRef]
- Liepiņš, J.; Lazdiņš, A.; Liepiņš, K. Equations for Estimating Above- and Belowground Biomass of Norway Spruce, Scots Pine, Birch Spp. and European Aspen in Latvia. Scand. J. For. Res. 2018, 33, 58–70. [Google Scholar] [CrossRef]
- Ahti, T.; Hämet-Ahti, L.; Jalas, J. Vegetation Zones and Their Sections in Northwestern Europe. Ann. Bot. Fenn. 1968, 3, 169–211. [Google Scholar]
- EEA. European Forest Types. Categories and Types for Sustainable Forest Management Reporting and Policy; EEA: Copenhagen, Denmark, 2007; Volume 3. [Google Scholar]
- Jansons, J.; Līcīte, I. Latvia. In National Forest Inventories: Pathways for Common Reporting; Erkki, T., Thomas, G., Mark Lawrence, R.E.M., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 341–350. [Google Scholar]
- Liepa, I. Pieauguma Mācība; LLU: Jelgava, Latvia, 1996. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 51. [Google Scholar] [CrossRef]
- Zālītis, P.; Jansons, J. Latvian Forest Typology and Its Origin; Saule: Salaspils, Latvia, 2013. [Google Scholar]
- Motulsky, H.; Arthur, C. Fitting Models to Biological Data Using Linear and Nonlinear Regression. A Practical Guide to Curve Fitting; GraphPad Software: San Diego, CA, USA, 2003. [Google Scholar]
- FAO. Global Forest Resources Assessment 2020: Main Report; FAO: Rome, Italy, 2020. [Google Scholar]
- Avitabile, V.; Camia, A. An Assessment of Forest Biomass Maps in Europe Using Harmonized National Statistics and Inventory Plots. For. Ecol. Manag. 2018, 409, 489–498. [Google Scholar] [CrossRef]
- Pajtik, J.; Konopka, B.; Lukac, M. Individual Biomass Factors for Beech, Oak and Pine in Slovakia: A Comparative Study in Young Naturally Regenerated Stands. Trees Struct. Funct. 2011, 25, 277–288. [Google Scholar] [CrossRef]
- Petersson, H.; Holm, S.; Ståhl, G.; Alger, D.; Fridman, J.; Lehtonen, A.; Lundström, A.; Mäkipää, R. Individual Tree Biomass Equations or Biomass Expansion Factors for Assessment of Carbon Stock Changes in Living Biomass-A Comparative Study. For. Ecol. Manag. 2012, 270, 78–84. [Google Scholar] [CrossRef]
- Rytter, L.; Ingerslev, M.; Kilpeläinen, A.; Torssonen, P.; Lazdina, D.; Löf, M.; Madsen, P.; Muiste, P.; Stener, L.-G. Increased Forest Biomass Production in the Nordic and Baltic Countries-A Review on Current and Future Opportunities. Silva Fenn. 2016, 50, 1660. [Google Scholar] [CrossRef]
- Liepiņš, J.; Ivanovs, J.; Lazdiņš, A.; Jansons, J.; Liepiņš, K. Mapping of Basic Density within European Aspen Stems in Latvia. Silva Fenn. 2017, 51, 7798. [Google Scholar] [CrossRef][Green Version]
- Liepiņš, J.; Liepiņš, K. Mean Basic Density and Its Axial Variation in Scots Pine, Norway Spruce and Birch Stems. Res. Rural Dev. 2017, 1, 21–27. [Google Scholar]
