The Effects of Soil Improving Cropping Systems (SICS) on Soil Erosion and Soil Organic Carbon Stocks across Europe: A Simulation Study
Abstract
:1. Introduction
2. Methods
2.1. PESERA Model Description
2.2. Input Data
2.2.1. Topography
2.2.2. Climate
2.2.3. Land Use and Crop Data
2.2.4. Crop Calendars: Planting Month, WUE and Cover
- (a)
- JRC crop calendars for winter wheat, grain maize and rice: https://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx?o=sd (accessed on 15 December 2021)
- (b)
- USDA crop calendars for Europe: https://ipad.fas.usda.gov/rssiws/al/crop_calendar/europe.aspx (accessed on 15 December 2021) and https://ipad.fas.usda.gov/countrysummary/Default.aspx?id=E4 (accessed on 15 December 2021)
- (c)
- Boons-Prins et al. [72] with crop calendars for many crops in Europe: https://edepot.wur.nl/308997 (accessed on 15 December 2021)
- Sugarbeet: estimated and adapted from potato
- Oilseed: estimates based on pictures in Corlouer et al. [73] and comparison with winter wheat
- Rice: taken from FAO http://www.fao.org/docrep/S2022E/s2022e07.htm (accessed on 15 December 2021)
- For spring wheat, winter wheat, potato, sugarbeet, sunflower/tomato, bean (pulses): FAO http://www.fao.org/land-water/databases-and-software/crop-information/maize/en/ (accessed on 15 December 2021);
- For consumption maize (sweet maize) and fodder maize (grain maize): FAO http://www.fao.org/3/S2022E/s2022e07.htm (accessed on 15 December 2021);
- For oilseed (winter oilseed rape):
- Length of the growing stages: (Marjanović-Jeromela et al., 2019)
- Kc values: (Corlouer et al., 2019) (Figure 2 in their suppl. Material) [73]
- For rice: FAO paddy rice: http://www.fao.org/3/S2022E/s2022e07.htm (accessed on 15 December 2021)
- For forage: taken from PESERA manual [74].
2.2.5. Rooting Depth and Surface Storage
2.2.6. Soil Properties
2.2.7. Erodibility
2.2.8. Crusting and Scale Depth Maps
2.2.9. Soil Water Availability and Storage Maps
2.3. Model Calibration and Evaluation
- The erodibility map for Norway was adapted because it had too high erodibility in the central mountain areas where soils are very shallow and granite bedrock is very often at the surface; hardly any erosion occurs in these areas. The existing K-factor map from JRC was adapted for certain land uses (following Corine Land Cover 2018), as detailed in Section 2.2
2.4. Parameterisation of SICS
- Cover crops: these are non-harvested crops grown to protect the structural aspects of soil fertility and reduce erosion [13,81]. They can be applied in combination with annual crops, planted in the fallow period; or between the rows of permanent crops. They can also be incorporated into the soil as green manure.
- Mulching: application of various types of dead plant material on the soil surface, such as straw mulch, pruning residues or wood chips [17]. They are used to cover the soil to protect it against erosion, reduce evaporation from bare soil, increase local soil temperature and add organic material to the soil. It can be applied between the harvest and sowing of annual crops, or between rows of perennial crops.
- Minimum tillage: minimise soil disturbance by using less frequent or less intensive tillage operations, benefiting soil structure and preventing further compaction [82]. It can, especially when combined with soil cover by plant residues, reduce water and wind erosion and evaporation, leading to higher soil moisture before the growing season. It can also mitigate declines in soil carbon compared with conventional tillage.
2.5. Scenario Description
- Race to the Bottom (RttB): existing agricultural practices are continued and increasing amounts of inputs are used. The focus is on optimising outputs and quick financial gains, with low attention for improvements in soil quality. This scenario entails low sustainability farming everywhere. No SICS are applied.
- Under Pressure (UP): a set of rules and regulations to ensure sustainable production and support for farmers is created, but only the large-scale farmers can comply with these rules. In this scenario, medium sustainability farming occurs everywhere. All farmers apply 1 SICS: either mulching, cover crops, minimum tillage or compaction alleviation (25% each).
- Caring & Sharing (CS): climate-resilient agriculture is prioritised and a widespread awareness and support for investment in sustainable practices exists. This scenario entails high sustainability farming everywhere. All farmers apply a combination of SICS: minimum tillage, compaction reduction, and either cover crops (50%) or mulching (50%).
- Local & Sustainable (LS): locally sourced, sustainably produced food is highly valued, but not everyone is able or willing to afford this, leading to pockets of self-sufficient communities, but also mainstream conventional farms. In this scenario a mix of low, medium and high sustainability farming areas exist. One-third of farmers apply low sustainability, one-third medium sustainability and one-third high sustainability, as described in the previous scenarios.
