Ranking of Empirical Evapotranspiration Models in Different Climate Zones of Pakistan
Abstract
1. Introduction
2. Area Description and Data
2.1. Pakistan’s Geography and Climate
2.2. Princeton Daily Data
3. Method
3.1. Evapotranspiration (ET)
3.2. Performance Evaluation
3.3. Multi-Criteria Group Decision Making (MCGDM)
4. Results
4.1. Ranking of ET Equations
4.2. Ranking for the Whole of Pakistan
4.3. Validation of Ranking
4.4. Spatial Bias in Top-Ranked Models
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shahid, S. Impact of climate change on irrigation water demand of dry season Boro rice in northwest Bangladesh. Clim. Chang. 2011, 105, 433–453. [Google Scholar] [CrossRef]
- Newton, I.H.; Islam, G.M.T.; Islam, A.S.; Razzaque, S.; Bala, S.K. A conjugate application of MODIS/Terra data and empirical method to assess reference evapotranspiration for the southwest region of Bangladesh. Environ. Earth Sci. 2021, 80, 223. [Google Scholar] [CrossRef]
- Fisher, J.B.; Malhi, Y.; Bonal, D.; Da Rocha, H.R.; De Araújo, A.C.; Gamo, M.; Goulden, M.L.; Rano, T.H.; Huete, A.R.; Kondo, H.; et al. The land-atmosphere water flux in the tropics. Glob. Chang. Biol. 2009, 15, 2694–2714. [Google Scholar] [CrossRef]
- Wigmosta, M.S.; Vail, L.W.; Lettenmaier, D.P. A distributed hydrology-vegetation model for complex terrain. Water Resour. Res. 1994, 30, 1665–1679. [Google Scholar] [CrossRef]
- Jaber, H.S.; Mansor, S.; Pradhan, B.; Ahmad, N. Rainfall–runoff modelling and water balance analysis for Al-Hindiyah barrage, Iraq using remote sensing and GIS. Geocarto Int. 2017, 32, 1407–1420. [Google Scholar] [CrossRef]
- Salem, G.S.A.; Kazama, S.; Shahid, S.; Dey, N.C. Impact of temperature changes on groundwater levels and irrigation costs in a groundwater-dependent agricultural region in Northwest Bangladesh. Hydrol. Res. Lett. 2017, 11, 85–91. [Google Scholar] [CrossRef]
- Sadeghfam, S.; Hassanzadeh, Y.; Nadiri, A.A.; Khatibi, R. Mapping groundwater potential field using catastrophe fuzzy membership functions and Jenks optimization method: A case study of Maragheh-Bonab plain, Iran. Environ. Earth Sci. 2016, 75, 545. [Google Scholar] [CrossRef]
- Cambraia Neto, A.J.; Rodrigues, L.N. Evaluation of groundwater recharge estimation methods in a watershed in the Brazilian Savannah. Environ. Earth Sci. 2020, 79, 140. [Google Scholar] [CrossRef]
- Ismail, T.; Harun, S.; Zainudin, Z.M.; Shahid, S.; Fadzil, A.B.; Sheikh, U.U. Development of an optimal reservoir pumping operation for adaptation to climate change. KSCE J. Civ. Eng. 2017, 21, 467–476. [Google Scholar] [CrossRef]
- Mohsenipour, M.; Shahid, S.; Chung, E.-S.; Wang, X.-J. Changing Pattern of Droughts during Cropping Seasons of Bangladesh. Water Resour. Manag. 2018, 32, 1555–1568. [Google Scholar] [CrossRef]
- Shiru, M.S.; Shahid, S.; Alias, N.; Chung, E.S. Trend analysis of droughts during crop growing seasons of Nigeria. Sustainability 2018, 10, 871. [Google Scholar] [CrossRef]
- Salehie, O.; Hamed, M.M.; bin Ismail, T.; Shahid, S. Projection of droughts in Amu river basin for shared socioeconomic pathways CMIP6. Theor. Appl. Climatol. 2022, 149, 1009–1027. [Google Scholar] [CrossRef]
- Hamed, M.M.; Nashwan, M.S.; Shahid, S. Inter-comparison of Historical Simulation and Future Projection of Rainfall and Temperature by CMIP5 and CMIP6 GCMs Over Egypt. Int. J. Climatol. 2022, 42, 4316–4332. [Google Scholar] [CrossRef]
- Yang, J.; Xie, B.; Zhang, D.; Tao, W. Climate and land use change impacts on water yield ecosystem service in the Yellow River Basin, China. Environ. Earth Sci. 2021, 80, 72. [Google Scholar] [CrossRef]
- Wada, Y.; van Beek, L.P.H.; Bierkens, M.F.P. Modelling global water stress of the recent past: On the relative importance of trends in water demand and climate variability. Hydrol. Earth Syst. Sci. 2011, 15, 3785–3808. [Google Scholar] [CrossRef]
