Impacts of Extension Contact on the Adoption of Formulated Fertilizers and Farm Performance among Large-Scale Farms in Rural China
Abstract
:1. Introduction
2. Overview of Agricultural Extension Systems in China
3. Research Hypothesis and Method
3.1. Research Hypothesis
3.2. Method
3.2.1. Two-Stage Controlled Function Model
3.2.2. Propensity Score Matching
3.3. Study Area and Data Collection
4. Results and Discussion
4.1. Effect of Extension Contact on Large-Scale Farmers’ Adoption Behaviour
4.1.1. Descriptive Statistics
4.1.2. Empirical Results
4.2. Effect of Extension Contacts on LSF’s Productivity and Nutrient Use Amount
4.2.1. Descriptive Statistics
4.2.2. Empirical Results
4.3. Robustness Check and Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ittersum, M.V.; Bussel, L.V.; Wolf, J.; Grassini, P.; Wart, J.V.; Guilpart, N. Can sub-Saharan Africa feed itself? Proc. Natl. Acad. Sci. USA 2016, 52, 14964–14969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, D. The spatial-temporal difference of driving effects for fertilizer use intensity change and its determinants in China. Econ. Geogr. 2014, 34, 121–126. [Google Scholar]
- Zhao, L.; Wang, C.W.; Gu, H.Y.; Yue, C.Y. Market incentive, government regulation and the behavior of pesticide application of vegetable farmers in China. Food Control. 2018, 85, 308–317. [Google Scholar] [CrossRef]
- China Economic Network. Sinochem Group Launched a New Mode of Agricultural Enterprise Cooperation to Help Zero Growth of Fertilizer. Available online: http://www.sinochem.com/m/s/9509-26567-19775.html (accessed on 14 September 2022).
- Sun, Z. Development and status of formula fertilizer by soil testing project. Mod. Agric. Sci. Technol. 2009, 15, 290–291. [Google Scholar]
- Zhang, F.S. Why the amount of chemical fertilizer has increased during the implementation of formula fertilizer by soil testing. Farmers’ Consult. 2012, 5, 4–6. [Google Scholar]
- Guo, W.X.; Fu, Y.C.; Ruan, B.Q.; Ge, H.F.; Zhao, N.N. Agricultural non-point source pollution in the Yongding River Basin. Ecol Indic. 2014, 36, 254–261. [Google Scholar]
- Agumagu, A.; Nwaogwugwu, O.N. Extension agents’ commitment to extension work in Abia and Rivers States, Nigeria. Glob. Approaches Ext. Pract. J. Agric. Ext. 2006, 1, 50–59. [Google Scholar]
- Gao, Y.; Zhao, D.; Yu, L.; Yang, H. Influence of a new agricultural technology extension mode on farmers’ technology adoption behavior in China. J. Rural. Stud. 2020, 76, 173–183. [Google Scholar] [CrossRef]
- Islam, M.M.; Grey, D.I.; Reid, J.I.; Kelly, T.; Kemp, P.D. Beyond recurrent costs: An institutional analysis of the unsustain-ability of donor-supported reforms in agricultural extension. J. Int. Agric. Ext. Educ. 2011, 1, 5–18. [Google Scholar] [CrossRef]
- Reynar, R.; Bruening, T. Agricultural extension issues perceptions of Bangladesh T&V extension personnel. Int. J. Agric. Ext. Educ. 1996, 3, 53–62. [Google Scholar]
- Porimol, P.; Sarker, R.; Islam, A. New rice varieties smile at Monga hit people. Daily Star 2008. [Google Scholar]
- Patuakhali. Pest attack affects Aman paddy yield in Netrokona. Daily Star 2008. [Google Scholar]
- Nakano, Y.; Tsusaka, T.W.; Aida, T.; Pede, V.O. Is farmer-to-farmer extension effective? The impact of training on technology adoption and rice farming productivity in Tanzania. World Dev. 2018, 105, 336–351. [Google Scholar] [CrossRef] [Green Version]
- Swanson, B.E. Assessment of Bangladesh’s Pluralistic Extension System: A MEAS Rapid Scoping Mission in Bangladesh. Modernizing Extension and Advisory Services Project. Report prepared for USAID. 2011. Available online: https://pdf.usaid.gov/pdf_docs/PBAAK795.pdf (accessed on 12 September 2022).