3. Results
3.1. Model Calibration Results
3.1.1. Baseline Long-Term Erosion
3.1.2. Baseline Long-Term SOC Stocks
3.1.3. Calibration of the SICS
3.2. Simulated Results for SICS Scenarios
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rust, N.A.; Jarvis, R.M.; Reed, M.S.; Cooper, J. Framing of sustainable agricultural practices by the farming press and its effect on adoption. Agric. Human Values 2021, 38, 753–765. [Google Scholar] [CrossRef]
- Bonfante, A.; Basile, A.; Bouma, J. Targeting the soil quality and soil health concepts when aiming for the United Nations Sustainable Development Goals and the EU Green Deal. SOIL 2020, 6, 453–466. [Google Scholar] [CrossRef]
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef]
- Yoder, D.C.; Jagadamma, S.; Singh, S.; Nouri, A.; Xu, S.; Saha, D.; Schaeffer, S.M.; Adotey, N.; Walker, F.R.; Lee, J.; et al. Soil health: Meaning, measurement, and value through a critical zone lens. J. Soil Water Conserv. 2022, 77, 88–99. [Google Scholar] [CrossRef]
- Bouma, J.; Montanarella, L.; Evanylo, G. The challenge for the soil science community to contribute to the implementation of the UN Sustainable Development Goals. Soil Use Manag. 2019, 35, 538–546. [Google Scholar] [CrossRef]
- European Commission. Farm to Fork Strategy—For a Fair, Healthy and Environmentally-Friendly Food System; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- COM/2019/640. Final The European Green Deal. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1576150542719&uri=COM%3A2019%3A640%3AFIN (accessed on 12 April 2022).
- Thomas, R.; Reed, M.; Clifton, K.; Appadurai, N.; Mills, A.; Zucca, C.; Kodsi, E.; Sircely, J.; Haddad, F.; Hagen, C.; et al. A framework for scaling sustainable land management options. L. Degrad. Dev. 2018, 29, 3272–3284. [Google Scholar] [CrossRef] [Green Version]
- Europarc Federation EU Farm to Fork. Available online: https://www.europarc.org/european-policy/farm-to-fork-protectes-areas/ (accessed on 12 April 2022).
- Veerman, C.; Pinto Correia, T.; Bastioli, C.; Biro, B.; Bouma, J.; Cienciala, E.; Emmett, B.; Frison, E.; Grand, A.; Hristov, L.; et al. Caring for Soil Is Caring for Life: Ensure 75% of Soils Are Healthy by 2030 for Food, People, nature and Climate: Report of the Mission Board for Soil Health and Food; European Commission: Brussels, Belgium, 2020. [Google Scholar] [CrossRef]
- World Overview of Conservation Approaches and Technologies (WOCAT). Where the Land Is Greener—Case Studies and Analysis of Soil and Water Conservation Initiatives Worldwide; Liniger, H., Critchley, W., Eds.; World Overview of Conservation Approaches and Technologies: Bern, Switserland, 2007. [Google Scholar]
- Kutter, T.; Louwagie, G.; Schuler, J.; Zander, P.; Helming, K.; Hecker, J.-M. Policy measures for agricultural soil conservation in the European Union and its member states: Policy review and classification. L. Degrad. Dev. 2011, 22, 18–31. [Google Scholar] [CrossRef]
- Lavergne, S.; Vanasse, A.; Thivierge, M.-N.; Halde, C. Using fall-seeded cover crop mixtures to enhance agroecosystem services: A review. Agrosystems, Geosci. Environ. 2021, 4, e20161. [Google Scholar] [CrossRef]
- Osipitan, O.A.; Dille, J.A.; Assefa, Y.; Knezevic, S.Z. Cover Crop for Early Season Weed Suppression in Crops: Systematic Review and Meta-Analysis. Agron. J. 2018, 110, 2211–2221. [Google Scholar] [CrossRef] [Green Version]
- Kathage, J.; Smit, B.; Janssens, B.; Haagsma, W.; Adrados, J.L. How much is policy driving the adoption of cover crops? Evidence from four EU regions. Land Use Policy 2022, 116, 106016. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Alewell, C.; Lugato, E.; Montanarella, L. Estimating the soil erosion cover-management factor at the European scale. Land Use Policy 2015, 48, 38–50. [Google Scholar] [CrossRef]
- Qin, W.; Hu, C.; Oenema, O. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: A meta-analysis. Sci. Rep. 2015, 5, 16210. [Google Scholar] [CrossRef] [PubMed]
- Maetens, W.; Poesen, J.; Vanmaercke, M. How effective are soil conservation techniques in reducing plot runoff and soil loss in Europe and the Mediterranean? Earth Sci. Rev. 2012, 115, 21–36. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, L.; Hardy, B.; Huyghebeart, B.; Fohrafellner, J.; Fornara, D.; Barančíková, G.; Bárcena, T.G.; De Boever, M.; Di Bene, C.; Feizienė, D.; et al. Achievable agricultural soil carbon sequestration across Europe from country-specific estimates. Glob. Chang. Biol. 2021, 27, 6363–6380. [Google Scholar] [CrossRef]
- Marshall, E.J.P.; Moonen, A.C. Field margins in northern Europe: Their functions and interactions with agriculture. Agric. Ecosyst. Environ. 2002, 89, 5–21. [Google Scholar] [CrossRef]
