Land Suitability Analysis for Vineyard Cultivation in the Izmir Metropolitan Area
Abstract
:1. Introduction
1.1. How to Perform Land Suitability for Vineyards?
1.2. Tools and Methods for Land Suitability
2. Materials and Methods
2.1. The Area of Interest
2.2. Elevation
2.3. Slope
2.4. Aspect
2.5. Land Capability Classification
2.6. Solar Radiation
2.7. Suitability Map Production
- The reclassification of the suitability raster map into a 3-classes output using Natural Breaks (low suitability, medium suitability, and high suitability);
- The transformation of the new reclassified raster in a feature polygon shapefile;
- The extraction of the values with high suitability (class 3);
- The automatic aggregation of the polygons into a combined network.
2.8. The Testing Site: Kozak Plateau
3. Results
3.1. Principal Component Analysis Results
- The PCA performs better when applying GIS spatial overlay technique while reducing the spatial autocorrelation of the original input layers, thus reducing the data redundancy and obtaining more reliable spatial results;
- According to the literature on suitable vineyard locations, an optimal weighting criterion on a selected group of layers is highly uncertain [75,76]. Despite the bias and the “halo” effect of traditional experts’ judgment [77], some authors argue solar radiation is the critical variable, but alternatively, all the other variable appears to be the most important in other works: land capability, slope, aspect, slope, and elevation seems to be all equally important;
- Having all the layers that have some dependencies (the DEM influences aspect, slope and solar radiation as well), the utilization of PCA reduces the unnecessary information while optimizing the spatial autocorrelation between inputs.
3.2. The Distribution of Suitable Areas for Vineyard Cultivation
4. Discussion
4.1. Vineyard Management for the Kozak Plateau
4.2. Limits and Potentialities of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Organisation of Vine and Wine Intergovernmental Organisation. 2019 Statistical Report on World Vitiviniculture; International Organisation of Vine and Wine Intergovernmental Organisation: Paris, France, 2019. [Google Scholar]
- Costa, J.M.; Egipto, R.; Silvestre, J.; Lopes, C.M.; Chaves, M.M. Water and Heat Fluxes in Mediterranean Vineyards: Indicators and Relevance for Management. In Water Scarcity and Sustainable Agriculture in Semiarid Environment: Tools, Strategies, and Challenges for Woody Crops; Academic Press: Cambridge, MA, USA, 2018; pp. 219–245. [Google Scholar] [CrossRef]
- Ozay, A.; Akyol, A.; Azabagaoglu, M.O. The History and Development of the Turkish Wine Industry. Int. J. Wine Mark. 2005, 17, 62–69. [Google Scholar] [CrossRef]
- Çörek Öztaş, Ç. How to Best Classify Rural in Metropolitan Areas? The Turkish Case. Plan. Pract. Res. 2021, 36, 456–466. [Google Scholar] [CrossRef]
- Bozdağ, A.; Yavuz, F.; Günay, A.S. AHP and GIS based land suitability analysis for Cihanbeyli (Turkey) County. Environ. Earth Sci. 2016, 75, 813. [Google Scholar] [CrossRef]
- TURKSTAT Turkish Statistical Institute. Plant Production Statistics. Available online: https://www.tuik.gov.tr/Home/Index (accessed on 9 December 2021).