- Poonia, V.; Das, J.; Goyal, M.K. Impact of climate change on crop water and irrigation requirements over eastern Himalayan region. Stoch. Environ. Res. Risk Assess 2021, 35, 1175–1188. [Google Scholar] [CrossRef]
- Jiang, T.; Sun, S.; Li, Z.; Li, Q.; Lu, Y.; Li, C.; Wang, Y.; Wu, P. Vulnerability of crop water footprint in rain-fed and irrigation agricultural production system under future climate scenarios. Agric. For. Meteorol. 2022, 326, 109164. [Google Scholar] [CrossRef]
- Ahmed, K.; Shahid, S.; Nawaz, N. Impacts of climate variability and change on seasonal drought characteristics of Pakistan. Atmos. Res. 2018, 214, 364–374. [Google Scholar] [CrossRef]
- Hamed, M.M.; Nashwan, M.S.; Shahid, S. A novel selection method of CMIP6 GCMs for robust climate projection. Int. J. Climatol. 2022, 42, 4258–4272. [Google Scholar] [CrossRef]
- Rana, G.; Katerji, N. Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: A review. Eur. J. Agron. 2000, 13, 125–153. [Google Scholar] [CrossRef]
- Tao, H.; Diop, L.; Bodian, A.; Djaman, K.; Ndiaye, P.M.; Yaseen, Z.M. Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: Regional case study in Burkina Faso. Agric. Water Manag. 2018, 208, 140–151. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Running, S.W. A review of remote sensing based actual evapotranspiration estimation. Water 2016, 3, 834–853. [Google Scholar] [CrossRef]
- Liou, Y.A.; Kar, S.K. Evapotranspiration estimation with remote sensing and various surface energy balance algorithms-a review. Energies 2014, 7, 2821–2849. [Google Scholar] [CrossRef]
- Noumonvi, K.D.; Ferlan, M.; Eler, K.; Alberti, G.; Peressotti, A.; Cerasoli, S. Estimation of Carbon Fluxes from Eddy Covariance Data and Satellite-Derived Vegetation Indices in a Karst Grassland (Podgorski Kras, Slovenia). Remote Sens. 2019, 11, 649. [Google Scholar] [CrossRef]
- Ha, W.; Kolb, T.E.; Springer, A.E.; Dore, S.; O’Donnell, F.C.; Martinez Morales, R.; Masek Lopez, S.; Koch, G.W. Evapotranspiration comparisons between eddy covariance measurements and meteorological and remote-sensing-based models in disturbed ponderosa pine forests. Ecohydrology 2015, 8, 1335–1350. [Google Scholar] [CrossRef]
- Muhammad, M.K.I.; Shahid, S.; Ismail, T.; Harun, S.; Kisi, O.; Yaseen, Z.M. The development of evolutionary computing model for simulating reference evapotranspiration over Peninsular Malaysia. Theor. Appl. Climatol. 2021, 144, 1419–1434. [Google Scholar] [CrossRef]
- Pereira, A.R.; Nova, N.A.V.; Sediyama, G.C. Evapo (Transpi) Ração; FEALQ: Piracicaba, Brazil, 1997. [Google Scholar]
- Kumari, N.; Srivastava, A. An Approach for Estimation of Evapotranspiration by Standardizing Parsimonious Method. Agric. Res. 2020, 9, 301–309. [Google Scholar] [CrossRef]
- Douglas, E.M.; Jacobs, J.M.; Sumner, D.M.; Ray, R.L. A comparison of models for estimating potential evapotranspiration for Florida land cover types. J. Hydrol. 2009, 373, 366–376. [Google Scholar] [CrossRef]
- Ankur, S.; Bhabagrahi, S.; Singh, R.N.; Rajendra, S. Evaluation of Variable-Infiltration Capacity Model and MODIS-Terra Satellite-Derived Grid-Scale Evapotranspiration Estimates in a River Basin with Tropical Monsoon-Type Climatology. J. Irrig. Drain. Eng. 2017, 143, 4017028. [Google Scholar] [CrossRef]
- Muhammad, M.K.I.; Nashwan, M.S.; Shahid, S.; bin Ismail, T.; Song, Y.H.; Chung, E.S. Evaluation of empirical reference evapotranspiration models using compromise programming: A case study of Peninsular Malaysia. Sustainability 2019, 11, 4267. [Google Scholar] [CrossRef]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar]
- Nashwan, M.S.; Shahid, S.; Chung, E.-S.S. Development of high-resolution daily gridded temperature datasets for the central north region of Egypt. Sci. Data 2019, 6, 138. [Google Scholar] [CrossRef]