- Van Vooren, L.; Reubens, B.; Broekx, S.; De Frenne, P.; Nelissen, V.; Pardon, P.; Kris, V. Ecosystem service delivery of agri-environment measures: A synthesis for hedgerows and grass strips on arable land. Agric. Ecosyst. Environ. 2017, 244, 32–51. [Google Scholar] [CrossRef]
- Dorioz, J.M.; Wang, D.; Poulenard, J.; Trévisan, D. The effect of grass buffer strips on phosphorus dynamics—A critical review and synthesis as a basis for application in agricultural landscapes in France. Agric. Ecosyst. Environ. 2006, 117, 4–21. [Google Scholar] [CrossRef]
- Felsot, A.S.; Mitchell, J.K.; Kenimer, A.L. Assessment of Management Practices for Reducing Pesticide Runoff from Sloping Cropland in Illinois. J. Environ. Qual. 1990, 19, 539–545. [Google Scholar] [CrossRef]
- Hessel, R.; Wyseure, G.; Panagea, I.S.; Alaoui, A.; Reed, M.S.; van Delden, H.; Muro, M.; Mills, J.; Oenema, O.; Areal, F.; et al. Soil Improving cropping systems for sustainable and profitable farming in Europe. Land 2022, 11, 780. [Google Scholar] [CrossRef]
- Berhe, A.A. Chapter 3—Drivers of Soil Change. In Global Change and Forest Soils; Busse, M., Giardina, C.P., Morris, D.M., Page-Dumroese, D.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 36, pp. 27–42. ISBN 0166-2481. [Google Scholar] [CrossRef]
- Lahmar, R. Adoption of conservation agriculture in Europe: Lessons of the KASSA project. Land Use Policy 2010, 27, 4–10. [Google Scholar] [CrossRef]
- Hijbeek, R.; Pronk, A.A.; van Ittersum, M.K.; Verhagen, A.; Ruysschaert, G.; Bijttebier, J.; Zavattaro, L.; Bechini, L.; Schlatter, N.; ten Berge, H.F.M. Use of organic inputs by arable farmers in six agro-ecological zones across Europe: Drivers and barriers. Agric. Ecosyst. Environ. 2019, 275, 42–53. [Google Scholar] [CrossRef]
- Montanarella, L. Trends in Land Degradation in Europe. In Climate and Land Degradation; Sivakumar, M.V.K., Ndiang’ui, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 83–104. ISBN 978-3-540-72438-4. [Google Scholar] [CrossRef]
- Prăvălie, R.; Patriche, C.; Borrelli, P.; Panagos, P.; Roșca, B.; Dumitraşcu, M.; Nita, I.-A.; Săvulescu, I.; Birsan, M.-V.; Bandoc, G. Arable lands under the pressure of multiple land degradation processes. A global perspective. Environ. Res. 2021, 194, 110697. [Google Scholar] [CrossRef] [PubMed]
- Prăvălie, R. Exploring the multiple land degradation pathways across the planet. Earth Sci. Rev. 2021, 220, 103689. [Google Scholar] [CrossRef]
- Smiraglia, D.; Ceccarelli, T.; Bajocco, S.; Salvati, L.; Perini, L. Linking trajectories of land change, land degradation processes and ecosystem services. Environ. Res. 2016, 147, 590–600. [Google Scholar] [CrossRef] [PubMed]
- Bolinder, M.A.; Crotty, F.; Elsen, A.; Frac, M.; Kismányoky, T.; Lipiec, J.; Tits, M.; Tóth, Z.; Kätterer, T. The effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems: A synthesis of reviews. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 929–952. [Google Scholar] [CrossRef]
- Evenson, G.; Osterholz, W.R.; Shedekar, V.S.; King, K.; Mehan, S.; Kalcic, M. Representing soil health practice effects on soil properties and nutrient loss in a watershed-scale hydrologic model. J. Environ. Qual. 2022, 1–12. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- FAO. Soil Erosion: The Greatest Challenge to Sustainable Land Management; FAO: Rome, Italy, 2019. [Google Scholar]
- Van Delden, H.; Luja, P.; Engelen, G. Integration of multi-scale dynamic spatial models of socio-economic and physical processes for river basin management. Environ. Model. Softw. 2007, 22, 223–238. [Google Scholar] [CrossRef] [Green Version]
- Van Delden, H.; Stuczynski, T.; Ciaian, P.; Paracchini, M.; Hurkens, J.; Lopatka, A.; Shi, Y.; Calvo, S.; Van Vliet, J.; Vanhout, R.; et al. Integrated Assessment of Agricultural Policies with Dynamic Land Use Change Modelling. Ecol. Modell. 2010, 221, 2153–2166. [Google Scholar] [CrossRef]
- Yigini, Y.; Panagos, P. Assessment of soil organic carbon stocks under future climate and land cover changes in Europe. Sci. Total Environ. 2016, 557–558, 838–850. [Google Scholar] [CrossRef]
- Lugato, E.; Panagos, P.; Bampa, F.; Jones, A.; Montanarella, L. A new baseline of organic carbon stock in European agricultural soils using a modelling approach. Glob. Chang. Biol. 2014, 20, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Morais, T.G.; Domingos, T.; Teixeira, R.F.M. A spatially explicit life cycle assessment midpoint indicator for soil quality in the European Union using soil organic carbon. Int. J. Life Cycle Assess. 2016, 21, 1076–1091. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K.; van der Zanden, E.H.; Poesen, J.; Alewell, C. Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European scale. Environ. Sci. Policy 2015, 51, 23–34. [Google Scholar] [CrossRef]
- Schulp, C.J.E.; Nabuurs, G.-J.; Verburg, P.H. Future carbon sequestration in Europe—Effects of land use change. Agric. Ecosyst. Environ. 2008, 127, 251–264. [Google Scholar] [CrossRef]