- Matthews, H. Greco-Romans Cities of Aegean Turkey. History, Archaeology, Architecture; Ege Yayinlari: Istanbul, Turkey, 2014. [Google Scholar]
- Bunting, E.L.; Wanyama, D.; Goodwin, R.; Weil, N.; Sabbatini, P.; Andresen, J. Vitis vinifera Production in Michigan: Factors and Trends Driving Cultivation Patterns. Front. Plant Sci. 2021, 12, 704690. [Google Scholar] [CrossRef] [PubMed]
- Merenlender, A.M. Mapping vineyard expansion provides information on agriculture and the environment. Calif. Agric. 2000, 54, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Perez, J.; Alvarez-Lopez, C.; Miranda, D.; Alvarez, M. Vineyard area estimation using medium spatial resolution. Spanish J. Agric. Res. 2008, 6, 441–452. [Google Scholar] [CrossRef] [Green Version]
- Directorate General of Exports. Wine Sector in Turkey; Ministry of Trade: Ankara, Turkey, 2019. [Google Scholar]
- Ministry of Agriculture and Forestry. Agricultural Product Markets: Grape; Institute of Agricultural Economy and Policy Development (TEPGE): Ankara, Turkey, 2021. [Google Scholar]
- White, R.E. The Value of Soil Knowledge in Understanding Wine Terroir. Front. Environ. Sci. 2020, 8, 12. [Google Scholar] [CrossRef]
- Faisal, K.; Shaker, A. An investigation of GIS overlay and PCA techniques for urban environmental quality assessment: A case study in Toronto, Ontario, Canada. Sustainability 2017, 9, 380. [Google Scholar] [CrossRef] [Green Version]
- Montero Riquelme, F.J.; Ramos, A.B. Land and water use management in vine growing by using geographic information systems in Castilla-La Mancha, Spain. Agric. Water Manag. 2005, 77, 82–95. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Chatzidimitriou, A.; Yannas, S. Microclimate design for open spaces: Ranking urban design effects on pedestrian thermal comfort in summer. Sustain. Cities Soc. 2016, 26, 27–47. [Google Scholar] [CrossRef]
- Lugato, E.; Panagos, P.; Bampa, F.; Jones, A.; Montanarella, L. A new baseline of organic carbon stock in European agricultural soils using a modelling approach. Glob. Chang. Biol. 2014, 20, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Torres, N.; Mart, J.; Porte, E.; Kurtural, S.K. Optimal Ranges and Thresholds of Grape Berry Solar Radiation for Flavonoid Biosynthesis in Warm Climates. Front. Plant Sci. 2020, 11, 931. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elmabod, S.K.; Jordán, A.; Fleskens, L.; Phillips, J.D.; Muñoz-Rojas, M.; van der Ploeg, M.; Anaya-Romero, M.; El-Ashry, S.; de la Rosa, D. Modeling Agricultural Suitability Along Soil Transects Under Current Conditions and Improved Scenario of Soil Factors. In Soil Mapping and Process Modeling for Sustainable Land Use Management; Elsevier: Amsterdam, The Netherlands, 2017; pp. 193–219. [Google Scholar] [CrossRef]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Nin, M.; Soutullo, A.; Rodríguez-Gallego, L.; Di Minin, E. Ecosystem services-based land planning for environmental impact avoidance. Ecosyst. Serv. 2016, 17, 172–184. [Google Scholar] [CrossRef]
- McHarg, I.L. Design with Nature; 25 Anniver.; Wiley: Hoboken, NJ, USA, 1969. [Google Scholar]
- BenDor, T.K.; Spurlock, D.; Woodruff, S.C.; Olander, L. A research agenda for ecosystem services in American environmental and land use planning. Cities 2017, 60, 260–271. [Google Scholar] [CrossRef]
- Graziano, P.; Rizzi, P. Science of the Total Environment Vulnerability and resilience in the local systems: The case of Italian provinces. Sci. Total Environ. 2016, 553, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; Dupras, J.; Messier, C. A framework towards a composite indicator for urban ecosystem services. Ecol. Indic. 2016, 60, 38–44. [Google Scholar] [CrossRef]
- Raymond, C.M.; Frantzeskaki, N.; Kabisch, N.; Berry, P.; Breil, M.; Nita, M.R.; Geneletti, D.; Calfapietra, C. A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environ. Sci. Policy 2017, 77, 15–24. [Google Scholar] [CrossRef]
- Van der Meulen, S.; Linda Maring, L.; Bartkowski, B.; Hagemann, N.; Arrúe, J.L.; Playán, E.; Castañeda, C.; Herrero, J.; Plaza, D.; Álvaro-Fuentes, J.; et al. Mapping and Assessment of Ecosystems and their Services: Soil Ecosystems. SOILS4EU/DGENV. 2018. Available online: https://www.deltares.nl/app/uploads/2019/02/Soils4EU_D1.2_ecosystemservices_MAESversion_final-DEF.pdf (accessed on 11 November 2021).
