Buffer Green Patches around Urban Road Network as a Tool for Sustainable Soil Management
Abstract
:1. Introduction
2. Material and Methods
3. Results
3.1. Phytoremediation as an Effective Strategy for the Restoration of Soils around the Urban Road Network
3.2. Perennial Grasses—Benefits and Potential for Phytoremediation of Degraded Urban Soils
3.3. Technological Solutions for Urban Lawns Establishment and Integrated Weed Management
- (1)
- Mechanical and physical methods for the destruction of the weeds, their seeds and aboveground organs for vegetative propagation, through differentiated tillage, depletion, exposure to temperatures (low or high) of the rhizomes and organs for vegetative propagation. Rhizome and root-weed weeds are highly invasive, easily propagated in a vegetative way and spread quickly, so in areas of heavy weed infestation with them should not be used tillage equipment with cutting organs (cutters, disc tools);
- (2)
- Chemical weed control with pesticides have advantages over mechanical and physical methods, but cannot always be applied in urban areas. The use of environmentally friendly herbicide agents is preferable. Chemical weed control in urban lawns is characterized as follows: chemical agents are applied in small doses of the active ingredients per hectare; application should be carried out quickly and easily in a short time; weeds are mortified in a short time after treatment (from 7 to 21 days); both the above-ground biomass is destroyed and the root system and/or the rhizomes are partially suppressed; the method allows the process to be mechanized, which makes it possible to reduce the financial costs from 50 to 80%. In this sense, it is necessary to carry out an effective and sustainable weed management process by integrating the various control methods (i.e., cultural, mechanical and chemical) in a harmonious way without damaging the whole ecosystem. In this way, intensive mechanization and the use of herbicides should be avoided [194]. However, complete removal of actual (sprouted plants) and potential (seed bank) weeds is unattainable [195].
- -
- Anticipating native plants or landscape species for resources such as water, light, space and nutrients, potentially reducing their survival.
- -
- Causing inconvenience and potential danger (if they are prickly) for people, reducing the quality of the grass cover of sports grounds/playgrounds, etc.
- -
- Reduction/replacement of natural habitats and food sources for native animals and insects, leading to increased pressure on local populations and potential extinction of local species.
- -
- Damage or displacement of infrastructure with invasive species with well-developed root systems.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vardoulakis, S.; Dear, K.; Wilkinson, P. Challenges and Opportunities for Urban Environmental Health and Sustainability: The HEALTHY-POLIS initiative. Env. Health 2016, 15, S30. [Google Scholar] [CrossRef] [Green Version]
- Vardoulakis, S.; Kinney, P. Grand Challenges in Sustainable Cities and Health. Front. Sustain. Cities 2019, 1, 7. [Google Scholar] [CrossRef] [Green Version]
- Kulińska, E.; Dendera-Gruszka, M. Green cities—Problems and solutions in Turkey. Transp. Res. Procedia 2019, 39, 242–251. [Google Scholar] [CrossRef]
- World Health Organization. Healthy Environments for Healthier Populations: Why Do They Matter, and What Can We Do? 2019. Available online: https://www.who.int/publications/i/item/WHO-CED-PHE-DO-19.01 (accessed on 20 December 2021).
- Sager, L. Estimating the effect of air pollution on road safety using atmospheric temperature inversions. J. Environ. Econ. Manag. 2019, 98, 102250. [Google Scholar] [CrossRef]
- Grebenshchikova, E.; Shelkovkina, N.; Gorbacheva, N. Biological remediation of roadside areas. In Proceedings of the E3S Web of Conferences, Ecological and Biological Well-Being of Flora and Fauna (EBWFF-2020), Blagoveshchensk, Russia, 23–24 September 2020; Volume 203, p. 05008. [Google Scholar] [CrossRef]
- Mamat, Z.; Yimit, H.; Ji, R.Z.A.; Eziz, M. Source identification and hazardous risk delineation of heavy metal contamination in Yanqi basin, northwest China. Sci. Total Environ. 2014, 493, 1098–1111. [Google Scholar] [CrossRef]
- Milošević, D.; Nagy, I.; Stojanović, V. Soils in the cities: State, problems and remediation tehniques. Res. Rev. Dep. Geogr. Tour. Hotel. Manag. 2014, 43, 1–16. [Google Scholar]
- Gwilliam, K.; Kojima, M.; Johnson, T. Reducing Air Pollution from Urban Transport. The World Bank. 2004. Available online: https://esmap.org/sites/default/files/esmap-files/urban%20pollution%20entire%20report.pdf (accessed on 20 December 2021).
- Titos, G.; Lyamani, H.; Drinovec, L.; Olmo, F.J.; Močnik, G.; Alados-Arboledas, L. Evaluation of the impact of transportation changes on air quality. Atmos. Environ. 2015, 114, 19–31. [Google Scholar] [CrossRef]
- Kumar, K.; Hundal, L.S. Soil in the City: Sustainably Improving Urban Soils. J. Environ. Qual. 2016, 45, 2–8. [Google Scholar] [CrossRef]
- Oertli, B.; Parris, K.M. Review: Toward management of urban ponds for freshwater biodiversity. Ecosphere 2019, 10, e02810. [Google Scholar] [CrossRef] [Green Version]
- Deeb, M.; Groffman, P.M.; Blouin, M.; Egendor, S.P.; Vergnes, A.; Vasenev, V.; Cao, D.L.; Walsh, D.T.; Séré, M.G. Using constructed soils for green infrastructure—Challenges and limitations. Soil 2020, 6, 413–434. [Google Scholar] [CrossRef]
- Filazzola, A.; Shrestha, N.; MacIvor, S. The contribution of constructed green infrastructure to urban biodiversity: A synthesis and meta-analysis. J. Appl. Ecol. 2019, 56, 2131–2143. [Google Scholar] [CrossRef]
- Semeraro, T.; Scarano, A.; Buccolieri, R.; Santino, A.; Aarrevaara, E. Planning of urban green spaces: An ecological perspective on human benefits. Land 2021, 10, 105. [Google Scholar] [CrossRef]
- Vasenev, V.; Van Oudenhoven, A.; Romzaykina, O.; Hajiaghaeva, R. The ecological functions and ecosystem services of urban and technogenic soils: From theory to practice (a reiew). Eurasian Soil Sci. 2018, 51, 1119–1132. [Google Scholar] [CrossRef] [Green Version]
- O’Riordan, R.; Davies, J.; Stevens, C.; Quinton, J.; Boyko, C. The ecosystem services of urban soils: A review. Geoderma 2021, 395, 115076. [Google Scholar] [CrossRef]