- Zaehle, S.; Bondeau, A.; Carter, T.R.; Cramer, W.; Erhard, M.; Prentice, I.C.; Reginster, I.; Rounsevell, M.D.A.; Sitch, S.; Smith, B.; et al. Projected Changes in Terrestrial Carbon Storage in Europe under Climate and Land-use Change, 1990–2100. Ecosystems 2007, 10, 380–401. [Google Scholar] [CrossRef]
- Smith, J.O.; Smith, P.; Wattenbach, M.; Zaehle, S.; Hiederer, R.; Jones, R.J.A.; Montanarella, L.; Rounsevell, M.D.A.; Reginster, I.; Ewert, F. Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080. Glob. Chang. Biol. 2005, 11, 2141–2152. [Google Scholar] [CrossRef]
- Frank, S.; Schmid, E.; Havlík, P.; Schneider, U.A.; Böttcher, H.; Balkovič, J.; Obersteiner, M. The dynamic soil organic carbon mitigation potential of European cropland. Glob. Environ. Chang. 2015, 35, 269–278. [Google Scholar] [CrossRef]
- Freibauer, A.; Rounsevell, M.D.A.; Smith, P.; Verhagen, J. Carbon sequestration in the agricultural soils of Europe. Geoderma 2004, 122, 1–23. [Google Scholar] [CrossRef]
- Aertsens, J.; De Nocker, L.; Gobin, A. Valuing the carbon sequestration potential for European agriculture. Land Use Policy 2013, 31, 584–594. [Google Scholar] [CrossRef]
- Bellassen, V.; Angers, D.; Kowalczewski, T.; Olesen, A. Soil carbon is the blind spot of European national GHG inventories. Nat. Clim. Chang. 2022, 12, 324–331. [Google Scholar] [CrossRef]
- Lugato, E.; Bampa, F.; Panagos, P.; Montanarella, L.; Jones, A. Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices. Glob. Chang. Biol. 2014, 20, 3557–3567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panagea, I.S.; Berti, A.; Čermak, P.; Diels, J.; Elsen, A.; Kusá, H.; Piccoli, I.; Poesen, J.; Stoate, C.; Tits, M.; et al. Soil Water Retention as Affected by Management Induced Changes of Soil Organic Carbon: Analysis of Long-Term Experiments in Europe. Land 2021, 10, 1362. [Google Scholar] [CrossRef]
- Piccoli, I.; Seehusen, T.; Bussell, J.; Vizitu, O.; Calciu, I.; Berti, A.; Börjesson, G.; Kirchmann, H.; Kätterer, T.; Sartori, F.; et al. Opportunities for Mitigating Soil Compaction in Europe. Case Studies from the SoilCare Project Using Soil-Improving Cropping Systems. Land 2022, 11, 223. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Kirkby, M.J.; Irvine, B.J.; Jones, R.J.A.; Govers, G.; Team, P. The PESERA coarse scale erosion model for Europe. I.—Model rationale and implementation. Eur. J. Soil Sci. 2008, 59, 1293–1306. [Google Scholar] [CrossRef]
- Abdelwahab, O.M.M.; Ricci, G.F.; De Girolamo, A.M.; Gentile, F. Modelling soil erosion in a Mediterranean watershed: Comparison between SWAT and AnnAGNPS models. Environ. Res. 2018, 166, 363–376. [Google Scholar] [CrossRef]
- Karamesouti, M.; Petropoulos, G.P.; Papanikolaou, I.D.; Kairis, O.; Kosmas, K. Erosion rate predictions from PESERA and RUSLE at a Mediterranean site before and after a wildfire: Comparison & implications. Geoderma 2016, 261, 44–58. [Google Scholar] [CrossRef]
- Berberoglu, S.; Cilek, A.; Kirkby, M.; Irvine, B.; Donmez, C. Spatial and temporal evaluation of soil erosion in Turkey under climate change scenarios using the Pan-European Soil Erosion Risk Assessment (PESERA) model. Environ. Monit. Assess. 2020, 192, 491. [Google Scholar] [CrossRef]
- Meusburger, K.; Konz, N.; Schaub, M.; Alewell, C. Soil erosion modelled with USLE and PESERA using QuickBird derived vegetation parameters in an alpine catchment. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 208–215. [Google Scholar] [CrossRef]
- Cornes, R.C.; van der Schrier, G.; van den Besselaar, E.J.M.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. J. Geophys. Res. Atmos. 2018, 123, 9391–9409. [Google Scholar] [CrossRef] [Green Version]
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Dosio, A. Projections of climate change indices of temperature and precipitation from an ensemble of bias-adjusted high-resolution EURO-CORDEX regional climate models. J. Geophys. Res. Atmos. 2016, 121, 5488–5511. [Google Scholar] [CrossRef]
- Panagos, P.; Meusburger, K.; Ballabio, C.; Borrelli, P.; Alewell, C. Soil erodibility in Europe: A high-resolution dataset based on LUCAS. Sci. Total Environ. 2014, 479–480, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Abbaspour, K.; Ashraf Vaghefi, S. Harmonized World Soil Database in SWAT Format. PANGAEA 2019. [Google Scholar] [CrossRef]
- Andrews, T.; Gregory, J.M.; Webb, M.J.; Taylor, K.E. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models. Geophys. Res. Lett. 2012, 39, L09712. [Google Scholar] [CrossRef] [Green Version]
- Kotlarski, S.; Keuler, K.; Christensen, O.B.; Colette, A.; Déqué, M.; Gobiet, A.; Goergen, K.; Jacob, D.; Lüthi, D.; van Meijgaard, E.; et al. Regional climate modeling on European scales: A joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model Dev. 2014, 7, 1297–1333. [Google Scholar] [CrossRef] [Green Version]