- Ahmed, K.; Shahid, S.; Ali, R.O.; Bin Harun, S.; Wang, X.J. Evaluation of the performance of gridded precipitation products over Balochistan province, Pakistan. Desalin. Water Treat. 2017, 79, 73–86. [Google Scholar] [CrossRef]
- Hosseinzadeh Talaee, P.; Tabari, H.; Abghari, H. Pan evaporation and reference evapotranspiration trend detection in western Iran with consideration of data persistence. Hydrol. Res. 2014, 45, 213–225. [Google Scholar] [CrossRef]
- Song, X.; Lu, F.; Xiao, W.; Zhu, K.; Zhou, Y.; Xie, Z. Performance of 12 reference evapotranspiration estimation methods compared with the Penman–Monteith method and the potential influences in northeast China. Meteorol. Appl. 2019, 26, 83–96. [Google Scholar] [CrossRef]
- Sobh, M.T.; Nashwan, M.S.; Amer, N. High Resolution Reference Evapotranspiration for Arid Egypt: Comparative analysis and evaluation of empirical and artificial intelligence models. Int. J. Climatol. 2022, 1–21. [Google Scholar] [CrossRef]
- Tabari, H.; Grismer, M.E.; Trajkovic, S. Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrig. Sci. 2013, 31, 107–117. [Google Scholar] [CrossRef]
- Al-Mukhtar, M. Modeling the monthly pan evaporation rates using artificial intelligence methods: A case study in Iraq. Environ. Earth Sci. 2021, 80, 39. [Google Scholar] [CrossRef]
- Nandagiri, L.; Kovoor, G.M. Performance Evaluation of Reference Evapotranspiration Equations across a Range of Indian Climates. J. Irrig. Drain. Eng. 2006, 132, 238–249. [Google Scholar] [CrossRef]
- Wei, G.; Zhang, X.; Ye, M.; Yue, N.; Kan, F. Bayesian performance evaluation of evapotranspiration models based on eddy covariance systems in an arid region. Hydrol. Earth Syst. Sci. 2019, 23, 2877–2895. [Google Scholar] [CrossRef]
- Ndulue, E.; Onyekwelu, I.; Ogbu, K.N.; Ogwo, V. Performance evaluation of solar radiation equations for estimating reference evapotranspiration (ETo) in a humid tropical environment. J. Water Land Dev. 2019, 42, 124–135. [Google Scholar] [CrossRef]
- Singh, P.; Srivastava, P.K.; Mall, R.K. Estimation of potential evapotranspiration using INSAT-3D satellite data over an agriculture area. In Agricultural Water Management; Srivastava, P.K., Gupta, M., Tsakiris, G., Quinn, N.W., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 143–155. ISBN 978-0-12-812362-1. [Google Scholar]
- Ahmed, K.; Shahid, S.; Bin Harun, S.; Wang, X. Characterization of seasonal droughts in Balochistan Province, Pakistan. Stoch. Environ. Res. Risk Assess. 2016, 30, 747–762. [Google Scholar] [CrossRef]
- Kyaw, A.K.; Hamed, M.M.; Shahid, S. Spatiotemporal Changes in Universal Thermal Climate Index Over South Asia. SSRN Electron. J. 2022, 1–32. [Google Scholar] [CrossRef]
- Azhar, A.H.; Masood, M.; Nabi, G.; Basharat, M. Performance Evaluation of Reference Evapotranspiration Equations Under Semiarid Pakistani Conditions. Arab. J. Sci. Eng. 2014, 39, 5509–5520. [Google Scholar] [CrossRef]
- Habeeb, R.; Zhang, X.; Hussain, I.; Hashmi, M.Z.; Elashkar, E.E.; Khader, J.A.; Soudagar, S.S.; Shoukry, A.M.; Ali, Z.; Al-Deek, F.F. Statistical analysis of modified Hargreaves equation for precise estimation of reference evapotranspiration. Tellus A Dyn. Meteorol. Oceanogr. 2021, 73, 1–12. [Google Scholar] [CrossRef]
- Nashwan, M.S.; Shahid, S. Symmetrical uncertainty and random forest for the evaluation of gridded precipitation and temperature data. Atmos. Res. 2019, 230, 104631. [Google Scholar] [CrossRef]
- Khan, N.; Shahid, S.; Sharafati, A.; Yaseen, Z.M.; Ismail, T.; Ahmed, K.; Nawaz, N. Determination of cotton and wheat yield using the standard precipitation evaporation index in Pakistan. Arab. J. Geosci. 2021, 14, 2035. [Google Scholar] [CrossRef]