- Zhongyuan Media. Report on New Agricultural Operating Entities’ Land Transfer. Available online: http://www.sohu.com/a/284996570_120043327 (accessed on 12 September 2022).
- Xinhua News Agency. In China, about 98% Farmers are Smallholders Working on Farm Less than 1 Hectors. Available online: http:www.gov.cn/xinwen/2019-03/01/content_5369755.htm (accessed on 14 September 2022).
- Fadare, O.A.; Akerele, D.; Toritseju, B. Factors influencing adoption decisions of maize farmers in Nigeria. Int. J. Food Agric. Econ. 2014, 3, 45–54. [Google Scholar]
- Boniphace, N.S.; Fengying, N.; Chen, F. An analysis of smallholder farmers’ socio-economic determinants for inputs use: A case of major rice producing regions in Tanzania. Russ. J. Agric. Socio-Econ. Sci. 2015, 2, 41–45. [Google Scholar] [CrossRef]
- Langat, B.K.; Ngéno, V.K.; Nyangweso, P.M.; Mutwol, M.J.; Gohole, L.; Yaninek, S. Drivers of technology adoption in a subsistence economy: The case of tissue culture bananas in Western Kenya. In Proceedings of the 4th International Conference of the African Association of Agricultural Economists, Hammamet, Tunisia, 22–25 September 2013. [Google Scholar]
- Dejene, A. The training and visit agricultural extension in rainfed agriculture: Lessons from Ethiopia. World Dev. 1989, 17, 1647–1659. [Google Scholar] [CrossRef]
- Feder, G. Growth in Semi-Industrial Countries: A Statistical Analysis. Industrialization and Growth: A Comparative Analysis; Cheney, B., Syrquin, M., Robinson, S., Eds.; Oxford University Press: Oxford, UK, 1986. [Google Scholar]
- Feder, G. Land ownership security and farm productivity: Evidence from Thailand. J. Dev. Stud. 1987, 24, 16–30. [Google Scholar] [CrossRef]
- Feder, G.; Slade, R. The impact of agricultural extension: The training and visit system in India. World Bank Res. Obs. 1986, 1, 139–161. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.; Lanjouw, P.; Stern, N. Income inequalities in China: Evidence from household survey data. World Dev. 1994, 22, 1947–1957. [Google Scholar] [CrossRef]
- Sheikh, A.; Rehman, T.; Yates, C. Logit models for identifying the factors that influence the uptake of new ‘no-tillage’ technologies by farmers in the rice–wheat and the cotton–wheat farming systems of Pakistan’s Punjab. Agric. Syst. 2003, 75, 79–95. [Google Scholar]
- Walisinghe, B.R.; Ratnasiri, S.; Rohde, N.; Guest, R.S. Does agricultural extension promote technology adoption in Sri Lanka. Int. J. Soc. Econ. 2017, 12, 2173–2186. [Google Scholar] [CrossRef]
- Malima, G.; Eshetie, S.; Rahaman, A.; Mrosso, P.; Witteveen, L. Purchasing and up-scaling of the privatized advisory services: An innovation perspective on privatized soil testing in Africa. Community Dev. 2020, 51, 230–242. [Google Scholar] [CrossRef]
- Ajayi, M.T.; Solomon, O. Influence of extension contact and farmers’ socio-economic characteristics on adoption of oil palm technologies in Aniocha north local government, Delta State, Nigeria. J. Agric. Technol. 2010, 2, 35–46. [Google Scholar]
- Axinn, G.H. T&V (Tragic and Vain) extension? Interpaks Interchange 1988, 5, 6. [Google Scholar]
- Roling, N.G. Extension Science: Information Systems in Agricultural Development; Wye Studies in Agricultural and Rural Development; Cambridge University Press: London, UK, 1988. [Google Scholar]
- The Website of the Ministry of Agriculture, China. Available online: http://www.moa.gov.cn/sjzz/jgs/chinafamilyfarm/xwjj/201709/t20170921_5822045.htm (accessed on 13 November 2017).