- Ignatieva, M.; Haase, D.; Dushkova, D.; Haase, A. Lawns in cities: From a globalized urban green space phemoneno to sustainable nature-based solutions. Land 2020, 9, 73. [Google Scholar] [CrossRef] [Green Version]
- Setala, H.; Francini, G.; Allen, J.A.; Jumpponen, A.; Hui, N.; Kotze, D.J. Urban parks provide ecosystem services by retaining metals and nutrients in soils. Environ. Pollut. 2017, 231, 451–461. [Google Scholar] [CrossRef] [Green Version]
- Bretzel, F.; Calderisi, M.; Scatena, M.; Pini, R. Soil quality is key for planning and managing urban allotments intended for the sustainable production of homeconsumption vegetables. Environ. Sci. Pollut. Res. 2016, 23, 17753–17760. [Google Scholar] [CrossRef]
- Trammell, T.L.E.; Schneid, B.P.; Carreiro, M.M. Forest soils adjacent to urban interstates: Soil physical and chemical properties, heavy metals, disturbance legacies, and relationships with woody vegetation. Urban Ecosyst. 2011, 14, 525–552. [Google Scholar] [CrossRef]
- Monserie, M.F.; Watteau, F.; Villemin, G.; Ouvrard, S.; Morel, J.L. Technosol genesis: Identification of organo-mineral associations in a young Technosol derived from coking plant waste materials. J. Soils Sediments 2009, 9, 537–546. [Google Scholar] [CrossRef]
- Lorenz, K.; Preston, C.M.; Kandeler, E. Soil organic matter in urban soils: Estimation of elemental carbon by thermal oxidation and characterization of organic matter by solid-state C-13 nuclear magnetic resonance (NMR) spectroscopy. Geoderma 2006, 130, 312–323. [Google Scholar] [CrossRef]
- Bouraoui, D.; Cekstere, G.; Osvalde, A.; Vollenweider, P.; Rasmann, S. Deicing salt pollution affects the foliar traits and arthropods’ biodiversity of lime trees in riga’s street greeneries. Front. Ecol. Evol. 2019, 7, 282. [Google Scholar] [CrossRef] [Green Version]
- Zurek, G.; Pogrzeba, M.; Rybka, K.; Prokopiuk, K. Suitability of grass species for phytoremediation of soils polluted with heavy metals. In Breeding Strategies for Sustainable Forage and Turf Grass Improvement; Springer: Dordrecht, The Netherlands, 2013; pp. 245–248. [Google Scholar]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Rehman, M.; Liu, L.; Bashir, S.; Saleem, M.H.; Chen, C.; Peng, D.; Siddique, K.H. Influence of rice straw biochar on growth, antioxidant capacity and copper uptake in ramie (Boehmeria nivea L.) grown as forage in aged copper-contaminated soil. Plant Physiol. Biochem. 2019, 138, 121–129. [Google Scholar] [CrossRef]
- Saleem, M.H.; Kamran, M.; Zhou, Y.; Parveen, A.; Rehman, M.; Ahmar, S.; Malik, Z.; Mustafa, A.; Anjum, R.M.A.; Wang, B. Appraising growth, oxidative stress and copper phytoextraction potential of flax (Linum usitatissimum L.) grown in soil differentially spiked with copper. J. Environ. Manag. 2020, 257, 109994. [Google Scholar] [CrossRef]
- Azimi, R.; Heshmati, G.; Farzam, M.; Goldani, M. Effects of mycorrhiza, zeolite and superabsorbent on growth and primary establishment of agropyron desertorum in mining field (Case Study: Mashhad′s Shargh Cement Factory, Iran. J. Rangel. Sci. 2019, 9, 172–183. [Google Scholar]
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Int. Sch. Res. Netw. Ecol. 2011, 2011, 402647. [Google Scholar] [CrossRef] [Green Version]
- Jacob, J.M.; Karthik, C.; Saratale, R.G.; Kumar, S.S.; Prabakar, D.; Kadirvelu, K.; Pugazhendhi, A. Biological approaches to tackle heavy metal pollution: A survey of literature. J. Environ. Manag. 2018, 217, 56–70. [Google Scholar] [CrossRef]
- Ahmad, F.; Iqbal, S.; Anwar, S.; Afzal, M.; Islam, E.; Mustifa, T.; Khan, Q.M. Enhanced remediation of chlorpyrifos from soil using ryegrass (Lollium multiflorum) and chlorpyrifos-degrading bacterium Bacillus pumilus C2A1. J. Hazard. Mater. 2012, 237–238, 110–115. [Google Scholar] [CrossRef]
- Hussain, F.; Hussain, I.; Ali Khan, A.H.; Muhammad, Y.S.; Iqbal, M.; Soja, G.; Reichenauer, T.G.; Yousaf, Z.S. Combined application of biochar, compost, and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil. Environ. Exp. Bot. 2018, 153, 80–88. [Google Scholar] [CrossRef]
- Masu, S.; Popa, M.; Morariu, F.; Lixandru, B.; Popescu, D. Prospects of using leguminous species in phytoremediation of total petroleum hydrocarbons polluted soils. Anim. Sci. Biotechnol. 2014, 47, 1172–1176. [Google Scholar]
- Besalatpour, A.A.; Hajabbasi, M.A.; Khoshgoftarmanesh, A.H.; Afyuni, M. Remediation of petroleum contaminated soils around the Tehran oil refinery using phytostimulation method. J. Agric. Nat. Resour. Sci. 2008, 15, 22–37. [Google Scholar]
- Langella, F.; Grawunder, A.; Stark, R.; Weist, A.; Merten, D.; Haferburg, G.; Büchel, G.; Kothe, E. Microbially assisted phytoremediation approaches for two multi-element contaminated sites. Environ. Sci. Pollut. Res. 2014, 21, 6845–6858. [Google Scholar] [CrossRef] [PubMed]
- Gołda, S.; Korzeniowska, J. Comparison of phytoremediation potential of three grass, species in soil contaminated with cadmium. Ochr. Srodowiska I Zasobów Nat. 2016, 27, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Pandey, V.C.; Bajpai, O. Phytoremediation: From theory toward practice. In Phytomanagement of Polluted Sites; Pandey, V.C., Bauddh, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–49. [Google Scholar]
- Pandey, V.C.; Singh, D.P. Phytoremediation Potential of Perennial Grasses, 1st ed.; Kindle Edition; Elsevier Inc.: Amsterdam, The Netherlands, 2020; p. 374. ISBN 0128177322. [Google Scholar]
- Suman, J.; Uhlik, O.; Viktorova, J.; Macek, T. Phytoextraction of heavy metals: A promising tool for clean-up of polluted environment? Front. Plant Sci. 2018, 9, 1476. [Google Scholar] [CrossRef] [Green Version]
- Cempel, M.; Nikel, G. Nickel: A review of its sources and environmental toxicology. Pol. J. Environ. Stud. 2006, 15, 375–382. [Google Scholar]
- Fasani, E.; Manara, A.; Martini, F.; Furini, A.; DalCorso, G. The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals. Plant Cell Environ. 2018, 41, 1201–1232. [Google Scholar] [CrossRef]
- Dubchak, S.; Bondar, O. Bioremediation and Phytoremediation: Best Approach for Rehabilitation of Soils for Future Use. In Remediation Measures for Radioactively Contaminated Areas; Gupta, D., Voronina, A., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Bernal, M.P.; Alvarenga, P.; Carmody, K.; Pogrzeba, M.; Soja, G. MINIPAPER 3: Biological remediation of contaminated agricultural soils. In EIP-AGRI Focus Group Protecting Agricultural Soils from Contamination; EIP-AGRI: Brussels, Belgium, 2020. [Google Scholar]