- Sheikh, M.M. Drought management and prevention in Pakistan. In Proceedings of the COMSATS 1st Meeting on Water Resources in the South: Present Scenario and Future Prospects, Islamabad, Pakistan, 1–2 November 2001; Volume 1. [Google Scholar]
- Yasmeen, F.; Hameed, S. Forecasting of Rainfall in Pakistan via Sliced Functional Times Series (SFTS). World Environ. 2018, 8, 1–14. [Google Scholar] [CrossRef]
- Iqbal, Z.; Shahid, S.; Ahmed, K.; Ismail, T.; Nawaz, N. Spatial distribution of the trends in precipitation and precipitation extremes in the sub-Himalayan region of Pakistan. Theor. Appl. Climatol. 2019, 137, 2755–2769. [Google Scholar] [CrossRef]
- Ahmed, K.; Shahid, S.; Chung, E.-S.; Ismail, T.; Wang, X.-J. Spatial distribution of secular trends in annual and seasonal precipitation over Pakistan. Clim. Res. 2017, 74, 95–107. [Google Scholar] [CrossRef]
- Khan, N.; Shahid, S.; Ismail, T.; Ahmed, K.; Nawaz, N. Trends in heat wave related indices in Pakistan. Stoch. Environ. Res. Risk Assess. 2019, 33, 287–302. [Google Scholar] [CrossRef]
- Sheffield, J.; Goteti, G.; Wood, E.F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 2006, 19, 3088–3111. [Google Scholar] [CrossRef]
- Tian, W.; Liu, X.; Wang, K.; Bai, P.; Liu, C.; Liang, X. Estimation of global reservoir evaporation losses. J. Hydrol. 2022, 607, 127524. [Google Scholar] [CrossRef]
- Nashwan, M.S.; Shahid, S. Spatial distribution of unidirectional trends in climate and weather extremes in Nile river basin. Theor. Appl. Climatol. 2019, 137, 1181–1199. [Google Scholar] [CrossRef]
- Nashwan, M.S.; Shahid, S.; Abd Rahim, N. Unidirectional trends in annual and seasonal climate and extremes in Egypt. Theor. Appl. Climatol. 2019, 136, 457–473. [Google Scholar] [CrossRef]
- Onyutha, C.; Acayo, G.; Nyende, J. Analyses of Precipitation and Evapotranspiration Changes across the Lake Kyoga Basin in East Africa. Water 2020, 12, 1134. [Google Scholar] [CrossRef]
- Mubialiwo, A.; Onyutha, C.; Abebe, A. Historical Rainfall and Evapotranspiration Changes over Mpologoma Catchment in Uganda. Adv. Meteorol. 2020, 2020, 8870935. [Google Scholar] [CrossRef]
- Mubialiwo, A.; Chelangat, C.; Onyutha, C. Changes in precipitation and evapotranspiration over Lokok and Lokere catchments in Uganda. Bull. Atmos. Sci. Technol. 2021, 2, 2. [Google Scholar] [CrossRef]
- Pour, S.H.; Wahab, A.K.A.; Shahid, S.; Wang, X. Spatial pattern of the unidirectional trends in thermal bioclimatic indicators in Iran. Sustainability 2019, 11, 2287. [Google Scholar] [CrossRef]
- Houmsi, M.R.; Shiru, M.S.; Nashwan, M.S.; Ahmed, K.; Ziarh, G.F.; Shahid, S.; Chung, E.S.; Kim, S. Spatial shift of aridity and its impact on land use of Syria. Sustainability 2019, 11, 7047. [Google Scholar] [CrossRef]
- Khan, N.; Shahid, S.; Ahmed, K.; Wang, X.; Ali, R.; Ismail, T.; Nawaz, N. Selection of GCMs for the projection of spatial distribution of heat waves in Pakistan. Atmos. Res. 2020, 233, 104688. [Google Scholar] [CrossRef]
- Wong, J.S.; Yassin, F.; Famiglietti, J.S.; Pomeroy, J.W. A streamflow-oriented ranking-based methodological framework to combine multiple precipitation datasets across large river basins. J. Hydrol. 2021, 603, 127174. [Google Scholar] [CrossRef]
- Tran, H.; Zhang, J.; O’Neill, M.M.; Ryken, A.; Condon, L.E.; Maxwell, R.M. A hydrological simulation dataset of the Upper Colorado River Basin from 1983 to 2019. Sci. Data 2022, 9, 16. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Shahid, S.; Ahmed, K. Performance assessment of general circulation model in simulating daily precipitation and temperature using multiple gridded datasets. Water 2018, 10, 1793. [Google Scholar] [CrossRef]