- Haq, A.Z.M. Agricultural extension contact and farmer’s income in Bangladesh. Turk. J. Agric. Food Sci. Technol. 2016, 4, 787–792. [Google Scholar]
- Genius, M.; Koundouri, P.; Nauges, C.; Tzouvelekas, V. Information transmission in irrigation technology adoption and diffusion: Social learning, extension services, and spatial effects. Am. J. Agric. Econ. 2014, 96, 328–344. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Rahut, D.B. Impact of agricultural extension services on technology adoption and crops yield: Empirical evidence from Pakistan. Asian J. Agric. Rural. Dev. 2013, 3, 801–812. [Google Scholar]
- Waddington, S.R.; Li, X.; Dixon, J.; Hyman, G.; De Vicente, M.C. Getting the focus right: Production constraints for six major food crops in Asian and African farming systems. Food Secur. 2010, 2, 27–48. [Google Scholar] [CrossRef]
- Rivera, W.M.; Alex, G. Extension system reform and the challenges ahead. J. Agric. Educ. Ext. 2004, 1, 23–36. [Google Scholar] [CrossRef]
- Ayoola, J.B. Socio-economic determinants of the adoption of yam minisett technology in the Middle Belt region of Nigeria. J. Agric. Sci. 2012, 6, 215–222. [Google Scholar] [CrossRef] [Green Version]
- James, Z.; Julius, M. Determinants of choice of crop variety as climate change adaptation option in arid regions of Zimbabwe. Russ. J. Agric. Socio-Econ. Sci. 2013, 15, 54–62. [Google Scholar]
- Freedman, D.A.; Sekhon, J.S. Endogeneity in probit response models. Political Anal. 2010, 18, 138–150. [Google Scholar] [CrossRef]
- Diagne, A.; Demont, M. Taking a new look at empirical models of adoption: Average treatment effect estimation of adoption rates and their determinants. Agric. Econ. 2007, 37, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Owens, T.; Hoddinott, J.; Kinsey, B. The impact of agricultural extension on farm production in resettlement areas of Zimbabwe. Econ. Dev. Cult. Change 2003, 51, 337–357. [Google Scholar] [CrossRef] [Green Version]
- Rogers, E.M. Diffusion of Innovations, 5th ed.; Free Press: New York, NY, USA, 2003. [Google Scholar]
- Gao, J.J.; Shi, Q.H. Research on the reduction and control strategy of agricultural chemical inputs from the perspective of supply. Xinjiang State Farms Econ. 2021, 9, 1–13. [Google Scholar]
- Goodhue, D.L.; Thompson, R.L. Task technology fit and individual performance. MIS Q. 1995, 19, 213–236. [Google Scholar] [CrossRef]
- Adams, O.R. Climate Variability and Adaptation Strategies in Cassava Production in Ogun State, Nigeria; Federal University of Agriculture: Abeokuta, Nigeria, 2015. [Google Scholar]
- Boansi, D.; Tambo, J.A.; Müller, M. Analysis of farmers’ adaptation to weather extremes in West African Sudan Savanna. Weather Clim. Extrem. 2017, 16, 1–13. [Google Scholar] [CrossRef]
- Rafiat Ogunpaimo, O.; Oyetunde-Usman, Z.; Surajudeen, J. Impact of climate change adaptation on household food security in Nigeria a difference-in-difference approach. Sustainability 2021, 13, 1444. [Google Scholar] [CrossRef]
- Lin, Y.F. Chinese Agriculture in the Exchange of Elements Market is Prohibited Under the Technology Choice; Shanghai People’s Press: Shanghai, China, 1994. [Google Scholar]