- Van Delden, H.; Fleskens, L.; Muro, M.; Tugran, T.; Vanhout, R.; Baartman, J.; Nunes, J.P.; Vanermen, I.; Salputra, G.; Verzandvoort, S.; et al. Report on the Potential for Applying Soil-Improving CS across Europe; Research Institute For Knowledge Systems: Maastricht, The Netherlands, 2021. [Google Scholar]
- Sacks, W.J.; Deryng, D.; Foley, J.A.; Ramankutty, N. Crop planting dates: An analysis of global patterns. Glob. Ecol. Biogeogr. 2010, 19, 607–620. [Google Scholar] [CrossRef]
- Rötzer, T.; Chmielewski, F.-M. Phenological maps of Europe. Clim. Res. 2001, 18, 249–257. [Google Scholar] [CrossRef]
- Brunel, S.; Suffert, M.; Petter, F.; Baker, R. Interface between pest risk science and policy: The EPPO perspective. NeoBiota 2013, 18, 9–23. [Google Scholar] [CrossRef]
- Gloning, P.; Estrella, N.; Menzel, A. The impacts of climate change on the winter hardiness zones of woody plants in Europe. Theor. Appl. Climatol. 2013, 113, 683–695. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metzger, M.J.; Bunce, R.G.H.; Jongman, R.H.G.; Mücher, C.A.; Watkins, J.W. A climatic stratification of the environment of Europe. Glob. Ecol. Biogeogr. 2005, 14, 549–563. [Google Scholar] [CrossRef]
- Boons-Prins, E.R.; De Koning, G.H.J.; Van Diepen, C.A.; Penning de Vries, F.W.T. Crop-Specific Simulation Parameters for Yield Forecasting across the European Community; Wageningen University & Research: Wageningen, The Netherlands, 1993. [Google Scholar]
- Corlouer, E.; Gauffreteau, A.; Bouchet, A.-S.; Bissuel-Bélaygue, C.; Nesi, N.; Laperche, A. Envirotypes Based on Seed Yield Limiting Factors Allow to Tackle G × E Interactions. Agronomy 2019, 9, 798. [Google Scholar] [CrossRef] [Green Version]
- Irvine, B.J.; Kosmas, C. Pan-European Soil Erosion Risk Assessment—Deliverable 15: PESERA Users Manual; European Commission: Brussels, Belgium, 2003. [Google Scholar]
- De Brogniez, D.; Ballabio, C.; Stevens, A.; Jones, R.J.A.; Montanarella, L.; van Wesemael, B. A map of the topsoil organic carbon content of Europe generated by a generalized additive model. Eur. J. Soil Sci. 2015, 66, 121–134. [Google Scholar] [CrossRef]
- European Environmental Agency Variations in Topsoil Organic Carbon Content across Europe. Available online: https://www.eea.europa.eu/data-and-maps/figures/variations-in-topsoil-organic-carbon (accessed on 30 November 2020).
- Aagaard Kristensen, J.; Balstrøm, T.; Jones, R.J.A.; Jones, A.; Montanarella, L.; Panagos, P.; Breuning-Madsen, H. Development of a harmonised soil profile analytical database for Europe: A resource for supporting regional soil management. SOIL 2019, 5, 289–301. [Google Scholar] [CrossRef] [Green Version]
- Cerdan, O.; Govers, G.; Le Bissonnais, Y.; Van Oost, K.; Poesen, J.; Saby, N.; Gobin, A.; Vacca, A.; Quinton, J.; Auerswald, K.; et al. Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology 2010, 122, 167–177. [Google Scholar] [CrossRef]
- Borrelli, P.; Van Oost, K.; Meusburger, K.; Alewell, C.; Lugato, E.; Panagos, P. A step towards a holistic assessment of soil degradation in Europe: Coupling on-site erosion with sediment transfer and carbon fluxes. Environ. Res. 2018, 161, 291–298. [Google Scholar] [CrossRef]
- Rietra, R.; Heinen, M.; Oenema, O. A Review of Crop Husbandry and Soil Management Practices Using Meta-Analysis Studies: Towards Soil-Improving Cropping Systems. Land 2022, 11, 255. [Google Scholar] [CrossRef]
- Jian, J.; Du, X.; Reiter, M.S.; Stewart, R.D. A meta-analysis of global cropland soil carbon changes due to cover cropping. Soil Biol. Biochem. 2020, 143, 107735. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, E.; Sun, O.J. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agric. Ecosyst. Environ. 2010, 139, 224–231. [Google Scholar] [CrossRef]
- Hamza, M.A.; Anderson, W.K. Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil Tillage Res. 2005, 82, 121–145. [Google Scholar] [CrossRef]
- Ministerio Para la Transicion Ecologica y el reto Demografico Inventario Nacional de Erosion de Suelos. Available online: https://www.miteco.gob.es/es/biodiversidad/temas/inventarios-nacionales/inventario-nacional-erosion-suelos/estado_actual.aspx (accessed on 12 April 2022).
- Umwelt Bundesamt Mittlerer Landjaehriger Sedimenteintrag in Die Oberflaechengewaesser Durch Wassererosion. Available online: https://www.umweltbundesamt.de/themen/boden-landwirtschaft/bodenbelastungen/bodenerosion/bodenerosion-durch-wasser#schutz-vor-erosion-ist-auch-gewasserschutz (accessed on 12 April 2022).
- BGR Gehalte an Organischer Substanz in Oberboeden Deutschlands 1:1,000,000. Available online: https://www.bgr.bund.de/DE/Themen/Boden/Bilder/Bod_Humuskarte_g.jpg?__blob=normal&v=3 (accessed on 12 April 2022).