- Khan, N.; Shahid, S.; Juneng, L.; Ahmed, K.; Ismail, T.; Nawaz, N. Prediction of heat waves in Pakistan using quantile regression forests. Atmos. Res. 2019, 221, 1–11. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Bogawski, P.; Bednorz, E. Comparison and Validation of Selected Evapotranspiration Models for Conditions in Poland (Central Europe). Water Resour. Manag. 2014, 28, 5021–5038. [Google Scholar] [CrossRef]
- Hazrat Ali, M.; Teang Shui, L.; Chee Yan, K.; Eloubaidy, A.F.; Chee Van, K. Modelling Evaporation and Evapotranspiration under Temperature Change in Malaysia. Pertanika J. Sci. Technol. 2000, 8, 191–204. [Google Scholar]
- Ali, M.H.; Shui, L.T. Potential evapotranspiration model for muda irrigation project, Malaysia. Water Resour. Manag. 2009, 23, 57–69. [Google Scholar] [CrossRef]
- Tukimat, N.N.A.; Harun, S.; Shahid, S. Comparison of different methods in estimating potential évapotranspiration at Muda Irrigation Scheme of Malaysia. J. Agric. Rural Dev. Trop. Subtrop. 2012, 113, 77–85. [Google Scholar]
- Djaman, K.; Balde, A.B.; Sow, A.; Muller, B.; Irmak, S.; N’Diaye, M.K.; Manneh, B.; Moukoumbi, Y.D.; Futakuchi, K.; Saito, K. Evaluation of sixteen reference evapotranspiration methods under sahelian conditions in the Senegal River Valley. J. Hydrol. Reg. Stud. 2015, 3, 139–159. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of trends in reference evapotranspiration data in a humid climate. Hydrol. Sci. J. 2014, 59, 165–180. [Google Scholar] [CrossRef]
- Hamon, W.R. Computation of direct runoff amounts from storm rainfall. Int. Assoc. Sci. Hydrol. Publ. 1963, 63, 52–62. [Google Scholar]
- Doorenbos, J.; Pruitt, W.O. Crop Water Requirements; FAO Irrigation and Drainage Paper 24; Land and Water Development Division, FAO: Rome, Italy, 1977; Volume 144. [Google Scholar]
- Linacre, E.T. A simple formula for estimating evaporation rates in various climates, using temperature data alone. Agric. Meteorol. 1977, 18, 409–424. [Google Scholar] [CrossRef]
- Kharrufa, N.S. Simplified equation for evapotranspiration in arid regions. Beitr. Hydrol. 1985, 5, 39–47. [Google Scholar]
- Hargreaves, G.; Samani, Z. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Trajkovic, S. Hargreaves versus Penman-Monteith under Humid Conditions. J. Irrig. Drain. Eng. 2007, 133, 38–42. [Google Scholar] [CrossRef]
- Ravazzani, G.; Corbari, C.; Morella, S.; Gianoli, P.; Mancini, M. Modified Hargreaves-Samani Equation for the Assessment of Reference Evapotranspiration in Alpine River Basins. J. Irrig. Drain. Eng. 2012, 138, 592–599. [Google Scholar] [CrossRef]
- Romanenko, V.A. Computation of the autumn soil moisture using a universal relationship for a large area. Proc. Ukr. Hydrometeorol. Res. Inst. 1961, 3, 12–25. [Google Scholar]
- Papadakis, J. Crop Ecologic Survey in Relation to Agricultural Development of Western Pakistan; Draft Report; FAO: Rome, Italy, 1965. [Google Scholar]
- Schendel, U. Vegetationswasserverbrauch und-wasserbedarf. Habilit. Kiel 1967, 137, 1–11. [Google Scholar]
- Makkink, G.F. Testing the Penman formula by means of lysimeters. J. Inst. Water Eng. 1957, 11, 277–288. [Google Scholar]
- Turc, L. Water requirements assessment of irrigation, potential evapotranspiration: Simplified and updated climatic formula. In Annales Agronomiques; L’Institut National de la Recherche Agronomique (INRA): Paris, France, 1961; Volume 12, pp. 13–49. [Google Scholar]
- Jensen, M.E.; Haise, H.R. Estimating evapotranspiration from solar radiation. J. Irrig. Drain. Div. 1963, 89, 15–41. [Google Scholar] [CrossRef]
- Priestley, C.H.B.; Taylor, R.J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- McGuinness, J.L.; Bordne, E.F. A Comparison of Lysimeter-Derived Potential Evapotranspiration with Computed Values; U.S. Department of Agriculture: Washington, DC, USA, 1972; ISBN 0082-9811. [Google Scholar]
- Caprio, J. The solar thermal unit concept in problems related to plant development and potential evapotranspiration. In Phenology and Seasonality Modeling; Springer: Berlin/Heidelberg, Germany, 1974; pp. 353–364. [Google Scholar]