- Ayalew, H.; Chamberlin, J.; Newman, C. Site-specifific agronomic information and technology adoption: A field experiment from Ethiopia. J. Dev. Econ. 2022, 156, 102788. [Google Scholar]
- Xu, Z.G.; Zhang, J.Y.; Lv, K.Y. The scale of operation, term of land ownership and the adoption of inter-temporal agricultural technology: An example of returning straw to farmland directly. Chin. Rural Econ. 2018, 3, 61–74. [Google Scholar]
- Arouna, A.; Michler, J.D.; Yergo, W.G.; Saito, K. One size fits all? Experimental evidence on the digital delivery of personalized extension advice in Nigeria. Am. J. Agric. Econ. 2021, 103, 596–619. [Google Scholar] [CrossRef]
- Due, J.M.; Naftali, M.; Malone, V. Does the T&V system reach female-headed families? Some evidence from Tanzania. Agric. Adm. Ext. 1987, 26, 209–217. [Google Scholar]
- Khan, M.J.; Sharif, M.; Sarwar, M. Monitoring and evaluation of training and visit system of agricultural extension in Punjab, Pakistan. Adm. Role 1984, 44, 80. [Google Scholar]
- Uduji, J.I.; Okolo-Obasi, E.N.; Asongu, S.A. Growth enhancement support scheme (GESS) and farmers’ fertilizer use in rural Nigeria. Afr. Dev. Rev. 2019, 31, 348–363. [Google Scholar] [CrossRef] [Green Version]
- Akpan, S.B.; Aya, A.E. Determinants of fertilizer use among small-holder farmers in wetland region of Cross River State. Glob. J. Agric. Sci. 2009, 8, 195–201. [Google Scholar] [CrossRef]
- Rurinda, J.; Zingore, S.; Jibrin, J.M.; Balemi, T.; Masuki, K.; Andersson, J.A.; Craufurd, P.Q. Science-based decision support for formulating crop fertilizer recommendations in sub-Saharan Africa. Agric. Syst. 2020, 180, 102790. [Google Scholar] [CrossRef] [PubMed]
- Lawin, K.G.; Tamini, L.D. Tenure security and farm effificiency analysis correcting for biases from observed and unobserved variables: Evidence from Benin. J. Agric. Econ. 2019, 70, 116–134. [Google Scholar] [CrossRef] [Green Version]
- Daxini, A.; O’Donoghue, C.; Ryan, M.; Buckley, C.; Barnes, A.; Daly, K. Which factors influence farmers’ intentions to adopt nutrient management planning? J. Environ. Manag. 2018, 224, 350–360. [Google Scholar] [CrossRef]
- Jia, X.; Huang, J.; Xiang, C.; Powlson, D. Reducing excessive nitrogen use in Chinese wheat production through knowledge training: What are the implications for the public extension system? Agroecol. Sustain. Food Syst. 2015, 39, 189–208. [Google Scholar] [CrossRef]
- Rajkhowa, P.; Qaim, M. Personalized digital extension services and agricultural performance: Evidence from smallholder farmers in India. PLoS ONE 2021, 16, e0259319. [Google Scholar] [CrossRef]
- Jia, X.; Huang, J.; Xiang, C.; Hou, L.; Zhang, F.; Chen, X. Farmer’s adoption of improved nitrogen management strategies in maize production in China: An experimental knowledge training. J. Integr. Agric. 2013, 12, 364–373. [Google Scholar] [CrossRef]
- Judge, G.; Hill, R.; Griffiths, W.; Lutkepohl, H.; Lee, T.C. Introduction to the Theory and Practice of Econometrics; John Wiley: Hoboken, NJ, USA, 1982. [Google Scholar]