- Zhang, Y.; Yang, X.; Zhang, S.; Tian, T.; Guo, W.; Wang, J. The influence of humic acids on the accumulation of lead (Pb) and cadmium (Cd) in tobacco leaves grown in different soils. J. Soil Sci. Plant Nutr. 2013, 13, 43. [Google Scholar]
- Akinci, I.E.; Akinci, S.; Yilmaz, K. Response of tomato (Solanum lycopersicum L.) to lead toxicity: Growth, element uptake, chlorophyll and water content. Afr. J. Agric. Res. 2010, 5, 416–423. [Google Scholar]
- Anderson, T.A.; Guthrie, E.A.; Walton, B.T. Bioremediation in the rhizosphere. Environ. Sci. Technol. 1993, 27, 2630–2636. [Google Scholar] [CrossRef]
- Tesar, M.; Reichenauer, T.G.; Sessitsch, A. Bacterial rhizosphere populations of black poplar and herbal plants to be used for phytoremediation of diesel fuel. Soil Biol. Biochem. 2002, 34, 1883–1892. [Google Scholar] [CrossRef]
- Pilon-Smits, E. Phytoremediation. Annu. Rev. Plant Biol. 2005, 56, 15–39. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, W.; Amombo, E.; Hu, L.; Kjorven, J.; Chen, L. Mechanisms of Environmental Stress Tolerance in Turf grass. Agronomy 2020, 10, 522. [Google Scholar] [CrossRef] [Green Version]
- Pastor, J.; Gutierrez-Gines, M.J.; Hernandez, A.J. Heavy-metal phytostabilizing potential of Agrostis castellana Boiss. & Reuter. Int. J. Phytoremediation 2015, 17, 988–998. [Google Scholar]
- Fatima, K.; Imran, A.; Amin, I.; Khan, Q.M.; Afzal, M. Successful phytoremediation of crude-oil contaminated soil at an oil exploration and production company by plants-bacterial synergism. Int. J. Phytoremediation 2018, 20, 675–681. [Google Scholar] [CrossRef]
- Mitchell, R.; Lee, D.K.; Casler, M. Switchgrass. In Cellulosic Energy Cropping Systems; Karlen, D.L., Ed.; Wiley: West Sussex, UK, 2014; pp. 75–89. [Google Scholar]
- Liebig, M.A.; Schmer, M.R.; Vogel, K.P.; Mitchell, R.B. Soil carbon storage by switch-grass grown for bioenergy. BioEnergy Res. 2008, 1, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.H.; Hulme, S.P.; Rees, M.; Ripley, B.S.; Ian Woodward, F.; Osborne, C.P. Ecophysiological traits in C3 and C4 grasses: A phylogenetically controlled screening experiment. New Phytol. 2010, 185, 780–791. [Google Scholar] [CrossRef]
- Robbins, M.P.; Evans, G.; Valentine, J.; Donnison, I.S.; Allison, G.G. New opportunities for the exploitation of energy crops by thermochemical conversion in Northern Europe and the UK. Prog. Energy Combust. Sci. 2012, 38, 138–155. [Google Scholar] [CrossRef]
- Pandey, V.C. Phytoremediation of heavy metals from fly ash pond by Azolla caroliniana. Ecotoxicol. Environ. Saf. 2012, 82, 8–12. [Google Scholar] [CrossRef]
- Pandey, V.C.; Pandey, D.N.; Singh, N. Sustainable phytoremediation based on naturally colonizing and economically valuable plants. J. Clean. Prod. 2015, 86, 37–39. [Google Scholar] [CrossRef]
- Niknahad, H.; Esfandyari, A.; Rezaei, H. Phytoremediation of cadmium and nickel using Vetiveria zizanioides. Environ. Resourc. Res. 2018, 6, 57–66. [Google Scholar]
- Giddens, A. The Consequences of Modernity; Polity Press: Cambridge, UK, 1990. [Google Scholar]
- Stewart, G.H.; Ignatieva, M.E.; Meurk, C.D.; Buckley, H.; Horne, B.; Braddick, T. Urban biotopes of Aotearoa New Zealand (I): Composition and diversity of temperate urban lawns in Christchurch. Urban Ecosyst. 2009, 12, 233–248. [Google Scholar] [CrossRef]
- Getter, K.; Rowe, B. The role of extensive green roofs in sustainable development. Hort Sci. 2006, 41, 1276–1285. [Google Scholar] [CrossRef] [Green Version]
- Alexandri, E.; Jones, P. Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Environ. Build 2008, 43, 480–493. [Google Scholar] [CrossRef]
- Burton, E.; Mitchell, L. Inclusive Urban Design: Streets for Life; Oxford Architectural Press: Oxford, UK, 2010; p. 39. [Google Scholar]
- Carmona, M.; Heath, T.; Oc, T.; Tiesdell, T. Public Places Urban Spaces; Taylor & Francis Ltd: Oxford, UK, 2010. [Google Scholar]
- Steiner, F.R.; Thompson, G.F.; Carbonell, A. Nature and Cities: The Ecological Imperative in Urban Design and Planning; Lincoln Institute of Land Policy: Cambridge, UK, 2016. [Google Scholar]
- Toomey, D. Designing for the Urban Landscape to Meet 21st Century Challenges; Yale School of the Environment, Yale Environment 360: New Haven, CT, USA, 2018; Available online: http://e360.yale.edu/features/martha_schwartz_urban_landscape_designs_to_meet_21st_century_challenges (accessed on 20 November 2021).
- Cabanek, A.; De Baro, M.E.; Newman, P. Biophilic streets: A design framework for creating multiple urban benefits. Sustain. Earth 2020, 3, 7. [Google Scholar] [CrossRef]
- Sokolovic, D.; Babic, S.; Radovic, J.; Lugic, Z.; Simic, A.; Zornic, V.; Petrovic, M. Genetic resources of perennial forage grasses in Serbia: Current state, broadening and evaluation. Sel. I Semen. 2017, 23, 69–82. [Google Scholar] [CrossRef] [Green Version]
- Pandey, V.C.; Souza-Alonso, P. Market opportunities in sustainable phytoremediation. In Phytomanagement of Polluted Sites; Pandey, V.C., Bauddh, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 51–82. [Google Scholar]
- Liu, R.; Jadeja, R.N.; Zhou, Q.; Liu, Z. Treatment and remediation of petroleum-contaminated soils using selective ornamental plants. Environ. Eng. Sci. 2012, 29, 494–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripathi, V.; Edrisi, S.A.; Abhilash, P.C. Towards the coupling of phytoremediation with bioenergy production. Renew. Sustain. Energy Rev. 2016, 57, 1386–1389. [Google Scholar] [CrossRef]
- Albaladejo, M.; Alvarez, R.; Querejeta, J.; Diaz, E.; Castillo, V. Three hydro-seeding revegetation techniques for soil erosion control on anthropic steep slopes. Land Degrad. Dev. 2000, 11, 315–325. [Google Scholar] [CrossRef]
- Cao, C.; Chen, L.; Gao, W.; Chen, Y.; Yan, M. Impact of planting grass on terrene roads to avoid soil erosion. Landsc. Urban Plan. 2006, 78, 205–216. [Google Scholar] [CrossRef]
- Bochet, E.; Garcia-Fayos, P.; Tormo, J. How can we control erosion of road slopes in semiarid Mediterranean areas Soil improvement and native plant establishment? Land Degrad. Dev. 2010, 21, 110–121. [Google Scholar] [CrossRef]
- Thapa, P.; Torralba, M.; Buerkert, A.; Dittrich, C.; Plieninger, T. Ecological and social outcomes of urbanization on regional farming systems: A global synthesis. Ecol. Soc. 2021, 26, Art. 24. [Google Scholar] [CrossRef]