- Jones, J.W.; Ritchie, J.T. Crop Growth Models. Manag. Farm Irrig. Syst. 1990, 41, 63–69. [Google Scholar]
- Abtew, W. Evapotranspiration measurements and modeling for three wetland systems in south Florida. Water Resour. Bull. 1996, 32, 465–473. [Google Scholar] [CrossRef]
- Irmak, S.; Allen, R.G.; Whitty, E.B. Daily Grass and Alfalfa-Reference Evapotranspiration Estimates and Alfalfa-to-Grass Evapotranspiration Ratios in Florida. J. Irrig. Drain. Eng. 2003, 129, 360–370. [Google Scholar] [CrossRef]
- Dalton, J. On the constitution of mixed gases, on the force of steam of vapour from water and other liquids in different temperatures, both in a Torricellia vacuum and in air; on evaporation; and on the expansion of gases by heat. Mem. Lit. Philos. Soc. Manch. 1802, 5, 536–602. [Google Scholar]
- Trabert, W. Neue beobachtungen über verdampfungsgeschwindigkeiten. Meteorol. Z. 1896, 13, 261–263. [Google Scholar]
- Meyer, A. Über einige Zusammenhänge zwischen Klima und Boden in Europa. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 1926. Volume 2. pp. 209–347. [Google Scholar]
- Rohwer, C. Evaporation from Free Water Surfaces; U.S. Department of Agriculture: Washington, DC, USA, 1931. [Google Scholar]
- Albrecht, F. Die Methoden zur Bestimmung der Verdunstung der natürlichen Erdoberfläche. Arch. Meteorol. Geophys. Bioklimatol. Ser. B 1950, 2, 1–38. [Google Scholar] [CrossRef]
- Brockamp, B.; Wenner, H. Verdunstungsmessungen auf den Steiner see bei münster. Dt. Gewässerkundl. Mitt. 1963, 7, 149–154. [Google Scholar]
- Gangopadhyaya, M. Measurement and Estimation of Evaporation and Evapotranspiration; Springer Science & Business Media: Geneva, Switzerland, 1966; Volume 83. [Google Scholar]
- Mahringer, W. Verdunstungsstudien am Neusiedler See. Arch. Meteorol. Geophys. Bioklimatol. Ser. B 1970, 18, 1–20. [Google Scholar] [CrossRef]
- Szász, G. A potenciális párolgás meghatározásának új módszere. Hidrol. Közlöny 1973, 10, 435–442. [Google Scholar]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Niaghi, A.R.; Majnooni-Heris, A.; Haghi, D.Z.; Mahtabi, G. Evaluate several potential evapotranspiration methods for regional use in Tabriz, Iran. J. Appl. Environ. Biol. Sci. 2013, 3, 31–41. [Google Scholar]
- Hu, Z.; Chen, X.; Chen, D.; Li, J.; Wang, S.; Zhou, Q.; Yin, G.; Guo, M. “Dry gets drier, wet gets wetter”: A case study over the arid regions of central Asia. Int. J. Climatol. 2019, 39, 1072–1091. [Google Scholar] [CrossRef]
- Trajkovic, S.; Kolakovic, S. Evaluation of reference evapotranspiration equations under humid conditions. Water Resour. Manag. 2009, 23, 3057–3067. [Google Scholar] [CrossRef]
- Peng, L.; Li, Y.; Feng, H. The best alternative for estimating reference crop evapotranspiration in different sub-regions of mainland China. Sci. Rep. 2017, 7, 5458. [Google Scholar] [CrossRef]
- Shirmohammadi-Aliakbarkhani, Z.; Saberali, S.F. Evaluating of eight evapotranspiration estimation methods in arid regions of Iran. Agric. Water Manag. 2020, 239, 106243. [Google Scholar] [CrossRef]
- Aparecido, L.E.d.O.; de Meneses, K.C.; Torsoni, G.B.; de Moraes, J.R.d.S.C.; Mesquita, D.Z. Accuracy of potential evapotranspiration models in different time scales. Rev. Bras. Meteorol. 2020, 35, 63–80. [Google Scholar] [CrossRef]
- Paparrizos, S.; Maris, F.; Matzarakis, A. Sensitivity analysis and comparison of various potential evapotranspiration formulae for selected Greek areas with different climate conditions. Theor. Appl. Climatol. 2017, 128, 745–759. [Google Scholar] [CrossRef]