- Wooldridge, J.M. Quasi-maximum likelihood estimation and testing for nonlinear models with endogenous explanatory variables. J. Econom. 2014, 182, 226–234. [Google Scholar] [CrossRef]
- Lloyd-Smith, P.; Schram, C.; Adamowicz, W.; Dupont, D. Endogeneity of risk perceptions in averting behavior models. Environ. Resour. Econ. 2018, 69, 217–246. [Google Scholar] [CrossRef]
- Abdulai, A.; Owusu, V.; Goetz, R. Land tenure differences and investment in land improvement measures: Theoretical and empirical analyses. J. Dev. Econ. 2011, 96, 66–78. [Google Scholar] [CrossRef]
- Rosenbaum, P.; Rubin, D. The central role of propensity score matching in observational studies for causal effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Smith, J.; Todd, P. Does matching overcome Lalonde’s critique of nonexperimental estimators? J. Econom. 2005, 125, 305–353. [Google Scholar] [CrossRef] [Green Version]
- Becker, S.O.; Ichino, A. Estimation of average treatment effects based on propensity scores. Stata J. 2002, 2, 358–377. [Google Scholar] [CrossRef] [Green Version]
- Dehejia, R.H.; Wahba, S. Causal effects in nonexperimental studies. J. Am. Stat. Assoc. 1999, 94, 1053–1062. [Google Scholar] [CrossRef]
- Gao, J.J.; Peng, C.; Shi, Q.H. Study on the high chemical fertilizers consumption and fertilization behavior of small rural household in China: Discovery from 1995–2016 National Fixed Point Survey Data. Manag. World 2019, 10, 120–132. [Google Scholar]
- Haq, A.Z.M. The impact of agricultural extension contact on crop income in Bangladesh. Bangladesh J. Agric. Res. 2013, 38, 321–334. [Google Scholar] [CrossRef]
- Matshe, I.; Young, T. Off-farm labour allocation decisions in small-scale rural households in Zimbabwe. Agric. Econ. 2004, 30, 175–186. [Google Scholar] [CrossRef]
- Feder, G. The relation between farm size and farm productivity: The role of family labor, supervision and credit con-straints. J. Dev. Econ. 1985, 18, 297–313. [Google Scholar] [CrossRef]
- Thangata, P.; Alavalapati, J. Agroforestry adoption in southern Malawi: The case of mixed intercropping of Gliricidia sepium and maize. Agric. Syst. 2003, 78, 57–71. [Google Scholar] [CrossRef]
- Baerenklau, K.A. Toward an understanding of technology adoption: Risk, learning, and neighborhood effects. Land Econ. 2005, 81, 1–19. [Google Scholar] [CrossRef]
- Wossen, T.; Berger, T.; Falco, S.D. Social capital, risk preference and adoption of improved farm land management practices in Ethiopia. Agric. Econ. 2015, 46, 81–97. [Google Scholar] [CrossRef]
- Akhtar, S.; LI, G.C.; Ullah, R.; Nazir, A.; Iqbal, M.A.; Raza, M.H.; Iqbal, N.; Faisal, M. Factors influencing hybrid maize farmers’ risk attitudes and their perceptions in Punjab Province, Pakistan. J. Integr. Agric. 2018, 17, 1454–1462. [Google Scholar] [CrossRef]
- Liu, E.M. Time to change what to sow: Risk preferences and technology adoption decisions of cotton farmers in China. Rev. Econ. Stat. 2013, 95, 1386–1403. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.X.; Ali, S.; Akbar, A.; Rasool, F. Determining the influencing factors of biogas technology adoption intention in Pakistan: The moderating role of social media. Int. J. Environ. Res. Public Health 2020, 17, 2311. [Google Scholar] [CrossRef] [Green Version]