- Smith, A.C.; Harrison, P.A.; Pérez Soba, M.; Archaux, F.; Blicharska, M.; Egoh, B.N.; Erős, T.; Fabrega Domenech, N.; György, I.; Haines-Young, R.; et al. How natural capital delivers ecosystem services: A typology derived from a systematic review. Ecosyst. Serv. 2017, 26, 111–126. [Google Scholar] [CrossRef] [Green Version]
- Rosenthal, A.; Verutes, G.; McKenzie, E.; Arkema, K.K.; Bhagabati, N.; Bremer, L.L.; Olwero, N.; Vogl, A.L. Process matters: A framework for conducting decision-relevant assessments of ecosystem services. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2015, 11, 190–204. [Google Scholar] [CrossRef]
- Dizdaroglu, D.; Yigitcanlar, T. Integrating urban ecosystem sustainability assessment into policy-making: Insights from the Gold Coast City. J. Environ. Plan. Manag. 2016, 59, 1982–2006. [Google Scholar] [CrossRef] [Green Version]
- Salata, S.; Garnero, G.; Barbieri, C.; Giaimo, C. The Integration of Ecosystem Services in Planning: An Evaluation of the Nutrient Retention Model Using InVEST Software. Land 2017, 6, 48. [Google Scholar] [CrossRef] [Green Version]
- Brunetta, G.; Salata, S. Mapping Urban Resilience for Spatial Planning—A First Attempt to Measure the Vulnerability of the System. Sustainability 2019, 11, 2331. [Google Scholar] [CrossRef] [Green Version]
- Maes, J.; Liquete, C.; Teller, A.; Erhard, M.; Paracchini, M.L.; Barredo, J.I.; Grizzetti, B.; Cardoso, A.; Somma, F.; Petersen, J.E.; et al. An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosyst. Serv. 2016, 17, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Grêt-Regamey, A.; Altwegg, J.; Sirén, E.A.; van Strien, M.J.; Weibel, B. Integrating ecosystem services into spatial planning—A spatial decision support tool. Landsc. Urban Plan. 2017, 165, 206–219. [Google Scholar] [CrossRef] [Green Version]
- Crossman, N.D.; Bryan, B.A.; King, D. Integration of landscape-scale and site-scale metrics for prioritising investments in natural capital. In Proceedings of the 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation: Interfacing Modelling and Simulation with Mathematical and Computational Sciences, Cairns, Australia, 13–17 July 2009; pp. 2363–2369. [Google Scholar]
- Liberatore, M.J.; Nydick, R.L. The analytic hierarchy process in medical and health care decision making: A literature review. Eur. J. Oper. Res. 2008, 189, 194–207. [Google Scholar] [CrossRef]
- Yang, J.; Lee, H. An AHP decision model for facility location selection. Facilities 1997, 15, 241–254. [Google Scholar] [CrossRef]
- Salata, S.; Grillenzoni, C. A spatial evaluation of multifunctional Ecosystem Service networks using Principal Component Analysis: A case of study in Turin, Italy. Ecol. Indic. 2021, 127, 107758. [Google Scholar] [CrossRef]
- Ballabio, C.; Panagos, P.; Lugato, E.; Huang, J.H.; Orgiazzi, A.; Jones, A.; Fernández-Ugalde, O.; Borrelli, P.; Montanarella, L. Copper distribution in European topsoils: An assessment based on LUCAS soil survey. Sci. Total Environ. 2018, 636, 282–298. [Google Scholar] [CrossRef]
- Bertilsson, L.; Wiklund, K.; de Moura Tebaldi, I.; Rezende, O.M.; Veról, A.P.; Miguez, M.G. Urban flood resilience—A multi-criteria index to integrate flood resilience into urban planning. J. Hydrol. 2019, 573, 970–982. [Google Scholar] [CrossRef]
- Blum, W.E.H. Functions of soil for society and the environment. Rev. Environ. Sci. Biotechnol. 2005, 4, 75–79. [Google Scholar] [CrossRef]