- Lu, J.; Sun, G.; McNulty, S.G.; Amatya, D.M. A comparison of six potential evapotranspiration methods for regional use in the southeastern United States. J. Am. Water Resour. Assoc. 2005, 41, 621–633. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Federer, C.A.; Schloss, A.L. Potential evaporation functions compared on US watersheds: Possible implications for global-scale water balance and terrestrial ecosystem modeling. J. Hydrol. 1998, 207, 147–169. [Google Scholar] [CrossRef]
- Federer, C.A.; Vörösmarty, C.; Fekete, B. Intercomparison of Methods for Calculating Potential Evaporation in Regional and Global Water Balance Models. Water Resour. Res. 1996, 32, 2315–2321. [Google Scholar] [CrossRef]
- Askari, M.; Mustafa, M.A.; Setiawan, B.I.; Soom, M.A.M.; Harun, S.; Abidin, M.R.Z.; Yusop, Z. A combined sensitivity analysis of seven potential evapotranspiration models. J. Teknol. 2015, 76, 61–68. [Google Scholar] [CrossRef]
- Ansorge, L.; Beran, A. Performance of simple temperature-based evaporation methods compared with a time series of pan evaporation measures from a standard 20 m2 tank. J. Water Land Dev. 2019, 41, 1–11. [Google Scholar] [CrossRef]
- Santos, R.D.S.; de Souza, M.H.C.; de Carvalho Bispo, R.; Ventura, K.M.; Bassoi, L.H. Comparação entre métodos de estimativa da evapotranspiração de referência para o município de Petrolina, PE. Irriga 2017, 1, 31–39. [Google Scholar] [CrossRef]
- Zhao, L.; Xu, F.; Xia, J.; Wu, H. Applicability of 12 PET estimation methods in different climate regions in China. Hydrol. Res. 2021, 52, 636–657. [Google Scholar] [CrossRef]
- McCabe, G.J.; Hay, L.E.; Bock, A.; Markstrom, S.L.; Atkinson, R.D. Inter-annual and spatial variability of Hamon potential evapotranspiration model coefficients. J. Hydrol. 2015, 521, 389–394. [Google Scholar] [CrossRef]
Dataset Name | Variables | Spatial Resolution | Temporal Extent | Source |
---|---|---|---|---|
Princeton Global Meteorological Forcing (PGF) | Tmax, Tmin, RH, WS, SP and SR | 0.25° × 0.25° | 1948–2016 | http://hydrology.princeton.edu/data/pgf/v3/0.25deg/daily/ (accessed on 1 May 2022) |
No | Model | References | Parameter | |
---|---|---|---|---|
Temperature-based | 1 | Hamon | [76] | T |
2 | Blaney–Criddle | [77] | T | |
3 | Linacre | [78] | T | |
4 | Kharufa | [79] | T | |
5 | Hargreaves–Samani | [80] | T, Tmin, Tmax, Ra | |
6 | Trajkovic | [81] | T, Tmin, Tmax, Ra | |
7 | Ravazzani | [82] | T, Tmin, Tmax, Ra | |
RH-based | 1 | Ivanov | [83] | T, RH |
2 | Papadakis | [84] | T, RH | |
3 | Schendel | [85] | T, RH | |
Radiation-based | 1 | Makkink | [86] | T, Rs |
2 | Turc | [87] | T, Rs, RH | |
3 | Jensen–Haise | [88] | T, Rs | |
4 | Priestley–Taylor | [89] | T, Rs, RH | |
5 | McGuinness–Bordne | [90] | T, Rs | |
6 | Caprio | [91] | T, Rs | |
7 | Ritchie | [92] | Tmin, Tmax, Rs | |
8 | Abtew | [93] | T, Rs | |
9 | Irmak-Rs | [94] | T, Rs | |
10 | Irmak-Rn | [94] | T, Rs, RH | |
Mass transfer-based | 1 | Dalton | [95] | T, RH, u |
2 | Trabert | [96] | ||
3 | Meyer | [97] | ||
4 | Rohwer | [98] | ||
5 | Penman | [32] | ||
6 | Albrecht | [99] | ||
7 | Brockamp–Wenner | [100] | ||
8 | WMO | [101] | ||
9 | Mahringer | [102] | ||
10 | Szasz | [103] |
1st | 2nd | 3rd | |
---|---|---|---|
All equations rank | |||
Model name | Hamon | Penman | HS |
MCGDM Index | 1027.12 | 599.71 | 528.04 |
Temperature-based equations rank | |||
Model name | Hamon | HS | Kharu |
MCGDM Index | 1027.12 | 528.04 | 349.59 |
RH-based equations rank | |||
Model name | Ivan | Papa | Schen |
MCGDM Index | 147.03 | 99.06 | 21.12 |
Radiation-based equations rank | |||
Model name | Irmak-RS | Capr | McGui |
MCGDM Index | 223.72 | 129.00 | 84.45 |
Mass transfer-based equations rank | |||
Model name | Penman | Szas | WMO |
MCGDM Index | 599.71 | 195.69 | 112.72 |
Model | KGE | md | PBIAS | NRMSE | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
hs | 3 | 2 | 2 | 23 | 24 | 3 | 11 | 7 | 22 | 11 | 3 | 5 | 5 | 22 | 23 | 4 | 11 | 7 | 21 | 16 |