- Poeplau, C.; Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops—A meta-analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- Verheijen, F.G.A.; Jones, R.J.A.; Rickson, R.J.; Smith, C.J.; Bastos, A.C.; Nunes, J.P.; Keizer, J.J. Concise overview of European soil erosion research and evaluation. Acta Agric. Scand. Sect. B Soil Plant Sci. 2012, 62, 185–190. [Google Scholar] [CrossRef]
- Lessmann, M.; Ros, G.H.; Young, M.D.; de Vries, W. Global variation in soil carbon sequestration potential through improved cropland management. Glob. Chang. Biol. 2022, 28, 1162–1177. [Google Scholar] [CrossRef] [PubMed]
- Debeljak, M.; Trajanov, A.; Kuzmanovski, V.; Schröder, J.; Sandén, T.; Spiegel, H.; Wall, D.P.; de Broek, M.; Rutgers, M.; Bampa, F.; et al. A Field-Scale Decision Support System for Assessment and Management of Soil Functions. Front. Environ. Sci. 2019, 7, 115. [Google Scholar] [CrossRef] [Green Version]
- Zwetsloot, M.J.; van Leeuwen, J.; Hemerik, L.; Martens, H.; Simó Josa, I.; de Broek, M.; Debeljak, M.; Rutgers, M.; Sandén, T.; Wall, D.P.; et al. Soil multifunctionality: Synergies and trade-offs across European climatic zones and land uses. Eur. J. Soil Sci. 2021, 72, 1640–1654. [Google Scholar] [CrossRef]
- Vrebos, D.; Jones, A.; Lugato, E.; O’Sullivan, L.; Schulte, R.; Staes, J.; Meire, P. Spatial evaluation and trade-off analysis of soil functions through Bayesian networks. Eur. J. Soil Sci. 2021, 72, 1575–1589. [Google Scholar] [CrossRef]
- Sattari, S.Z.; van Ittersum, M.K.; Bouwman, A.F.; Smit, A.L.; Janssen, B.H. Crop yield response to soil fertility and N, P, K inputs in different environments: Testing and improving the QUEFTS model. F. Crop. Res. 2014, 157, 35–46. [Google Scholar] [CrossRef]
- UNCCD Land Degradation Neutrality. Available online: https://www.unccd.int/land-and-life/land-degradation-neutrality/overview#:~:text=WedefineLDNas“a,andspatialscalesandecosystems.” (accessed on 12 April 2022).
- Van Delden, H.; Fleskens, L.; Vanhout, R.; Nunes, J.P.; Baartman, J.; Lesschen, J.P.; Verzandvoort, S.; Hessel, R.; All Study Site Partners. Report on the Integration and Synthesis of Study Site Results and Their Potential for Upscaling; Wageningen University & Research: Wageningen, The Netherlands, 2021. [Google Scholar]
Category | Variable | Number of Maps | Data Source |
---|---|---|---|
Topography | Local relief—st. dev. of elevation | 1 | ESDAC database (RECARE project) |
Climate | Equilibrium phase model (long-term current climate) | ||
Mean monthly temperature | 12 | Based on E-OBS version 21.0e, at 0.1° spatial resolution and daily scale. [58]. 1981–2010 | |
Mean monthly temperature range | 12 | ||
Mean monthly rainfall | 12 | ||
Mean monthly rainfall per rain day | 12 | ||
Coefficient of variation of mean monthly rainfall per rain day | 12 | ||
Mean monthly PET | 12 | Calculated from monthly Tmean and Trange following [59]. | |
Simulation phase model (climate scenarios) | |||
Mean monthly temperature | 12 * n_years | E-OBS version 21.0e, at 0.1° spatial resolution and daily scale. [58]. 2018–2050; RCP4.5 MPI-ES-LR + CCLM4-8-17 Data: JRC EU High Resolution and Precipitation dataset: https://data.jrc.ec.europa.eu/dataset/jrc-liscoast-10011 (accessed on 18 December 2020) [60] | |
Mean monthly temperature range | 12 * n_years | ||
Monthly rainfall | 12 * n_years | ||
Maximum daily rainfall | 12 * n_years | ||
Soil properties | Erodibility class (sensitivity to erosion) | 1 | Classified RUSLE K-factor map by Panagos et al. [61] https://esdac.jrc.ec.europa.eu/content/soil-erodibility-k-factor-high-resolution-dataset-europe (accessed on 1 July 2021) |
Crusting class (sensitivity to soil surface crusting) | 1 | Pedotransfer functions based on soil type and texture (ESDB) | |
Scale depth (proxy for infiltration) | 1 | Based on Texture classes (ESDB) | |
Soil water available to plants (0–300 mm) | 1 | Pedotransfer functions based on Available Water Content, Texture, Soil packing density and restriction of soil to bedrock; ESDB and SWAT-HWSD [62] for Iceland and Cyprus | |
Soil water available to plants (300–1000 mm) | 1 | ||