- Abaga, N.O.Z.; Dousset, S.; Mbengue, S.; Munier-Lamy, C. Is vetiver grass of interest for the remediation of Cu and Cd to protect marketing gardens in Burkina Faso? Chemosphere 2014, 113, 2–47. [Google Scholar]
- Spiak, Z.; Gediga, K. Przydatność wybranych gatunków roślin do zasiedlania terenów zdegradowanych przez przemysł miedziowy. Przemysł Chem. 2012, 91, 996–999. [Google Scholar]
- Chen, Y.; Shen, Z.; Li, X. The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Appl. Geochem. 2004, 19, 1553–1565. [Google Scholar] [CrossRef] [Green Version]
- Aibibu, N.; Liu, Y.; Zeng, G.; Wang, X.; Chen, B.; Song, H.; Xu, L. Cadmium accumulation in Vetiveria zizanioides and its effects on growth, physiological and biochemical characters. Bioresour. Technol. 2010, 101, 6297–6303. [Google Scholar] [CrossRef]
- Xu, P.; Wang, Z. Physiological mechanism of hypertolerance of cadmium in Kentucky bluegrass and tall fescue: Chemical forms and tissue distribution. Environ. Exp. Bot. 2013, 96, 35–42. [Google Scholar] [CrossRef]
- Zhang, X.; Xia, H.; Li, Z.; Zhuang, P.; Gao, B. Potential of four forage grasses in remediation of Cd and Zn contaminated soil. Bioresour. Technol. 2010, 101, 2063–2066. [Google Scholar] [CrossRef]
- Chen, Q.; Wong, J.W.C. Growth of Agropyron elongatum in asimulated nickel contaminated soil with lime stabilization. Sci. Total Environ. 2006, 366, 448–455. [Google Scholar] [CrossRef]
- Niu, K.; Zhang, R.; Zhu, R.; Wang, Y.; Zhang, D.; Ma, H. Cadmium stress suppresses the tillering of perennial ryegrass and is associated with the transcriptional regulation of genes controlling axillary bud outgrowth. Ecotox. Environ. Safe. 2021, 212, 112002. [Google Scholar] [CrossRef]
- Rabêlo, F.H.S.; Borgo, L. Changes caused by heavy metals in micronutrient content and antioxidant system of forage grasses used for phytoremediation: An overview. Cienc. Rural 2016, 46, 1368–1375. [Google Scholar] [CrossRef] [Green Version]
- Rabêlo, F.H.S.; Borgo, L.; Lavres, J. The use of forage grasses for the phytoremediation of heavy metals: Plant tolerance mechanisms, classifications, and new prospects. In Phytoremediation: Methods, Management and Assessment; Matichenkov, V., Ed.; Nova Science Publishers: New York, NY, USA, 2018; pp. 59–103. [Google Scholar]
- Niu, Z.; Zhang, X.; Wang, S.; Ci, Z.; Kong, X.; Wang, Z. The linear accumulation of atmospheric mercury by vegetable and grass leaves: Potential biomonitors for atmospheric mercury pollution. Environ. Sci. Pollut. Res. 2013, 20, 6337–6343. [Google Scholar] [CrossRef]
- Rabêlo, F.H.S.; Vangronsveld, J.; Baker, A.J.M.; Van der Ent, A.; Alleoni, L.R.F. Are Grasses Really Useful for the Phytoremediation of Potentially Toxic Trace Elements? A Review. Front. Plant Sci. 2021, 12, 778275. [Google Scholar] [CrossRef] [PubMed]
- Visconti, D.; Álvarez-Robles, M.J.; Fiorentino, N.; Fagnano, M.; Clemente, R. Use of Brassica juncea and Dactylis glomerata for the phytostabilization of mine soils amended with compost or biochar. Chemosphere 2020, 260, 127661. [Google Scholar] [CrossRef]
- Ishii, Y.; Hamano, K.; Kang, D.-J.; Idota, S.; Nishiwaki, A. Cadmium phytoremediation potential of Napier grass cultivated in Kyushu, Japan. Appl. Environ. Soil Sci. 2015, 2015, 756270. [Google Scholar] [CrossRef] [Green Version]
- Awasthi, A.; Singh, K.; Singh, R.P. A concept of diverse perennial cropping systems for integrated bioenergy production and ecological restoration of marginal lands in India. Ecol. Eng. 2017, 105, 58–65. [Google Scholar] [CrossRef]
- Jeguirim, M.; Dorge, S.; Trouve, G. Thermogravimetric analysis and emission characteristics of two energy crops in air atmosphere: Arundo donax and Miscanthus giganthus. Bioresour. Technol. 2010, 101, 788–793. [Google Scholar] [CrossRef]
- Jacobs, A.; Drouet, T.; Sterckeman, T.; Noret, N. Phytoremediation of urban soils contaminated with trace metals using Noccaea caerulescens: Comparing non-metallicolous populations to the metallicolous ‘Ganges’ in field trials. Environ Sci Pollut Res Int. 2017, 24, 8176–8188. [Google Scholar] [CrossRef] [Green Version]
- Fernando, A.L.; Boleo, S.; Barbosa, B.; Costa, J.; Sidella, S.; Nocentini, A.; Duarte, M.P.; Mendes, B.; Monti, A.; Cosentino, S.L. Perennial grasses: Environmental benefits and constraints of its cultivation in Europe. In Proceedings of the 20-th European Biomass Conference and Exhibition, Milan, Italy, 18–21 June 2012; pp. 18–22. [Google Scholar]
- Gupta, P.; Dhawan, S.S.; Lal, R.K. Adaptability and stability based differentiation and selection in aromatic grasses (Cymbopogon species) germplasm. Ind. Crops Prod. 2015, 78, 1–8. [Google Scholar] [CrossRef]
- Pruchniewicz, D.; Zolnierz, L.; Andonovski, V. Habitat factors influencing the competitive ability of Calamagrostis epigejos (L.) Roth in mountain plant communities. Turk. J. Bot. 2017, 41, 579–587. [Google Scholar] [CrossRef]
- Thomas, C.; Butler, A.; Larson, S.; Medina, V.; Begonia, M. Complexation of lead by Bermuda grass root exudates in aqueous media. Int. J. Phytoremediation 2014, 16, 634–640. [Google Scholar] [CrossRef]
- Vasilev, E. Dry mass yield from sainfoin in binary mixtures with ryegrass and cocksfoot. In Sustainable Mediterranean Grasslands and Their Multifunctions; Porqueddu, C., Tavares de Sousa, M.M., Eds.; CIHEAM/FAO/ENMP/SPPF: Zaragoza, Spain, 2008; pp. 241–244. [Google Scholar]
- Vasilev, E. Productivity of wheatgrass (Agropyron cristatum (L) Gaertn.) as a component of pasture mixtures for the conditions of the Danube Plain. In Grassland—A European Resource? In Proceedings of the 24th General Meeting of the European Grassland Federation, Lublin, Poland, 3–7 June 2012; pp. 190–193. [Google Scholar]
- Subhashini, V.; Swamy, A.V.V.S. Phytoremediation of Pb and Ni contaminated soils using Catharanthus roseus (L.). Univers. J. Environ. Res. Technol. 2013, 3, 465–472. [Google Scholar]
- Aftab, K.; Ali, M.D.; Aijaz, P.; Beena, N.; Gulzar, H.J.; Sheikh, K.; Sofia, Q.; Tahir Abbas, S. Determination of different trace and essential element in Lemon grass samples by x-ray fluorescence spectroscopy technique. Int. Food Res. J. 2011, 18, 265–270. [Google Scholar]
- Pidlisnyuk, V.; Stefanovska, T.; Lewi, E.E.; Erickson, L.E.; Davis, L.C. Miscanthus as a productive biofuel crop for phytoremediation. Crit. Rev. Plant Sci. 2014, 33, 1–19. [Google Scholar] [CrossRef]