Makkink | 27 | 27 | 27 | 7 | 7 | 28 | 28 | 27 | 16 | 15 | 28 | 28 | 28 | 4 | 5 | 27 | 28 | 27 | 22 | 24 |
Turc | 25 | 25 | 25 | 24 | 27 | 25 | 23 | 24 | 4 | 1 | 23 | 13 | 19 | 12 | 22 | 25 | 25 | 25 | 4 | 1 |
PriesT | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
Dalt | 15 | 17 | 15 | 15 | 13 | 13 | 10 | 12 | 13 | 20 | 18 | 21 | 16 | 17 | 18 | 12 | 9 | 12 | 11 | 15 |
Trab | 14 | 14 | 13 | 11 | 9 | 7 | 6 | 6 | 10 | 19 | 16 | 15 | 15 | 16 | 16 | 6 | 4 | 5 | 6 | 13 |
Mayer | 12 | 13 | 12 | 10 | 11 | 10 | 9 | 11 | 11 | 16 | 15 | 14 | 13 | 11 | 13 | 10 | 8 | 11 | 9 | 12 |
Robw | 17 | 18 | 18 | 19 | 12 | 9 | 8 | 10 | 14 | 21 | 19 | 22 | 18 | 19 | 20 | 9 | 7 | 10 | 12 | 18 |
Penman | 2 | 3 | 3 | 4 | 6 | 2 | 2 | 1 | 5 | 7 | 4 | 4 | 4 | 7 | 6 | 2 | 2 | 1 | 1 | 5 |
Albre | 19 | 21 | 21 | 25 | 14 | 8 | 7 | 9 | 17 | 25 | 21 | 24 | 25 | 25 | 25 | 8 | 5 | 8 | 14 | 22 |
Ivan | 9 | 7 | 7 | 12 | 17 | 17 | 17 | 17 | 12 | 8 | 10 | 8 | 10 | 14 | 15 | 16 | 14 | 16 | 13 | 7 |
Hamon | 1 | 1 | 1 | 8 | 21 | 1 | 4 | 4 | 25 | 24 | 1 | 2 | 1 | 13 | 11 | 1 | 6 | 3 | 25 | 25 |
Jensen | 23 | 24 | 23 | 2 | 2 | 23 | 13 | 18 | 3 | 6 | 24 | 18 | 21 | 3 | 3 | 24 | 23 | 23 | 10 | 4 |
Brock | 18 | 20 | 20 | 22 | 16 | 15 | 12 | 14 | 18 | 22 | 20 | 23 | 23 | 24 | 24 | 14 | 10 | 13 | 15 | 19 |
Papa | 8 | 10 | 8 | 18 | 20 | 14 | 15 | 15 | 21 | 23 | 7 | 12 | 11 | 20 | 19 | 13 | 15 | 14 | 18 | 23 |
WMO | 11 | 8 | 9 | 5 | 4 | 4 | 3 | 3 | 7 | 18 | 12 | 7 | 9 | 8 | 9 | 3 | 1 | 2 | 3 | 10 |
Schen | 16 | 16 | 19 | 20 | 18 | 11 | 16 | 13 | 8 | 2 | 17 | 16 | 20 | 16 | 8 | 11 | 12 | 9 | 7 | 2 |
Mahr | 13 | 12 | 11 | 6 | 8 | 6 | 5 | 5 | 9 | 17 | 14 | 11 | 12 | 10 | 12 | 5 | 3 | 4 | 5 | 11 |
McGui | 26 | 26 | 26 | 9 | 3 | 26 | 26 | 25 | 6 | 10 | 27 | 27 | 27 | 1 | 1 | 26 | 26 | 26 | 19 | 14 |
Szas | 6 | 6 | 6 | 13 | 15 | 16 | 19 | 16 | 19 | 9 | 8 | 9 | 7 | 18 | 14 | 15 | 16 | 15 | 17 | 9 |
Capr | 24 | 23 | 24 | 1 | 1 | 24 | 14 | 19 | 1 | 4 | 25 | 20 | 22 | 2 | 2 | 23 | 22 | 22 | 8 | 6 |
BlanC | 21 | 19 | 17 | 17 | 23 | 19 | 24 | 23 | 28 | 26 | 2 | 3 | 3 | 23 | 21 | 22 | 24 | 24 | 27 | 26 |
Linac | 5 | 5 | 5 | 21 | 22 | 20 | 22 | 21 | 15 | 5 | 6 | 10 | 8 | 21 | 17 | 18 | 20 | 19 | 16 | 8 |
Kharu | 4 | 4 | 4 | 16 | 19 | 5 | 18 | 8 | 20 | 12 | 5 | 6 | 6 | 9 | 10 | 7 | 17 | 6 | 20 | 17 |
Ritch | 20 | 22 | 22 | 28 | 28 | 22 | 25 | 26 | 26 | 27 | 22 | 26 | 26 | 28 | 28 | 20 | 21 | 21 | 26 | 27 |
Abtew | 28 | 28 | 28 | 14 | 10 | 27 | 27 | 28 | 27 | 28 | 26 | 25 | 24 | 6 | 7 | 28 | 29 | 28 | 28 | 28 |
Irmak-RS | 22 | 15 | 16 | 3 | 5 | 12 | 1 | 2 | 2 | 3 | 11 | 1 | 2 | 5 | 4 | 21 | 13 | 17 | 2 | 3 |
Irmak-RN | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 27 | 29 | 29 | 29 |
Traj | 7 | 9 | 10 | 26 | 25 | 18 | 20 | 20 | 23 | 14 | 9 | 17 | 14 | 26 | 26 | 17 | 18 | 18 | 23 | 20 |
Ravaz | 10 | 11 | 14 | 27 | 26 | 21 | 21 | 22 | 24 | 13 | 13 | 19 | 17 | 27 | 27 | 19 | 19 | 20 | 24 | 21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamed, M.M.; Khan, N.; Muhammad, M.K.I.; Shahid, S. Ranking of Empirical Evapotranspiration Models in Different Climate Zones of Pakistan. Land 2022, 11, 2168. https://doi.org/10.3390/land11122168
Hamed MM, Khan N, Muhammad MKI, Shahid S. Ranking of Empirical Evapotranspiration Models in Different Climate Zones of Pakistan. Land. 2022; 11(12):2168. https://doi.org/10.3390/land11122168
Chicago/Turabian StyleHamed, Mohammed Magdy, Najeebullah Khan, Mohd Khairul Idlan Muhammad, and Shamsuddin Shahid. 2022. "Ranking of Empirical Evapotranspiration Models in Different Climate Zones of Pakistan" Land 11, no. 12: 2168. https://doi.org/10.3390/land11122168
APA StyleHamed, M. M., Khan, N., Muhammad, M. K. I., & Shahid, S. (2022). Ranking of Empirical Evapotranspiration Models in Different Climate Zones of Pakistan. Land, 11(12), 2168. https://doi.org/10.3390/land11122168