- Croppenstedt, A.; Demeke, M.; Meschi, M.M. Technology adoption in the presence of constraints: The case of fertilizer demand in Ethiopia. Rev. Dev. Econ. 2003, 7, 58–70. [Google Scholar] [CrossRef]
- De Graaff, J.; Amsalu, A.; Bodnar, F.; Kessler, A.; Posthumus, H.; Tenge, A. Factors influencing adoption and continued use of long-term soil and water conservation measures in five developing countries. Appl. Geogr. 2008, 28, 271–280. [Google Scholar] [CrossRef]
- Knowler, D.; Bradshaw, B. Farmers’ adoption of conservation agriculture: A review and synthesis of recent research. Food Policy 2007, 32, 25–48. [Google Scholar] [CrossRef]
- Jensen, L.P.; Picozzi, K.; De Almeida, O.D.C.M.; Da Costa, M.D.J.; Spyckerelle, L.; Erskine, W. Social relationships impact adoption of agricultural technologies: The case of food crop varieties in Timor-Leste. Food Secur. 2014, 6, 397–409. [Google Scholar] [CrossRef]
- Luo, J.; Feng, Y.; Shi, P. Farm households’ adoption behavior of environment friendly technology and the evaluation of their environmental and economic effects in Taihu Basin-taking formula fertilization by soil testing technology as an example. J. Nat. Resour. 2013, 28, 1891–1902. [Google Scholar]
- Alene, A.D.; Manyong, V. The effects of education on agricultural productivity under traditional and improved technology in northern Nigeria: An endogenous switching regression analysis. Empir. Econ. 2007, 1, 141–159. [Google Scholar] [CrossRef]
- Barrett, C.B.; Place, F.; Aboud, A.A. Natural resources management in African agriculture: Understanding and improving current practices. J. Afr. Econ. 2002, 11, 591–595. [Google Scholar]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [Green Version]
- Ju, X.T.; Xing, G.X.; Chen, X.P.; Zhang, S.L.; Zhang, L.J.; Liu, X.J.; Cui, Z.L.; Yin, B.; Christie, P.; Zhu, Z.L. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.S. An Analysis of the Efficiency of Cotton Farmers in the Punjab Province in Pakistan. Ph.D. Thesis, University of New England, Armidale, Australia, 1999. [Google Scholar]
- Spielman, D.; Lecoutere, E.; Makhija, S.; Van Campenhout, B. Information and communications technology (ICT) and agricultural extension in developing countries. Annu. Rev. Resour. Econ. 2021, 13, 177–201. [Google Scholar] [CrossRef]
- Roeling, N.G. Appropriate opportunities as well as appropriate technology. Ceres 1984, 97, 15–19. [Google Scholar]
1 | Whether the difference between contacting and no contacting is significant |
Variable | Description | Mean | S.D. a | Expected Impact |
---|---|---|---|---|
Dependent variable | ||||
Adoption behavior | 1 if an LSF adopted soil testing and formulated fertilization technologies; 0 otherwise | 0.19 | − | − |
Key explanatory variable | ||||
Contact with extension staff | 1 if an LSF contacted promoters; 0 otherwise | 0.62 | − | + |
Other control variables | ||||
LSFs’ gender | 1 if an LSF is male; 0 otherwise | 0.98 | − | + |
LSFs’ age | Age of the LSF (in years) | 49.77 | 8.23 | − |
LSFs’ education level | Years of schooling that the LSF had (years) | 8.64 | 3.26 | + |