Effective soil water storage capacity | 1 | ||
Land use & crop data | Land use map | 1 | From Metronamica application, processed data from Eurostat and Corine Land Cover |
Crop map | 1 | ||
Planting month (for crops only) | 1 | Grouped per climate region (see Table 2) | |
Initial ground cover (%) | 12 | Following PESERA project manual estimations; adapted where needed | |
Initial surface storage (mm) | 1 | Following PESERA project manual | |
Surface storage reduction (%) | 1 | Following PESERA project manual: 50% for crops, 0% for other land uses | |
Rooting depth | 1 | Combined approach following PESERA project manual, FAO data http://www.fao.org/land-water/databases-and-software/crop-information/maize/en/ (accessed on 15 October 2020) and SWAT database. |
Y1 | Y2 | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Crop | Agroclimatic Zone | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Spring cereal | Continental | 10 | 50 | 90 | 95 | 40 | |||||||||||||||||||
Mediterranean | 10 | 50 | 90 | 95 | 40 | ||||||||||||||||||||
Oceanic | 10 | 50 | 90 | 95 | 40 | ||||||||||||||||||||
Subartic | 10 | 50 | 90 | 95 | 40 | ||||||||||||||||||||
Winter cereal | Continental | 5 | 5 | 25 | 50 | 75 | 90 | 95 | 95 | 85 | 30 | ||||||||||||||
Mediterranean | 5 | 35 | 60 | 80 | 90 | 95 | 90 | 30 | |||||||||||||||||
Oceanic | 5 | 5 | 25 | 50 | 75 | 90 | 95 | 95 | 85 | 30 | |||||||||||||||
Subartic | 5 | 5 | 10 | 15 | 25 | 50 | 75 | 90 | 95 | 90 | 30 | ||||||||||||||
Maize | Continental | 20 | 50 | 75 | 95 | 95 | 40 | 10 | |||||||||||||||||
Mediterranean | 20 | 60 | 95 | 95 | 40 | ||||||||||||||||||||
Oceanic | 20 | 50 | 75 | 95 | 95 | 40 | 10 | ||||||||||||||||||
Subartic | |||||||||||||||||||||||||
Pulses | Continental | 20 | 65 | 95 | 70 | ||||||||||||||||||||
Mediterranean | 20 | 65 | 95 | 70 | |||||||||||||||||||||
Oceanic | 20 | 65 | 95 | 70 | |||||||||||||||||||||
Subartic | |||||||||||||||||||||||||
Sugarbeet | Continental | 10 | 50 | 70 | 90 | 95 | 85 | 50 | |||||||||||||||||
Mediterranean | 10 | 35 | 60 | 75 | 90 | 95 | 85 | 50 | |||||||||||||||||
Oceanic | 10 | 50 | 70 | 90 | 95 | 85 | 50 | ||||||||||||||||||
Subartic | |||||||||||||||||||||||||
Potato | Continental | 10 | 70 | 95 | 95 | 85 | 35 | 10 | |||||||||||||||||
Mediterranean | 10 | 70 | 95 | 95 | 85 | 35 | |||||||||||||||||||
Oceanic | 10 | 70 | 95 | 95 | 85 | 35 | 10 | ||||||||||||||||||
Subartic | |||||||||||||||||||||||||
Oilseed | Continental | 10 | 50 | 80 | 90 | 90 | 90 | 95 | 95 | 85 | 50 | ||||||||||||||
Mediterranean | 5 | 35 | 60 | 80 | 90 | 95 | 90 | 30 | |||||||||||||||||
Oceanic | 10 | 50 | 80 | 90 | 90 | 90 | 95 | 95 | 85 | 50 | 50 | ||||||||||||||
Subartic | 10 | 50 | 80 | 90 | 90 | 90 | 95 | 90 | 50 | ||||||||||||||||
Veg & Flowers (sunflowers) | Continental | 10 | 75 | 95 | 30 | ||||||||||||||||||||
Mediterranean | 10 | 65 | 80 | 95 | 30 | ||||||||||||||||||||
Oceanic | 10 | 75 | 95 | 30 | |||||||||||||||||||||
Subartic | |||||||||||||||||||||||||
Rice | Continental | 10 | 40 | 65 | 85 | 90 | 60 | ||||||||||||||||||
Mediterranean | 10 | 40 | 65 | 85 | 90 | 60 | |||||||||||||||||||
Oceanic | 10 | 40 | 65 | 85 | 90 | 60 | |||||||||||||||||||
Subartic | |||||||||||||||||||||||||
Forage | Continental | 10 | 65 | 70 | 70 | 75 | 80 | 70 | 50 | ||||||||||||||||
Mediterranean | 10 | 10 | 70 | 70 | 80 | 50 | |||||||||||||||||||
Oceanic | 10 | 65 | 70 | 70 | 75 | 80 | 70 | 50 | |||||||||||||||||
Subartic |
Parameter | Cover Crops (CC) | Mulching (M) | Compaction Reduction (CR) | Minimum Tillage (MT) | Cover Crops + CR & MT | Mulching + CR & MT |
---|---|---|---|---|---|---|
General description | Annual crops: cover crop in fallow period Permanent crops: cover crop in interrows | 0.2 kg/m2 mulching added each year | Decrease in use of heavy machinery | Tillage depth reduced by 40% (except root crops); 40% stubble cover left | Cover crops, compaction reduction and minimum tillage | Mulching, compaction reduction and minimum tillage |
Soil surface | ||||||
Erodibility | = | = | = | −1 class | −1 class | −1 class |
Cover | 80% of bare soil | 80% of bare soil | = | 40% of bare soil | 80% of bare soil | 80% of bare soil |