- Davidson, C.G.; Gobin, S.M. Evaluation of ornamental grasses for the northern Great Plains. J. Environ. Hortic. 1998, 16, 18–229. [Google Scholar] [CrossRef]
- Sharma, R.; Bhardwaj, R.; Gautam, V.; Bali, S.; Kaur, R.; Kaur, P.; Sharma, M.; Kumar, V.; Sharma, A.; Thukral, A.K.; et al. Phytoremediation in waste management: Hyperaccumulation diversity and techniques. In Plants Under Metal and Metalloid Stress; Springer: Singapore, 2018; pp. 277–302. [Google Scholar]
- Zorica, T.; Dukic, D.; Katic, S.; Sanja, V.; Mikic, A.; Milic, D.; Lugic, Z.; Jasmina, R.; Sokolovic, D.; Stanisavljevic, R. Genetic resources and improvement of forage plants in Serbia and Montenegro. Acta Agric. Serbica 2005, 10, 3–16. [Google Scholar]
- Saha, D.; Kukal, S.S. Soil structural stability and water retention characteristics under different land uses of degraded lower Himalayas of North-West India. Land Degrad. Dev. 2015, 26, 263–271. [Google Scholar] [CrossRef]
- Vasileva, V.; Vasilev, E. Utilization efficiency of nitrogen and phosphorus and their response on dry mass accumulation in different forage mixtures. Grassl. Sci. Eur. 2017, 22, 449–453. [Google Scholar]
- Chirakkara, R.A.; Reddy, K.R. Plant Species Identification for Phytoremediation of Mixed Contaminated Soils. J. Hazard. Toxic Radioact. Waste 2015, 19, 04015004. [Google Scholar] [CrossRef]
- Ghosh, M.; Paul, J.; Jana, A.; De, A.; Mukherjee, A. Use of the grass, Vetiveria zizanioides (L.) Nash for detoxification and phytoremediation of soils contaminated with fly ash from thermal power plants. Ecol. Eng. 2015, 74, 258–265. [Google Scholar] [CrossRef]
- Cui, T.; Fang, L.; Wang, M.; Jiang, M.; Shen, G. Intercropping of gramineous pasture ryegrass (Lolium perenne L.) and leguminous forage alfalfa (Medicago sativa L.) increases the resistance of plants to heavy metals. J. Chem. 2018, 11, 7803408. [Google Scholar] [CrossRef] [Green Version]
- Suchkova, N.; Darakas, E.; Ganoulis, J. Phytoremediation as a prospective method for rehabilitation of areas contaminated by long term sewage sludge storage: Ukrainian–Greek case study. Ecol. Eng. 2010, 36, 373–378. [Google Scholar] [CrossRef]
- Yasin, M.; El-Mehdawi, A.F.; Anwar, A.; Pilon-Smits, E.A.; Faisal, M. Microbial enhanced selenium and iron bio fortification of wheat (Triticum aestivum L.) applications in phytoremediation and bio fortification. Int. J. Phytoremediation 2015, 17, 341–347. [Google Scholar] [CrossRef]
- Ziarati, P.; Ziarati, N.N.; Nazeri, S.; Saber-Germi, M. Phytoextraction of heavy metals by two Sorghum spices in treated soil “using black tea residue for cleaning the contaminated soil”. Orient. J. Chem. 2015, 31, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Kruize, H.; Van der Vliet, N.; Staatsen, B.; Bell, R.; Chiabai, A.; Muiños, G.; Higgins, S.; Quiroga, S.; Martinez-Juarez, P.; Yngwe, M.; et al. Urban green space: Creating a triple win for environmental sustainability, health, and health equity through behavior change. Int. J. Environ. Res. Public Health 2019, 16, 4403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramaiah, M.; Avtar, R. Urban green spaces and their need in cities of rapidly Urbanizing India: A Review. Urban Sci. 2019, 3, 94. [Google Scholar] [CrossRef] [Green Version]
- Katova, A. Study of perennial grass species and varieties for ornamental purposes. J. Mt. Agric. Balk. 2008, 11, 744–757. [Google Scholar]
- Ferreira, J.C.; Monteiro, R.; Silva, V.R. Planning a green infrastructure network from theory to practice: The case study of Setúbal, Portugal. Sustainability 2021, 13, 8432. [Google Scholar] [CrossRef]
- Antoszewski, P.; Swierk, D.; Krzyzaniak, M. Statistical review of quality parameters of blue-green infrastructure elements important in mitigating the effect of the urban heat island in the temperate climate (c) zone. Int. J. Environ. Res. Public Health 2020, 17, 7093. [Google Scholar] [CrossRef]
- Grinberg, N.F.; Lovatt, A.; Hegarty, M.; Lovatt, A.; Skot, K.P.; Kelly, R.; Blackmore, T.; Thorogood, D.; King, R.D.; Armstead, I.; et al. Implementation of genomic prediction in Lolium perenne (L.) breeding populations. Front. Plant Sci. 2016, 7, 133. [Google Scholar] [CrossRef] [Green Version]
- Katova, A. Study of Morphological Traits, Biological Properties and Agricultural Value of Plant Germplasm of Perennial Ryegrass (Lolium perenne L.) with a View to Breeding. Ph.D. Thesis, Institute of Forage Crops, Pleven, Bulgaria, 2005; p. 141. [Google Scholar]
- Waterlot, C.; Hechelski, M. Benefits of ryegrass on multicontaminated soils part 1: Effects of fertilizers on bioavailability and accumulation of metals. Sustainability 2019, 11, 5093. [Google Scholar] [CrossRef] [Green Version]
- Burges, A.; Alkorta, I.; Epelde, L.; Garbisu, C. From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. Int. J. Phytopharm. 2018, 20, 384–397. [Google Scholar] [CrossRef]
- Arienzo, M.; Adamo, P.; Cozzolino, V. The potential of Lolium perenne for revegetation of contaminated soil from a metallurgical site. Sci. Total Environ. 2004, 319, 13–25. [Google Scholar] [CrossRef]
- Wang, K.; Huang, H.; Zhu, Z.; Li, T.; He, Z.; Yang, X.; Alva, A. Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated (Lolium perenne) or castor (Ricinus communis). Int. J. Phytopharm. 2013, 15, 283–298. [Google Scholar]
- Salama, A.K.; Osman, K.A.; Gouda, N.A.R. Remediation of lead and cadmium contaminated soils. Int. J. Phytopharm. 2016, 18, 364–367. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, L.Y.; Lu, Y.C.; Jiang, S.S.; Wu, H.J.; Yang, H. Comprehensive analysis of degradation and accumulation of ametryn in soils and in wheat, maize, ryegrass and alfalfa plants. Ecotoxicol. Environ. Saf. 2017, 140, 264–270. [Google Scholar] [CrossRef]
- Peng, F.; Li, S.; Xiao-Hui, S.; Ru-Lai, L.; Cheng, J.; Hai-Yan, Z.; Zeng-Jie, L.; Zhi-Min, L.; Wei, G.; Xu-Dong, H.; et al. Response and accumulation ability of perennial ryegrass to plumbum and cadmium stress. Fresenius Environ. Bull. Adv. Food 2017, 26, 598–606. [Google Scholar]
- Liu, Z.; He, X.; Chen, W.; Zha, M. Eco toxicological responses of three ornamental herb species to cadmium. Environ. Toxicol. Chem. 2013, 32, 1746–1751. [Google Scholar] [CrossRef]
- Hechelski, M.; Louvel, B.; Dufrénoy, P.; Ghinet, A.; Waterlot, C. A sustainable approach to manage metal-contaminated soils: A preliminary greenhouse study for the possible production of metal-enriched ryegrass biomass for bio sourced catalysts. Environ. Monit. Assess. 2019, 191, 626. [Google Scholar] [CrossRef] [PubMed]