LSFs’ village cadres identity | 1 if LSFs have been village cadres; 0 otherwise | 0.31 | − | + |
LSFs’ off-farm experience | 1 if the LSFs has had off-farm experience; 0 otherwise | 0.63 | − | + |
Farming experience | Experience of smallholder farming in number of years | 22.27 | 13.83 | − |
Risk preference b | 1 if completely risk averse; 2 if risk averse; 3 if this is not known; 4 if risk-loving; 5 if very risk-loving | 2.89 | 0.56 | + |
Awareness of fertilizer zero growth target | 1 if very ignorant; 2 if ignorant; 3 for those with general knowledge; 4 if knowledgeable; 5 if very knowledgeable | 2.30 | 1.19 | + |
Laborers in a household | Number of laborers in the household | 3.54 | 1.20 | + |
Cars | Number of cars in the household | 0.35 | 0.58 | + |
Motorcycles | Number of motorcycles in the household | 0.61 | 0.67 | + |
Trucks | Number of trucks in the household | 0.06 | 0.29 | + |
Tractors | Number of tractors in the household | 1.07 | 1.61 | + |
Fertilizer distributors | Number of fertilizer distributors in the household | 0.19 | 0.82 | + |
Plough machines | Number of plough machines in the household | 0.22 | 1.31 | + |
Rotary cultivators | Number of rotary cultivators in the household | 0.69 | 1.91 | + |
Seeders | Number of seeders in the household | 0.16 | 0.63 | + |
Farm size | Total size of cultivated land (ha) by household | 18.64 | 32.61 | +/− |
County distance | The distance from home to the nearest county (km) | 21.35 | 12.77 | − |
Distance to bank | The distance from home to local bank (km) | 5.26 | 21.69 | − |
Prefectural IDs c | Controlled | − | − | − |
IV variable | ||||
Agricultural disaster | 1 if crop production has suffered from disasters; 0 otherwise | 0.47 | 0.50 | − |
Variables | Marginal Effect | Standard Error (Delta Method) |
---|---|---|
Extension contacts, 1 = yes | 0.62 ** | 0.28 |
LSFs’ gender, 1 = male | −0.09 | 0.12 |
LSFs’ age, in years | 0.01 | 0.00 |
LSFs’ education level, in years | 0.01 ** | 0.01 |
LSFs’ village cadre identity, 1 = yes | −0.07 | 0.04 |
LSFs’ off-farm experience, 1 = yes | 0.04 | 0.03 |
Farming experience, in years | 0.00 | 0.00 |
Risk preference, 1 if completely risk averse … 5 if very risk-loving | 0.01 | 0.03 |
Awareness of fertilizer zero growth target, 1 if very ignorant … 5 if very knowledgeable | 0.01 | 0.01 |
Laborers in a household, in numbers | 0.00 | 0.01 |
Farm size, in ha | 0.00 | 0.00 |
Cars, in numbers | 0.00 | 0.03 |
Motorcycles, in numbers | −0.01 | 0.02 |
Trucks, in numbers | 0.00 | 0.05 |
Tractors, in numbers | −0.00 | 0.01 |
Fertilizer distributors, in numbers | 0.01 | 0.02 |
Plough machines, in numbers | −0.00 | 0.01 |
Rotary cultivators, in numbers | −0.01 | 0.01 |
Seeders, in numbers | −0.00 | 0.03 |
County distance, in km | −0.00 | 0.00 |
Distance to bank, in km | −0.00 ** | 0.00 |
Residual (extension contact) | −0.19 * | 0.11 |
Constant | −3.46 *** | 1.05 |
City IDs | Yes | |
Prob > chi2 | 0.00 | |
Pseudo R2 | 0.12 |
Variables | All Sample | Contacting | No Contacting | Mean Value Differences 1 |
---|---|---|---|---|
Household characteristics | ||||