- Fainstein, S. Resilience and justice. Int. J. Urban Reg. Res. 2015, 39, 157–167. [Google Scholar] [CrossRef]
- Mugiyo, H.; Chimonyo, V.G.P.; Sibanda, M.; Kunz, R.; Masemola, C.R.; Modi, A.T.; Mabhaudhi, T. Evaluation of land suitability methods with reference to neglected and underutilised crop species: A scoping review. Land 2021, 10, 125. [Google Scholar] [CrossRef]
- Aburas, M.M.; Abullah, S.H.; Ramli, M.F.; Ash’aari, Z.H. A Review of Land Suitability Analysis for Urban Growth by using the GIS-Based Analytic Hierarchy Process. Asian J. Appl. Sci. 2016, 3, 869–876. [Google Scholar]
- Nassiri Mahallati, M. Advances in modeling saffron growth and development at different scales. In Saffron; Woodhead Publishing: Shaston, UK, 2020; pp. 139–167. [Google Scholar] [CrossRef]
- Akpoti, K.; Kabo-bah, A.T.; Zwart, S.J. Agricultural land suitability analysis: State-of-the-art and outlooks for integration of climate change analysis. Agric. Syst. 2019, 173, 172–208. [Google Scholar] [CrossRef]
- Amato, F.; Tonini, M.; Murgante, B.; Kanevski, M. Fuzzy definition of Rural Urban Interface: An application based on land use change scenarios in Portugal. Environ. Model. Softw. 2018, 104, 171–187. [Google Scholar] [CrossRef]
- Towfiqul Islam, A.R.M.; Talukdar, S.; Mahato, S.; Kundu, S.; Eibek, K.U.; Pham, Q.B.; Kuriqi, A.; Linh, N.T.T. Flood susceptibility modelling using advanced ensemble machine learning models. Geosci. Front. 2021, 12, 101075. [Google Scholar] [CrossRef]
- Prăvălie, R.; Patriche, C.; Bandoc, G. Quantification of land degradation sensitivity areas in Southern and Central Southeastern Europe. New results based on improving DISMED methodology with new climate data. Catena 2017, 158, 309–320. [Google Scholar] [CrossRef]
- Di Mauro, C.; Bouchon, S.; Carpignano, A.; Golia, E.; Peressin, S. Definition of Multi-Risk Maps at Regional Level as Management Tool: Experience Gained by Civil Protection Authorities of Piemonte Region. In Proceedings of the 5th Conference on Risk Assessment and Management in the Civil and Industrial Settlements; University of Pisa: Pisa, Italy, 2006; pp. 1–12. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC36044 (accessed on 24 January 2021).
- Alganci, U.; Kuru, G.N.; Algan, I.Y.; Sertel, E. Vineyard site suitability analysis by use of multicriteria approach applied on geo-spatial data. Geocarto Int. 2019, 34, 1286–1299. [Google Scholar] [CrossRef]
- Velibeyoglu, K. Regional Acupuncture for Izmir Peninsula: Creating Capital Web for Creative Eco-Tourism. J. Environ. Prot. Ecol. 2016, 17, 666–674. [Google Scholar]
- Saricam, S.Y.; Erdem, U. Planning of Izmir-Karaburun Peninsula as Biosphere Reserve Area. EKOLOJI 2010, 19, 42–50. [Google Scholar] [CrossRef]
- Congedo, L.; Sallustio, L.; Munafò, M.; Ottaviano, M.; Tonti, D.; Marchetti, M. Copernicus high-resolution layers for land cover classification in Italy. J. Maps 2016, 12, 1195–1205. [Google Scholar] [CrossRef] [Green Version]
- Nesbitt, A.; Dorling, S.; Lovett, A. A suitability model for viticulture in England and Wales: Opportunities for investment, sector growth and increased climate resilience. J. Land Use Sci. 2018, 13, 414–438. [Google Scholar] [CrossRef] [Green Version]