- Li, F.L.; Qiu, Y.; Xu, X.; Yang, F.; Wang, Z.; Feng, J.; Wang, J. EDTA-enhanced phytoremediation of heavy metals from sludge soil by Italian ryegrass (Lolium perenne L.). Ecotoxicol. Environ. Saf. 2020, 91, 110185. [Google Scholar] [CrossRef]
- Carvalho, A.; Nabis, C.; Roiloa, S.R.; Rodriguez-Echeverria, S. Revegetation of abandoned copper mines: The role of seed banks and soil amendments. Web Ecol. 2013, 13, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Santibanez, C.; Verdugo, C.; Ginocchio, R. Phytostabilization of copper mine tailings with biosolids: Implications for metal uptake and productivity of Lolium perenne. Sci. Total Environ. 2008, 995, 1–10. [Google Scholar] [CrossRef]
- Zalewska, M. Response of perennial ryegrass (Lolium perenne L.) to soil contamination with zinc. J. Elem. 2012, 17, 329–343. [Google Scholar] [CrossRef]
- Hechelski, M.; Dufrénoy, P.; Louvel, B.; Ghinet, A.; Waterlot, C. An original approach in green chemistry: From assisted phytoremediation of contaminated soil to upcycling of plant biomass for bio sourced catalyst production. In Conference Proceedings, Proceedings of the International Conference, Contaminated Sites, 2018, Banska Bystrica, Slovakia, 8–10 October 2018; European Union: Brussels, Belgium, 2018; pp. 85–88. [Google Scholar]
- Jia, Y.; Tang, S.; Wang, R.; Ju, X.; Ding, Y.; Tu, S.; Smith, D.L. Effects of elevated on growth, photosynthesis, elemental composition, antioxidant level, and phytochelatin concentration in Lolium multiforum and Lolium perenne under Cd stress. J. Hazard. Mater. 2010, 180, 384–394. [Google Scholar] [CrossRef]
- Mimmo, T.; Bartucca, M.L.; Del Buono, D.; Cesco, S. Italian ryegrass for the phytoremediation of solutions polluted with terbuthylazine. Chemosphere 2015, 119, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Liu, R.; Xu, Y.; Liu, X.; Sun, F.; Ma, Y.; Wang, Y. Effect of In Situ Bioremediation of Soil Contaminated with DDT and DDE by Stenotrophomonas sp. Strain DXZ9 and Ryegrass on Soil Microorganism. Microbiol. Res. 2022, 13, 5. [Google Scholar] [CrossRef]
- Jenkin, T.J. Fescue species (Festuca L.). In Handbuch der Planzenzüchtung; 2. Aufl., Band IV; Paul Parey: Berlin/Hamburg, Germany, 1959; pp. 418–434. [Google Scholar]
- Bolund, P.; Huhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Tomaškin, J.; Tomaškinová, J.; Kizeková, M. Ornamental grasses as part of public green, their ecosystem services and use in vegetative arrangements in urban environment. Thaiszia-J. Bot. Košice 2015, 25, 1–13. [Google Scholar]
- Katova, A.; Baert, J.; Reheul, D. Comparative characteristics of newly developed perennial ryegrass varieties in Bulgaria. In Breeding in a World of Scarcity. Proceedings of the 2015 Meeting of the section of “Fodder Crops and Amenity Grasses” of Eucarpia, Ghent; Roldán-Ruiz, I., Baert, J., Reheul, D., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 35–40. [Google Scholar] [CrossRef]
- Jabbari, A.; Rohollahi, I. Establishment and traffic stress response of tall fescue as affected by Mycorrhiza fungi and Trinexapac-ethyl. Ornam. Hortic. 2019, 25, 461–468. [Google Scholar] [CrossRef] [Green Version]
- Strausbaugh, P.D.; Core, E.L. Flora of West Virginia, 2nd ed.; West Virginia University Books: Morgantown, WV, USA, 1977; p. 1079. [Google Scholar]
- Begonia, M.F.T.; Begonia, G.B.; Ighoavodha, M.; Gilliard, D. Lead accumulation by Tall Fescue (Festuca arundinacea Schreb.) grown on a lead contaminated soil. Int. J. Environ. Res. Public Health 2005, 2, 228–233. [Google Scholar] [CrossRef] [Green Version]
- Zurek, G.; Rybka, K.; Pogrzeba, M.; Krzyzak, J.; Prokopiuk, K. Chlorophyll a Fluorescence in Evaluation of the Effect of Heavy Metal Soil Contamination on Perennial Grasses. PLoS ONE 2014, 9, e91475. [Google Scholar] [CrossRef]
- Katova, A. Species and varieties of Perennial grasses for high quality forage in Bulgaria. J. Mt. Agric. Balk. 2007, 10, 156–161. [Google Scholar]
- Katova, A. New Perennial ryegrass variety (Lolium perenne L.) IFK Harmoniya. J. Mt. Agric. Balk. 2011, 14, 721–739. [Google Scholar]
- Katova, A. Tetrany—The first Bulgarian tetraploid Perennial ryegrass variety (Lolium perenne L.). J. Mt. Agric. Balk. 2017, 20, 110–122. [Google Scholar]
- Katova, A. Tetramis—New tetraploid Perennial ryegrass variety. J. Mt. Agric. Balk. 2017, 20, 123–134. [Google Scholar]
- Katova, A. Svejina—The first Bulgarian Crested wheatgrass variety [Agropyron cristatum (L.) Gaertn.]. J. Mt. Agric. Balk. 2012, 15, 1034–1056. [Google Scholar]
- Katova, A. Morava—The first Bulgarian Standard wheatgrass variety [Agropyron desertorum (Fisch.) Schultes]. Banat. J. Biotechnol. 2012, 3, 58–66. [Google Scholar]
- Hedblom, M.; Lindberg, F.; Vogel, E.; Wissman, J.; Ahrné, K. Estimating urban lawn cover in space and time: Case studies in three swedish cities. Urban Ecosyst. 2017, 20, 1109–1119. [Google Scholar] [CrossRef] [Green Version]
- Egerer, M.; Liere, H.; Lucatero, A. Philpott St. Plant damage in urban agroecosystems varies with local and landscape factors. Ecosphere 2020, 11, e03074. [Google Scholar] [CrossRef] [Green Version]
- Onandia, G.; Schittko, C.; Ryo, M.; Bernard-Verdier, M.; Heger, T.; Joshi, J.; Kowarik, I.; Gessler, A. Ecosystem functioning in urban grasslands: The role of biodiversity, plant invasions and urbanization. PLoS ONE 2019, 14, e0225438. [Google Scholar] [CrossRef]
- Huang, Q.; Robinson, D.T.; Parker, D.C. Quantifying Spatial–Temporal Change in Land-Cover and Carbon Storage Among Exurban Residential Parcels. Landsc. Ecol. 2014, 29, 275–291. [Google Scholar] [CrossRef]
- Lee, J.M.; Thom, E.R.; Wynn, K.; Waugh, D.; Rossi, L.; Chapman, D.F. High perennial ryegrass seeding rates reduce plant size and survival during the first year after sowing: Does this have implications for pasture sward persistence? Grass Forage Sci. 2017, 72, 382–400. [Google Scholar] [CrossRef]
- Anderson, J.R. Effects f Seeding Rates of Perennial Ryegrass (Lolium Perenne L.) On Sediment Loading and Nutrient Transport Via Surface Runoff. Master’s Thesis, Louisiana State University, Baton Rouge, LA, USA, 2012; p. 325. Available online: https://digitalcommons.lsu.edu/gradschool_theses/325 (accessed on 31 January 2022).