Roughness | +5 mm | +10 mm | = | +5 mm | +5 mm | +10 mm |
Hydrological properties | ||||||
Water storage capacity * | +25% | +30% | +10% | = | +25% | +30% |
Soil evaporation | = | −40% | = | = | = | −40% |
Root depth | = | = | +10% | = | +10% | +10% |
Vegetation | ||||||
Water use (wue) | Permanent crops: +0.1 | = | = | = | Permanent crops: +0.1 | = |
Active period | Annual crops: cover crop in fallow period (0.6 kg/m2) | = | = | = | Annual crops: cover crop in fallow period (0.6 kg/m2) | = |
Soil Organic Matter | ||||||
SOM breakdown rate | = | = | = | Decreased in tillage month | Decreased in tillage month | Decreased in tillage month |
SOM added to soil | 0.06 kg/m2 at tillage | 0.01 kg/m2 each month (except tillage and harvest) | = | = | 0.06 kg/m2 at tillage | 0.01 kg/m2 each month (except tillage and harvest) |
BELGIUM | SPAIN | SLOVAKIA | CRETE | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Land Use/Crop | LUCAS | PESERA | Ratio (%) | LUCAS | PESERA | Ratio (%) | LUCAS | PESERA | Ratio (%) | LUCAS | PESERA | Ratio (%) |
spring cereal | 50.8 | 46.7 | 91.9 | 36.6 | 35.5 | 97.0 | 49.6 | 46.5 | 93.6 | X | X | X |
winter cereal | 50.8 | 51.1 | 100.5 | 36.6 | 48.9 | 133.8 | 49.6 | 50.7 | 102.2 | 36.6 | 47.5 | 129.8 |
consumption maize | 46.7 | 52.2 | 111.6 | 51.4 | 41.0 | 79.8 | 47.3 | 57.7 | 121.9 | X | X | X |
fodder maize | 46.7 | 57.6 | 123.2 | 51.4 | 40.6 | 79.1 | 47.3 | 65.8 | 139.1 | 51.4 | 12.5 | 24.3 |
pulses | 46.0 | 51.4 | 111.8 | 44.2 | 43.3 | 97.9 | 55.4 | 52.6 | 94.9 | 44.2 | 41.5 | 93.9 |
sugarbeet | 47.0 | 56.8 | 120.8 | 40.0 | 36.2 | 90.4 | 44.2 | 54.4 | 123.0 | X | X | X |
potato | 47.0 | 61.9 | 131.8 | 40.0 | 40.8 | 101.8 | 44.2 | 71.3 | 161.4 | 40.0 | 15.2 | 37.9 |
oilseed | 51.1 | 50.6 | 99.0 | 21.2 | 47.1 | 221.7 | 51.3 | 49.4 | 96.2 | X | X | X |
veg&flowers | 41.1 | 39.9 | 97.0 | 29.9 | 29.2 | 97.5 | 49.8 | 43.3 | 86.9 | 29.9 | 23.8 | 79.5 |
forage | 62.2 | 59.8 | 96.0 | 38.2 | 41.7 | 109.2 | 40.6 | 64.8 | 159.7 | 38.2 | 21.1 | 55.2 |
fallow | (NA) | 21.3 | (NA) | (NA) | 12.1 | (NA) | (NA) | 25.9 | (NA) | (NA) | 8.1 | (NA) |
rice | X | X | X | 44.4 | 39.5 | 88.9 | X | X | X | X | X | X |
vineyards | X | X | X | 35.3 | 46.4 | 131.6 | 47.9 | 57.9 | 121.0 | 35.3 | 38.9 | 110.4 |
fruit trees | 90.1 | 58.1 | 64.5 | 49.8 | 42.1 | 84.6 | 57.8 | 61.1 | 105.6 | 49.8 | 37.5 | 75.3 |
olives | X | X | X | 46.6 | 42.7 | 91.5 | X | X | X | 46.6 | 38.5 | 82.5 |
pasture | 149.1 | 105.7 | 70.9 | 72.8 | 103.0 | 141.4 | 103.2 | 109.0 | 105.6 | 72.8 | 95.8 | 131.5 |
broadleaf forest | 174.1 | 147.6 | 84.8 | 111.2 | 119.4 | 107.5 | 134.3 | 149.4 | 111.3 | 111.2 | 84.4 | 75.9 |
coniferous forest | 267.8 | 180.8 | 67.5 | 135.0 | 138.5 | 102.6 | 176.4 | 205.0 | 116.2 | 135.0 | 130.5 | 96.7 |
mixed forest | 216.6 | 189.2 | 87.4 | 151.0 | 147.3 | 97.5 | 204.0 | 207.3 | 101.6 | 151.0 | 140.3 | 92.9 |
scrub | 276.0 | 107.5 | 38.9 | 99.6 | 108.6 | 109.1 | 126.9 | 109.3 | 86.2 | 99.6 | 107.2 | 107.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baartman, J.E.M.; Nunes, J.P.; van Delden, H.; Vanhout, R.; Fleskens, L. The Effects of Soil Improving Cropping Systems (SICS) on Soil Erosion and Soil Organic Carbon Stocks across Europe: A Simulation Study. Land 2022, 11, 943. https://doi.org/10.3390/land11060943
Baartman JEM, Nunes JP, van Delden H, Vanhout R, Fleskens L. The Effects of Soil Improving Cropping Systems (SICS) on Soil Erosion and Soil Organic Carbon Stocks across Europe: A Simulation Study. Land. 2022; 11(6):943. https://doi.org/10.3390/land11060943
Chicago/Turabian StyleBaartman, Jantiene E. M., Joao Pedro Nunes, Hedwig van Delden, Roel Vanhout, and Luuk Fleskens. 2022. "The Effects of Soil Improving Cropping Systems (SICS) on Soil Erosion and Soil Organic Carbon Stocks across Europe: A Simulation Study" Land 11, no. 6: 943. https://doi.org/10.3390/land11060943
APA StyleBaartman, J. E. M., Nunes, J. P., van Delden, H., Vanhout, R., & Fleskens, L. (2022). The Effects of Soil Improving Cropping Systems (SICS) on Soil Erosion and Soil Organic Carbon Stocks across Europe: A Simulation Study. Land, 11(6), 943. https://doi.org/10.3390/land11060943