- Mania, E.; Petrella, F.; Giovannozzi, M.; Piazzi, M.; Wilson, A.; Guidoni, S. Managing Vineyard Topography and Seasonal Variability to Improve Grape Quality and Vineyard Sustainability. Agronomy 2021, 11, 1142. [Google Scholar] [CrossRef]
- Geitner, C.; Baruck, J.; Freppaz, M.; Godone, D.; Grashey-Jansen, S.; Gruber, F.E.; Heinrich, K.; Papritz, A.; Simon, A.; Stanchi, S.; et al. Soil and Land Use in the Alps—Challenges and Examples of Soil-Survey and Soil-Data Use to Support Sustainable Development. In Soil MaSoil Mapping and Process Modeling for Sustainable Land Use Management; Elsevier: Amsterdam, The Netherlands, 2017; pp. 221–292. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; Vollaro, E.; Bisegna, F.; Nardecchia, F.; Coppi, M.; Gugliermetti, F.; Vollaro, A. Evaluation of Different Urban Microclimate Mitigation Strategies through a PMV Analysis. Sustainability 2015, 7, 9012–9030. [Google Scholar] [CrossRef] [Green Version]
- Law, E.A.; Bryan, B.A.; Torabi, N.; Bekessy, S.A.; McAlpine, C.A.; Wilson, K.A. Measurement matters in managing landscape carbon. Ecosyst. Serv. 2015, 13, 6–15. [Google Scholar] [CrossRef] [Green Version]
- de Brogniez, D.; Ballabio, C.; Stevens, A.; Jones, R.J.A.; Montanarella, L.; van Wesemael, B. A map of the topsoil organic carbon content of Europe generated by a generalized additive model. Eur. J. Soil Sci. 2015, 66, 121–134. [Google Scholar] [CrossRef]
- Borgogno-Mondino, E.; Fabietti, G.; Ajmone-Marsan, F. Soil quality and landscape metrics as driving factors in a multi-criteria GIS procedure for peri-urban land use planning. Urban For. Urban Green. 2015, 14, 743–750. [Google Scholar] [CrossRef]
- Hartkamp, A.D.; White, J.W.; Hoogenboom, G. Interfacing geographic information systems with agronomic modeling: A review. Agron. J. 1999, 91, 761–772. [Google Scholar] [CrossRef]
- International Energy Agency How Solar Energy Could Be the Largest Source of Electricity by Mid-Century. 2014. Available online: http://www.Iea.Org/Newsroomandevents/Pressreleases/2014/September/How-Solar-Energy-Could-Be-the-Largest-Source-of-Electricity-By-Mid-Century.Html (accessed on 25 January 2021).
- Bhaskaran, S.; Paramananda, S.; Ramnarayan, M. Per-pixel and object-oriented classification methods for mapping urban features using Ikonos satellite data. Appl. Geogr. 2010, 30, 650–665. [Google Scholar] [CrossRef]
- Campos, C.G.C.; Malinovski, L.I.; Vieira, H.J.; Da Silva, A.L. Interceptação da radiação solar global pela cultura da videira conduzida em espaldeira. Rev. Bras. Frutic. 2016, 38, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Mubareka, S.; Koomen, E.; Estreguil, C.; Lavalle, C. Development of a composite index of urban compactness for land use modelling applications. Landsc. Urban Plan. 2011, 103, 303–317. [Google Scholar] [CrossRef]
- Rodarmel, C.; Shan, J. Principal component analysis for hyperspectral image classification. Surv. L. Inf. Sci. 2002, 62, 115–122. [Google Scholar]
- Grillenzoni, C. Statistics for image sharpening. Stat. Neerl. 2008, 62, 173–192. [Google Scholar] [CrossRef]
- Muñoz-Carpena, R.; Zajac, Z.; Kuo, Y. Global sensitivity and uncertainty analyses of the water quality model VFSMOD-W. Trans. ASABE 2007, 50, 1719–1732. [Google Scholar] [CrossRef] [Green Version]
- Land Monitoring Service European Commission CORINE Land Cover. Available online: https://land.copernicus.eu/pan-european/corine-land-cover (accessed on 10 September 2021).