- Bertoncini, A.P.; Machon, N.; Pavoine, S.; Muratet, A. Local gardening practices shape urban lawn floristic communities. Landsc. Urban Plan. 2012, 105, 53–61. [Google Scholar] [CrossRef]
- Bijoor, N.; Pataki, D.; Haver, D.; Famiglietti, J.A. Comparative study of the water budgets of lawns under three management scenarios. Urban Ecosyst. 2014, 17, 1095–1117. [Google Scholar] [CrossRef] [Green Version]
- Heritage Lottery Fund. State of UK Public Parks; Research Report; Heritage Lottery Fund: London, UK, 2014. [Google Scholar]
- Carrico, A.R.; Fraser, J.; Bazuin, J.T. Green with Envy: Psychological and social predictors of lawn fertilizer application. Environ. Behav. 2013, 45, 427–454. [Google Scholar] [CrossRef]
- Martini, N.F.; Nelson, K.C. The Role of Knowledge in Residential Lawn Management. Urban Ecosyst. 2015, 18, 1031–1047. [Google Scholar] [CrossRef]
- Fuentes, T.L. Homeowner preferences drive lawn care practices and species diversity patterns in new lawn floras. J. Urban Ecol. 2021, 7, juab015. [Google Scholar] [CrossRef]
- Nielson, L.; Smith, C.L. Influences on residential yard care and water quality: Tualatin watershe. J. Am. Water Resour. Assoc. 2005, 41, 93–106. [Google Scholar] [CrossRef]
- Carey, R.; Hochmuth, G.J.; Martinez, C.J.; Boyer, T.H.; Nair, V.D.; Dukes, M.D.; Toor, G.S.; Shober, A.L.; Cisar, J.L.; Trenholm, L.E.; et al. A review of turfgrass fertilizer management practices: Implications for urban water quality. HortTechnology 2012, 22, 280–291. [Google Scholar] [CrossRef] [Green Version]
- Brum, O.B.; López, S.; García, R.; André, S.; Calleja, A. Influence of harvest season, cutting frequency and nitrogen fertilization of mountain meadows on yield, floristic composition and protein content of herbage. Rev. Bras. De Zootec. 2009, 38, 596–604. [Google Scholar] [CrossRef] [Green Version]
- Bierman, P.M.; Horgan, B.P.; Rosen, C.J.; Hollman, A.B.; Pagliari, P.H. Phosphorus runoff from turfgrass as affected by phosphorus fertilization and clipping management. J. Environ. Qual. 2010, 39, 282–292. [Google Scholar] [CrossRef]
- Chen, W.; McCaughey, W.P.; Grant, C.A.; Bailey, L.D. Pasture Type and Fertilization Effects on Soil Chemical Properties and Nutrient Redistribution. Can. J. Soil Sci. 2001, 81, 395–404. [Google Scholar] [CrossRef] [Green Version]
- Vasilev, E.; Katova, A.; Dimitrova, T.; Naydenov, Y.; Kuchkova, A.; Stoykova, M.; Chakarov, R.; Kirilov, A. Technology for Creation and Usage of Meadows and Pastures; Agricultural Academy: Sofia, Bulgaria, 2013. [Google Scholar]
- Beetz, A.E. A Brief Overview of Nutrient Cycling in Pastures. Appropriate Technology Transfer for Rural Areas (ATTRA). Available online: http://www.attra.ncat.org (accessed on 2 April 2008).
- Frank, K.W.; O’Reilly, K.M.; Crum, J.R.; Calhoun, R.N. The fate of nitrogen applied to a mature kentucky bluegrass turf. Crop Sci. 2006, 46, 209–215. [Google Scholar] [CrossRef]
- Jiao, Y.; Hendershot, Y.H.; Whalen, J.K. Agricultural Practices Influence Dissolved Nutrients Leaching Through Intact Soil Cores. Soil Sci. Soc. Am. J. 2004, 68, 2058–2068. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Jolly, I.; Sophocleous, M.; Zhang, L. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality. Water Resour. Res. 2007, 43, W03437. [Google Scholar] [CrossRef] [Green Version]
- Townsend-Small, A.; Czimczik, C.I. Carbon Sequestration and Greenhouse Gas Emissions in Urban Turf. Geophys. Res. Lett. 2010, 37, L02707. [Google Scholar] [CrossRef] [Green Version]
- Uddin, M.K.; Juraimi, A.S.; Ismail, M.R.; Brosnan, J.T. Characterizing weed populations in different turfgrass sites throughout the Klang Valley of Western Peninsular Malaysia. Weed Technol. 2010, 24, 173–181. [Google Scholar] [CrossRef]
- Slreibig, J.E. Numerical methods illustrating the phytosociology of crops in relation to weed flora. J. Appl. Ecol. 1979 16, 577–587.