- Konôpka, B.; Pajtík, J.; Marušák, R. Canopy Closure Altered Biomass Allocation in Young Spruce Stand. J. For. Sci. 2015, 61, 62–71. [Google Scholar]
- Runģis, D.E.; Lībiete, Z.; Korica, A.; Katrevičs, J.; Jansons, Ā.; Veinberga, I.; Jansons, J. Genetic Diversity and Differentiation of Even-Aged Norway Spruce Stands in Latvia. Balt. For. 2019, 25, 45–51. [Google Scholar] [CrossRef]
- Bārdule, A.; Liepiņš, J.; Liepiņš, K.; Stola, J.; Butlers, A.; Lazdiņš, A. Variation in Carbon Content among the Major Tree Species in Hemiboreal Forests in Latvia. Forests 2021, 12, 1292. [Google Scholar] [CrossRef]
Species-Based Forest Category | NFI Plots | GS, m3 ha−1 | AGB, t ha−1 | BGB, t ha−1 | SB, t ha−1 | BB, t ha−1 |
---|---|---|---|---|---|---|
Average (Min–Max) | Average (Min–Max) | Average (Min–Max) | Average (Min–Max) | Average (Min–Max) | ||
Scots pine | 1838 | 265.8 (0.1–958.5) | 143.7 (0.1–456.4) | 35.2 (0.1–111.3) | 112.4 (0.1–403.6) | 28 (0.1–124.2) |
Norway spruce | 1231 | 224.4 (0.1–832.2) | 128 (0.2–398.8) | 35.5 (0.1–112.6) | 89.9 (0.1–321.1) | 34.2 (0.2–96.2) |
Birch | 1800 | 182.9 (0.1–776.4) | 105.5 (0.1–427.5) | 28.6 (0.1–114) | 84.3 (0.1–352.1) | 21 (0.1–91.9) |
European aspen | 513 | 231.1 (0.1–1015.2) | 114.6 (0.1–483.9) | 28 (0.1–100.7) | 90.8 (0.1–404.2) | 21.3 (0.1–80.8) |
Grey alder | 582 | 123.6 (0.1–494.3) | 61.7 (0.1–248.8) | 16.5 (0.1–63.3) | 50.4 (0.1–215.2) | 11.8 (0.1–75.4) |
Common alder | 396 | 210.3 (0.1–1035.6) | 108.9 (0.1–494.8) | 28.1 (0.1–88) | 91.7 (0.1–484.6) | 17.2 (0.1–53.8) |
Other | 170 | 173.4 (0.1–731.8) | 90.9 (0.1–319.1) | 30.3 (0.1–182.2) | 68.1 (0.1–238.8) | 32.4 (0.2–136.0) |
Forest Category | Variable | Age | Diameter at Breast Height | Height | Basal Area | Growing Stock |
---|---|---|---|---|---|---|
Scots pine | AGB | 0.56 | 0.75 | 0.86 | 0.94 | 0.99 |
BGB | 0.55 | 0.76 | 0.86 | 0.93 | 0.99 | |
SB | 0.55 | 0.75 | 0.89 | 0.93 | 0.99 | |
BB | 0.53 | 0.64 | 0.62 | 0.82 | 0.82 | |
Norway spruce | AGB | 0.75 | 0.77 | 0.86 | 0.96 | 0.99 |
BGB | 0.75 | 0.78 | 0.85 | 0.96 | 0.99 | |
SB | 0.79 | 0.80 | 0.89 | 0.94 | 0.99 | |
BB | 0.62 | 0.66 | 0.70 | 0.92 | 0.90 | |
Birch | AGB | 0.82 | 0.83 | 0.91 | 0.95 | 0.99 |
BGB | 0.83 | 0.85 | 0.90 | 0.94 | 0.99 | |
SB | 0.81 | 0.82 | 0.91 | 0.95 | 0.99 | |
BB | 0.83 | 0.84 | 0.84 | 0.86 | 0.93 | |
European aspen | AGB | 0.93 | 0.90 | 0.94 | 0.96 | 0.99 |
BGB | 0.92 | 0.90 | 0.93 | 0.95 | 0.99 | |
SB | 0.92 | 0.89 | 0.94 | 0.96 | 0.99 | |
BB | 0.92 | 0.91 | 0.91 | 0.91 | 0.96 | |
Grey alder | AGB | 0.86 | 0.85 | 0.92 | 0.96 | 0.99 |
BGB | 0.83 | 0.81 | 0.88 | 0.97 | 0.99 | |
SB | 0.86 | 0.85 | 0.92 | 0.97 | 0.99 | |