- Feranec, J.; Jaffrain, G.; Soukup, T.; Hazeu, G. Determining changes and flows in European landscapes 1990–2000 using CORINE land cover data. Appl. Geogr. 2010, 30, 19–35. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; Petitti, D.; de Lieto Vollaro, E.; Coppi, M.; de Lieto Vollaro, A. Relating microclimate, human thermal comfort and health during heat waves: An analysis of heat island mitigation strategies through a case study in an urban outdoor environment. Sustain. Cities Soc. 2017, 30, 79–96. [Google Scholar] [CrossRef]
- Salvati, L.; Munafo, M.; Morelli, V.G.; Sabbi, A. Low-density settlements and land use changes in a Mediterranean urban region. Landsc. Urban Plan. 2012, 105, 43–52. [Google Scholar] [CrossRef]
- Ahern, J. From fail-safe to safe-to-fail: Sustainability and resilience in the new urban world. Landsc. Urban Plan. 2011, 100, 341–343. [Google Scholar] [CrossRef] [Green Version]
- Mahiny, A.S.; Clarke, K.C. Guiding SLEUTH land-use/land-cover change modeling using multicriteria evaluation: Towards dynamic sustainable land-use planning. Environ. Plan. B Plan. Des. 2012, 39, 925–944. [Google Scholar] [CrossRef]
- Kahneman, D. Thinking, Fast Slow; Penguin Random House: London, UK, 2011. [Google Scholar]
- Lopes, C.M.; Costa, J.M.; Egipto, R.; Zarrouk, O.; Chaves, M.M. Can Mediterranean terroirs withstand climate change? Case studies at the Alentejo Portuguese winegrowing region. E3S Web Conf. 2018, 50, 01004. [Google Scholar] [CrossRef]
- Miras-Avalos, J.M.; Araujo, E.S. Optimization of vineyard water management: Challenges, strategies, and perspectives. Water 2021, 13, 746. [Google Scholar] [CrossRef]
- Gaiotti, F.; Marcuzzo, P.; Belfiore, N.; Lovat, L.; Fornasier, F.; Tomasi, D. Influence of compost addition on soil properties, root growth and vine performances of Vitis vinifera cv Cabernet sauvignon. Sci. Hortic. 2017, 225, 88–95. [Google Scholar] [CrossRef]
- Jeffery, S.; Gardi, C.; Jones, A.; Montanarella, L.; Marmo, L.; Miko, L.; Ritz, K.; Peres, G.; Römbke, J.; van der Putten, W.H. European Atlas of Soil Biodiversity. In European Atlas of Soil Biodiversity; European Commission, Publications Office of the European Union: Luxembourg, 2010; ISBN 978927915. [Google Scholar]
- Garcia, L.; Damour, G.; Gary, C.; Follain, S.; Le Bissonnais, Y.; Metay, A. Trait-based approach for agroecology: Contribution of service crop root traits to explain soil aggregate stability in vineyards. Plant Soil 2019, 435, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Álvaro-Fuentes, J.; López, M.V.; Cantero-Martinez, C.; Arrúe, J.L. Tillage Effects on Soil Organic Carbon Fractions in Mediterranean Dryland Agroecosystems. Soil Sci. Soc. Am. J. 2008, 72, 541–547. [Google Scholar] [CrossRef] [Green Version]
- Álvaro-Fuentes, J.; Arrúe, J.L.; Cantero-Martínez, C.; López, M.V. Aggregate breakdown during tillage in a Mediterranean loamy soil. Soil Tillage Res. 2008, 101, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Buesa, I.; Mirás-Avalos, J.M.; De Paz, J.M.; Visconti, F.; Sanz, F.; Yeves, A.; Guerra, D.; Intrigliolo, D.S. Soil management in semi-arid vineyards: Combined effects of organic mulching and no-tillage under different water regimes. Eur. J. Agron. 2021, 123, 126198. [Google Scholar] [CrossRef]
- Tanda, G.; Chiarabini, V. Use of multispectral and thermal imagery in precision viticulture. J. Phys. Conf. Ser. 2019, 1224. [Google Scholar] [CrossRef]
- Favero, A.; Angelucci de Amorim, D.; Viera da Mota, R.; Soares, A.; De Souza, C.; Albuquerque Regina, M. Double-pruning of ‘Syrah’ grapevines: A management strategy to harvest wine grapes during the winter in the Brazilian Southeast. Vitis 2011, 50, 151–158. [Google Scholar]
- Agnew, R.H.; Mundy, D.C.; Spiers, T.M.; Greven, M.M. Waste stream utilisation for sustainable viticulture. Water Sci. Technol. 2005, 51, 1–8. [Google Scholar] [CrossRef]