- Qiang, S. Multivariate analysis, description, and ecological interpretation of weed vegetation in the summer crop fields of Anhui province, China. J. Integr. Plant Biol. Former. Acta Bot. Sin. 2005, 47, 1193–1210. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Yu, J.; Zhang, W.; Xie, Y.; Ge, N. Key Factors Influencing Weed Infestation of Cool-season Turfgrass Festuca arundinacea Schreb. Areas during Early Spring in the Tianjin Region, China. Hortscience 2018, 53, 723–728. [Google Scholar] [CrossRef] [Green Version]
- Andreeva-Fetvadzhieva, N. Weed Control, 3rd ed.; Todor Dimitrov Printing House: Sofia, Bulgaria, 1973; p. 357. [Google Scholar]
- Bogdanov, V.L.; Posternak, T.S.; Pasko, O.A.; Kovyazin, V.F. The issues of weed infestation with environmentally hazardous plants and methods of their control. IOP Conf. Series: Earth Environ. Sci. 2016, 43, 012036. [Google Scholar] [CrossRef] [Green Version]
- Peerzada, A.M.; Ali, H.H.; Hanif, Z.; Bajwa, A.A.; Kebaso, L.; Frimpong, D.; Iqbal, N.; Namubiru, H.; Hashim, S.; Rasool, G.; et al. Eco-biology, impact, and management of Sorghum halepense (L.) Pers. Biol. Invasions 2017, 19, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Harlan, J. Cynodon species and their value for grazing and hay. Herb. Abstr. 1970, 40, 233–238. [Google Scholar]
- Sheley, R. Revegetating russian knapweed (Acroptilon repens) and green rabbitbrush (Ericameria teretifolia) infested rangeland in a single entry. Weed Sci. 2007, 55, 365–370. [Google Scholar] [CrossRef]
- Cameron, R.W.F.; Blanusa, T.; Taylor, J.E.; Salisbury, A.; Halstead, A.J.; Henricot, B. The domestic garden—Its contribution to urban green infrastructure. Urban For. Urban Green. 2012, 11, 129–137. [Google Scholar] [CrossRef]
- Ignatieva, M.; Ahrné, K.; Wissman, J.; Eriksson, T.; Tidåker, P.; Hedblom, M.; Kätterer, T.; Marstorp, H.; Berg, P.; Eriksson, T.; et al. Lawn as a cultural and ecological phenomenon: A conceptual framework for transdisciplinary research. Urban For. Urban Green. 2015, 14, 383–387. [Google Scholar] [CrossRef] [Green Version]
- Marinov-Serafimov, P.; Golubinova, I.; Vasileva, V. Dynamics and distribution of weed species in weed associations. Indian J. Agric. Sci. 2019, 89, 105–110. [Google Scholar]
- Dimitrova, T. Study of Weeds and Their Control in Seed Production of Perennial Legumes and Cereal Grasses in Individual and Mixed Crops. Ph.D. Thesis, Agricultural Academy Sofia, Institute of Forage Crops Pleven, Pleven, Bulgaria, 1984; p. 168. [Google Scholar]
- Damyanova, N. Studies on the Use of Perennial Grass Mixture. Ph.D. Thesis, Agricultural Academy Sofia, Institute of Forage Crops Pleven, Pleven, Bulgaria, 1989; p. 152. [Google Scholar]
- Katova, A.; Dimitrova, T. Selectivity of some herbicides to standard wheatgrass (Agropyron desertorum (Fisch.) Schultes) during stand establishment and seed production. Pestic. Phytomed. 2013, 28, 125–131. [Google Scholar] [CrossRef]
- Marinov-Serafimov, P.; Golubinova, I. The infl uence of some herbicides on seed production in standard wheatgrass (Agropyron desertorum (Fisch.) Schultes). Bulg. J. Agric. Sci. 2019, 25, 1191–1197. [Google Scholar]
- Majidi, M.R.; Mirshekari, B.; Samedani, B.; Farahvash, F.; Hajnajari, H. Effect of four pre-planted cover crop species on weed control and population dynamics. Italian J. Agron. 2020, 15, 253–260. [Google Scholar] [CrossRef]
- Duke, S. Natural pesticides from plants. In Advances in New Crops; Janick, J., Simon, J.E., Eds.; Timber Press: Portland, OR, USA, 1990; pp. 511–517. [Google Scholar]
- Tworkoski, T. Herbicide effects of essential oils. Weed Sci. 2002, 50, 425–431. [Google Scholar] [CrossRef]
- Monteiro, A.; Santos, S. Sustainable approach to weed management: The role of precision weed management. Agronomy 2022, 12, 118. [Google Scholar] [CrossRef]
- Radicetti, E.; Mancinelli, R. Sustainable weed control in the agro-ecosystems. Sustainability 2021, 13, 8639. [Google Scholar] [CrossRef]
- Carriger, J.F.; Rand, G.M.; Gardinali, P.R.; Perry, W.B.; Tompkins, M.S.; Fernandez, A.M. Pesticides of potential ecological concern in sediment from south florida canals: An ecological risk prioritization for aquatic arthropods. Soil Sediment Contam. 2006, 15, 21–45. [Google Scholar] [CrossRef]
- Mostafalou, S.; Abdollahi, M. Concerns of environmental persistence of pesticides and human chronic diseases. Clin. Exp. Pharmacol. 2012, S5, e002. [Google Scholar] [CrossRef] [Green Version]
- White, P. Weed Management. In Proceedings of the a General Meeting of Electors of the Town of Bassendean, Bassendean, Australia, 9 February 2022. [Google Scholar]
- Ayeni, A.O.; Majek, B.A.; Johnson, J.R.; Obal, R.G. Container nursery weed control: Bitter cress, groundsel, and oxalis. Rutgers Coop. Ext. Fact Sheet 1999, FS939. [Google Scholar]
- Newman, J.P. Container Nursery Production and Business Management Manual; University of California (System), Division of Agriculture and Natural Resources: Berkeley, CA, USA, 2014; p. 345. ISBN 9781601078421. [Google Scholar]
- Coleman, R.; Penner, D. Organic acid enhancement of pelargonic acid. Weed Technol. 2008, 22, 38–41. [Google Scholar] [CrossRef]
- Arboleya, J.E.; Masabni, J.G.; Particka, M.G.; Zandstra, B.H. Identification of pre-harvest desiccants for use in onion production. Hort Technol. 2005, 15, 808–811. [Google Scholar] [CrossRef]
- Barker, A.; Prostak, R. Management of vegetation by alternative practices in fields and roadsides. Int. J. Agron. 2014, 2014, 207828. [Google Scholar] [CrossRef]
- Muñoz, M.; Torres-Pagán, N.; Peiró, R.; Guijarro, R.; Sánchez-Moreiras, A.M.; Verdeguer, M. Phytotoxic effects of three natural compounds: Pelargonic acid, carvacrol, and cinnamic aldehyde, against problematic weeds in Mediterranean crops. Agronomy 2020, 10, 791. [Google Scholar] [CrossRef]
- Travlos, I.; Rapti, E.; Gazoulis, I.; Kanatas, P.; Tataridas, A.; Kakabouki, I.; Papastylianou, P. The herbicidal potential of different pelargonic acid products and essential oils against several important weed species. Agronomy 2020, 10, 1687. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment of the active substance Fatty acids C7 to C18 (approved under Regulation (EC) No 1107/2009 as Fatty acids C7 to C20). EFSA J. 2013, 11, 3023. [Google Scholar] [CrossRef]
- Ivany, J. Acetic acid for weed control in potato (Solanum tuberosum L.). Can. J. Plant Sci. 2010, 90, 523–542. [Google Scholar] [CrossRef]
- Wilen, C.; Perez, G. Natural Herbicides: Are They Effective? UC Weed Science. Weed Control, Management, Ecology, and Minutia. 2012. Available online: https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=6498 (accessed on 3 February 2022).
- Li, J.; Zhang, Q.; Hu, W.; Yang, X.; He, H. Stability of phenolic acids and the effect on weed control activity. J. Korean Soc. Appl. Biol. Chem. 2015, 58, 919–926. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrova, S.; Nikolov, B.; Velcheva, I.; Angelov, N.; Valcheva, E.; Katova, A.; Golubinova, I.; Marinov-Serafimov, P. Buffer Green Patches around Urban Road Network as a Tool for Sustainable Soil Management. Land 2022, 11, 343. https://doi.org/10.3390/land11030343
Petrova S, Nikolov B, Velcheva I, Angelov N, Valcheva E, Katova A, Golubinova I, Marinov-Serafimov P. Buffer Green Patches around Urban Road Network as a Tool for Sustainable Soil Management. Land. 2022; 11(3):343. https://doi.org/10.3390/land11030343
Chicago/Turabian StylePetrova, Slaveya, Bogdan Nikolov, Iliana Velcheva, Nikola Angelov, Ekaterina Valcheva, Aneliya Katova, Irena Golubinova, and Plamen Marinov-Serafimov. 2022. "Buffer Green Patches around Urban Road Network as a Tool for Sustainable Soil Management" Land 11, no. 3: 343. https://doi.org/10.3390/land11030343
APA StylePetrova, S., Nikolov, B., Velcheva, I., Angelov, N., Valcheva, E., Katova, A., Golubinova, I., & Marinov-Serafimov, P. (2022). Buffer Green Patches around Urban Road Network as a Tool for Sustainable Soil Management. Land, 11(3), 343. https://doi.org/10.3390/land11030343