BB | 0.86 | 0.85 | 0.85 | 0.88 | 0.92 | |
Common alder | AGB | 0.83 | 0.78 | 0.89 | 0.96 | 0.99 |
BGB | 0.79 | 0.73 | 0.84 | 0.96 | 0.98 | |
SB | 0.82 | 0.77 | 0.90 | 0.96 | 0.99 | |
BB | 0.77 | 0.77 | 0.74 | 0.81 | 0.85 |
Forest Category | Component * | Parameter Values ± Standard Errors | AIC | RMSE | MAPE | adjR2 | |||
---|---|---|---|---|---|---|---|---|---|
a | b1 | ||||||||
Scots pine | AGB | 1.036 | 0.016 | 0.889 | 0.003 | 12,837.5 | 8.2 | 6.0 | 0.992 |
BGB | 0.248 | 0.006 | 0.893 | 0.004 | 9473.8 | 3.2 | 8.0 | 0.981 | |
SB | 0.375 | 0.008 | 1.021 | 0.003 | 13,022.5 | 8.3 | 9.0 | 0.989 | |
BB | 1.685 | 0.111 | 0.517 | 0.011 | 12,837.5 | 7.9 | 29.7 | 0.703 | |
Norway spruce | AGB | 1.428 | 0.031 | 0.840 | 0.004 | 8791.9 | 8.6 | 9.48 | 0.991 |
BGB | 0.553 | 0.018 | 0.782 | 0.006 | 6766.5 | 3.8 | 17.4 | 0.976 | |
SB | 0.293 | 0.006 | 1.054 | 0.003 | 7709.9 | 5.5 | 8.4 | 0.994 | |
BB | 2.895 | 0.167 | 0.480 | 0.010 | 8505.2 | 7.6 | 26.7 | 0.845 | |
Birch | AGB | 0.787 | 0.011 | 0.945 | 0.002 | 11,816.1 | 6.4 | 10.3 | 0.995 |
BGB | 0.322 | 0.009 | 0.871 | 0.005 | 9537.3 | 3.4 | 19.9 | 0.977 | |
SB | 0.522 | 0.010 | 0.978 | 0.003 | 12,135.7 | 7.0 | 10.2 | 0.990 | |
BB | 0.503 | 0.038 | 0.734 | 0.013 | 12,283.0 | 7.3 | 35.9 | 0.802 | |
European aspen | AGB | 0.644 | 0.026 | 0.957 | 0.006 | 3850.2 | 10.3 | 18.6 | 0.992 |
BGB | 0.354 | 0.023 | 0.821 | 0.011 | 2984.8 | 4.4 | 21.8 | 0.955 | |
SB | 0.489 | 0.024 | 0.964 | 0.008 | 3823.7 | 10.0 | 16.1 | 0.988 | |
BB | 0.396 | 0.052 | 0.758 | 0.021 | 3473.3 | 7.1 | 39.8 | 0.878 | |
Grey alder | AGB | 0.502 | 0.020 | 0.999 | 0.007 | 3754.8 | 6.1 | 17.0 | 0.989 |
BGB | 0.351 | 0.025 | 0.816 | 0.013 | 2966.3 | 3.1 | 15.4 | 0.971 | |
SB | 0.334 | 0.010 | 1.037 | 0.005 | 3161.1 | 3.6 | 16.8 | 0.994 | |
BB | 0.299 | 0.057 | 0.782 | 0.035 | 3769.6 | 6.1 | 45.8 | 0.709 | |
Common alder | AGB | 0.701 | 0.024 | 0.947 | 0.006 | 2663.4 | 6.9 | 9.7 | 0.993 |
BGB | 0.675 | 0.050 | 0.715 | 0.013 | 2247.7 | 4.1 | 24.0 | 0.952 | |
SB | 0.322 | 0.010 | 1.053 | 0.005 | 2411.7 | 5.0 | 11.1 | 0.996 | |
BB | 1.081 | 0.218 | 0.543 | 0.035 | 2741.8 | 7.7 | 58.4 | 0.643 |
Forest Category | Component * | Parameter Values ± Standard Errors | AIC | RMSE | MAPE | adjR2 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
a | b1 | b2 | |||||||||
Scots pine | AGB | 1.187 | 0.022 | 0.882 | 0.003 | −0.048 | 0.004 | 12,802.2 | 7.9 | 6.0 | 0.993 |
BGB | 0.392 | 0.009 | 0.870 | 0.003 | −0.161 | 0.005 | 8578.1 | 2.5 | 7.0 | 0.988 | |
SB | 0.344 | 0.009 | 1.025 | 0.003 | 0.030 | 0.005 | 12,986.7 | 8.3 | 8.9 | 0.989 | |
BB | 4.330 | 0.323 | 0.477 | 0.010 | −0.352 | 0.017 | 12,477.5 | 7.2 | 30.1 | 0.756 | |