- Palliotti, A.; Tombesi, S.; Silvestroni, O.; Lanari, V.; Gatti, M.; Poni, S. Changes in vineyard establishment and canopy management urged by earlier climate-related grape ripening: A review. Sci. Hortic. 2014, 178, 43–54. [Google Scholar] [CrossRef]
- Cortell, J.M.; Kennedy, J.A. Effect of shading on accumulation of flavonoid compounds in (Vitis vinifera L.) Pinot noir fruit and extraction in a model system. J. Agric. Food Chem. 2006, 54, 8510–8520. [Google Scholar] [CrossRef]
- Aber, J.S.; Marzolff, I.; Ries, J.B.; Aber, S.E.W. Vineyards and Viticulture. In Small-Format Aerial Photography and UAS Imagery; Elsevier: Amsterdam, The Netherlands, 2019; pp. 307–314. [Google Scholar] [CrossRef]
- Hunter, J.J.; Volschenk, C.G.; Booyse, M. Vineyard row orientation and grape ripeness level effects on vegetative and reproductive growth characteristics of Vitis vinifera L. cv. Shiraz/101-14 Mgt. Eur. J. Agron. 2017, 84, 47–57. [Google Scholar] [CrossRef]
- Hunter, J.J.; Volschenk, C.G.; Zorer, R. Vineyard row orientation of Vitis vinifera L. cv. Shiraz/101-14 Mgt: Climatic profiles and vine physiological status. Agric. For. Meteorol. 2016, 228–229, 104–119. [Google Scholar] [CrossRef]
- Cogato, A.; Pezzuolo, A.; Sozzi, M.; Marinello, F. A sample of Italian vineyards: Landscape and management parameters dataset. Data Br. 2020, 33, 106589. [Google Scholar] [CrossRef]
- Madruga, J.; Azevedo, E.B.; Sampaio, J.F.; Fernandes, F.; Reis, F.; Pinheiro, J. Analysis and definition of potential new areas for viticulture in the azores (Portugal). SOIL 2015, 1, 515–526. [Google Scholar] [CrossRef] [Green Version]
- Malczewski, J. GIS-based multicriteria decision analysis: A survey of the literature. Int. J. Geogr. Inf. Sci. 2006, 20, 703–726. [Google Scholar] [CrossRef]
Layer | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
1 | 1.00000 | 0.13404 | −0.21415 | 0.05324 | −0.23470 |
2 | 0.13404 | 1.00000 | 0.07208 | 0.12112 | −0.05595 |
3 | −0.21415 | 0.07208 | 1.00000 | 0.00805 | 0.14861 |
4 | 0.05324 | 0.12112 | 0.00805 | 1.00000 | 0.00986 |
5 | −0.23470 | −0.05595 | 0.14861 | 0.00986 | 1.00000 |
Number of Input Layers | Number of Principal Component Layers | ||||
---|---|---|---|---|---|
5 | 5 | ||||
PC Layer | 1 | 2 | 3 | 4 | 5 |
Eigenvalues | |||||
14.40545 | 1.72673 | 0.29913 | 0.19655 | 0.11659 | |
Eigenvectors | |||||
Input Layer | |||||
1 | −0.09522 | 0.99188 | −0.02857 | 0.06466 | −0.04592 |
2 | −0.00563 | 0.03517 | 0.12858 | 0.19869 | 0.97094 |
3 | 0.01874 | −0.06931 | 0.06543 | 0.97386 | −0.20533 |
4 | 0.00116 | 0.02910 | 0.98912 | −0.08843 | −0.11393 |
5 | 0.99526 | 0.09636 | −0.00439 | −0.01093 | 0.00509 |
PC Layer | Eigenvalue | Percent of Eigenvalues | Accumulative of Eigenvalues |
---|---|---|---|
1 | 14.40545 | 86.0312 | 86.0312 |
2 | 1.72673 | 10.3123 | 96.3434 |
3 | 0.29913 | 1.7865 | 98.1299 |
4 | 0.19655 | 1.1738 | 99.3037 |
5 | 0.11659 | 0.6963 | 100.0000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salata, S.; Ozkavaf-Senalp, S.; Velibeyoğlu, K.; Elburz, Z. Land Suitability Analysis for Vineyard Cultivation in the Izmir Metropolitan Area. Land 2022, 11, 416. https://doi.org/10.3390/land11030416
Salata S, Ozkavaf-Senalp S, Velibeyoğlu K, Elburz Z. Land Suitability Analysis for Vineyard Cultivation in the Izmir Metropolitan Area. Land. 2022; 11(3):416. https://doi.org/10.3390/land11030416
Chicago/Turabian StyleSalata, Stefano, Sila Ozkavaf-Senalp, Koray Velibeyoğlu, and Zeynep Elburz. 2022. "Land Suitability Analysis for Vineyard Cultivation in the Izmir Metropolitan Area" Land 11, no. 3: 416. https://doi.org/10.3390/land11030416
APA StyleSalata, S., Ozkavaf-Senalp, S., Velibeyoğlu, K., & Elburz, Z. (2022). Land Suitability Analysis for Vineyard Cultivation in the Izmir Metropolitan Area. Land, 11(3), 416. https://doi.org/10.3390/land11030416