Norway spruce | AGB | 1.364 | 0.035 | 0.841 | 0.004 | 0.019 | 0.006 | 8783.7 | 8.5 | 9.4 | 0.991 |
BGB | 0.477 | 0.019 | 0.786 | 0.006 | 0.062 | 0.010 | 6727.1 | 3.7 | 17.1 | 0.977 | |
SB | 0.356 | 0.008 | 1.048 | 0.003 | −0.078 | 0.005 | 7476.3 | 5.0 | 7.8 | 0.995 | |
BB | 1.583 | 0.117 | 0.491 | 0.009 | 0.268 | 0.021 | 8352.5 | 7.2 | 25.1 | 0.863 | |
Birch | AGB | 0.677 | 0.012 | 0.956 | 0.002 | 0.049 | 0.004 | 11,640.5 | 6.1 | 10.3 | 0.995 |
BGB | 0.314 | 0.011 | 0.873 | 0.005 | 0.009 | 0.007 | 9537.9 | 3.4 | 19.7 | 0.977 | |
SB | 0.339 | 0.007 | 1.010 | 0.003 | 0.141 | 0.004 | 11,147.9 | 5.3 | 8.9 | 0.994 | |
BB | 1.132 | 0.103 | 0.679 | 0.013 | −0.276 | 0.020 | 12,114.8 | 7.0 | 36.9 | 0.820 | |
European aspen | AGB | 0.710 | 0.025 | 0.971 | 0.006 | −0.104 | 0.008 | 3692.3 | 8.8 | 18.2 | 0.996 |
BGB | 0.475 | 0.023 | 0.848 | 0.008 | −0.261 | 0.011 | 2587.5 | 3.0 | 19.8 | 0.987 | |
SB | 0.512 | 0.025 | 0.971 | 0.008 | −0.050 | 0.011 | 3803.7 | 9.8 | 16.2 | 0.988 | |
BB | 0.634 | 0.080 | 0.780 | 0.020 | −0.344 | 0.029 | 3351.7 | 6.3 | 32.5 | 0.904 | |
Grey alder | AGB | 0.693 | 0.026 | 0.986 | 0.006 | −0.131 | 0.007 | 3512.9 | 4.9 | 16.0 | 0.994 |
BGB | 0.641 | 0.042 | 0.798 | 0.010 | −0.262 | 0.015 | 2718.7 | 2.5 | 15.4 | 0.969 | |
SB | 0.355 | 0.012 | 1.035 | 0.005 | −0.025 | 0.007 | 3150.1 | 3.6 | 16.6 | 0.994 | |
BB | 1.175 | 0.223 | 0.738 | 0.030 | −0.588 | 0.043 | 3611.8 | 5.3 | 43.2 | 0.778 | |
Common alder | AGB | 0.748 | 0.021 | 0.972 | 0.005 | −0.111 | 0.007 | 2460.6 | 5.4 | 9.7 | 0.993 |
BGB | 0.811 | 0.056 | 0.746 | 0.012 | −0.194 | 0.018 | 2146.4 | 3.6 | 16.4 | 0.965 | |
SB | 0.323 | 0.010 | 1.054 | 0.005 | −0.007 | 0.008 | 2412.2 | 5.0 | 11.3 | 0.996 | |
BB | 2.226 | 0.441 | 0.605 | 0.034 | −0.580 | 0.050 | 2639.9 | 6.7 | 39.0 | 0.725 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liepiņš, J.; Lazdiņš, A.; Kalēja, S.; Liepiņš, K. Species Composition Affects the Accuracy of Stand-Level Biomass Models in Hemiboreal Forests. Land 2022, 11, 1108. https://doi.org/10.3390/land11071108
Liepiņš J, Lazdiņš A, Kalēja S, Liepiņš K. Species Composition Affects the Accuracy of Stand-Level Biomass Models in Hemiboreal Forests. Land. 2022; 11(7):1108. https://doi.org/10.3390/land11071108
Chicago/Turabian StyleLiepiņš, Jānis, Andis Lazdiņš, Santa Kalēja, and Kaspars Liepiņš. 2022. "Species Composition Affects the Accuracy of Stand-Level Biomass Models in Hemiboreal Forests" Land 11, no. 7: 1108. https://doi.org/10.3390/land11071108
APA StyleLiepiņš, J., Lazdiņš, A., Kalēja, S., & Liepiņš, K. (2022). Species Composition Affects the Accuracy of Stand-Level Biomass Models in Hemiboreal Forests. Land, 11(7), 1108. https://doi.org/10.3390/land11071108