| 0.98 | 0.98 | 0.99 | −0.01 |
(0.13) | (0.01) | (0.01) | (0.01) | |
| 49.40 | 49.23 | 49.67 | −0.44 |
(8.13) | (0.41) | (0.55) | (0.68) | |
| 8.72 | 9.38 | 7.65 | 1.73 *** |
(3.23) | (0.16) | (0.21) | (0.26) | |
| 0.31 | 0.35 | 0.25 | 0.10 *** |
(0.46) | (0.02) | (0.03) | (0.04) | |
| 21.62 | 20.96 | 22.71 | −1.75 |
(13.55) | (0.68) | (0.94) | (1.13) | |
| 0.63 | 0.66 | 0.68 | 0.09 |
(0.48) | (0.02) | (0.03) | (0.04) | |
| 0.26 | 0.25 | 0.28 | −0.03 ** |
(0.21) | (0.01) | (0.01) | (0.02) | |
| 3.54 | 3.51 | 3.59 | −0.08 |
(1.19) | (0.06) | (0.08) | (0.10) | |
| 0.07 | 0.23 | −0.19 | 0.42 ** |
(2.00) | (0.10) | (0.13) | (0.17) | |
| 28.26 | 28.37 | 28.08 | 0.29 |
(26.16) | (1.35) | (1.73) | (2.19) | |
| 0.23 | 0.28 | 0.17 | 0.11 *** |
(0.42) | (0.02) | (0.02) | (0.04) | |
Households’ farm characteristics | ||||
| 0.36 | 0.41 | 0.27 | 0.14 *** |
(0.48) | (0.03) | (0.03) | (0.04) | |
| 0.48 | 0.57 | 0.34 | 0.23 *** |
(0.50) | (0.03) | (0.03) | (0.04) | |
| 0.17 | 0.20 | 0.11 | 0.09 *** |
(0.37) | (0.02) | (0.02) | (0.03) | |
| 19.26 | 22.30 | 14.31 | 7.99 *** |
(27.10) | (1.67) | (0.92) | (2.25) | |
| 72.51 | 74.18 | 69.79 | 4.39 |
(96.92) | (5.20) | (5.97) | (8.12) | |
| 0.47 | 0.57 | 0.30 | 0.27 *** |
(0.50) | (0.03) | (0.03) | (0.04) | |
| 3.90 | 3.98 | 3.77 | 0.21 |
(0.82) | (0.04) | (0.06) | (0.02) | |
| 0.22 | 0.27 | 0.13 | 0.14 *** |
(0.41) | (0.02) | (0.02) | (0.03) | |
| 0.27 | 0.24 | 0.33 | −0.09 *** |
(0.45) | (0.02) | (0.03) | (0.04) | |
Village characteristics | ||||
| 28.12 | 27.88 | 28.52 | −0.64 |
(11.55) | (0.54) | (0.86) | (0.97) | |
| 1.28 | 1.43 | 1.03 | 0.40 *** |
(1.58) | (0.09) | (0.08) | (0.13) | |
of observations | 605 | 375 | 230 | --- |
Outcome | Coefficient | Std. Err | z | p > |z| | Normal-Based (95% Conf. Interval) | |
---|---|---|---|---|---|---|
Rice yields | 520.51 * | 313.56 | 1.66 | 0.09 | −108.55 | 1149.56 |
The total Fertilizer use amount | −0.58 | 1.20 | −0.49 | 0.63 | −2.94 | 1.77 |
Nitrogen fertilizer use amount | −1.15 | 2.05 | 0.56 | 0.57 | −5.16 | 2.86 |
Phosphorus fertilizer use amount | −3.25 | 6.80 | −0.48 | 0.63 | −16.58 | 10.09 |
Potassium fertilizer use amount | −1.96 | 6.80 | −0.29 | 0.77 | −15.28 | 11.36 |
Explanatory Variables | Mean | %Bias | %Reduct |Bias| | t-Test | V_e (T)/V_e (C) | |||
---|---|---|---|---|---|---|---|---|
Treated | Control | t | p > |t| | |||||
Large-scale grain producers’ characteristics | ||||||||
| U | 0.98 | 0.99 | −4.50 | −30.7 | −0.53 | 0.60 | 1.41 * |
M | 0.98 | 0.99 | −5.90 | −0.78 | 0.44 | 1.59 * | ||
| U | 49.23 | 49.67 | −5.3 | −50.0 | −0.64 | 0.52 | 0.91 |
M | 49.26 | 49.91 | −8.0 | −1.07 | 0.28 | 1.00 | ||
| U | 9.38 | 7.65 | 55.0 | 99.7 | 6.62 | 0.00 | 0.75 * |
M | 9.17 | 9.18 | −0.1 | −0.02 | 0.98 | 1.07 | ||
| U | 0.35 | 0.25 | 21.8 | 85.5 | 2.58 | 0.01 | 1.22 |
M | 0.33 | 0.34 | −3.2 | −0.41 | 0.68 | 1.00 | ||
| U | 20.96 | 22.71 | −12.8 | 39.1 | −1.54 | 0.12 | 0.83 |
M | 21.05 | 22.11 | −7.8 | −1.05 | 0.29 | 0.86 | ||
| U | 0.66 | 0.58 | 17.7 | 98.1 | 2.13 | 0.03 | 0.93 |
M | 0.66 | 0.66 | 0.3 | 0.05 | 0.96 | 1.01 | ||
Household characteristics | ||||||||
| U | 0.25 | 0.28 | −16.4 | 77.3 | −1.98 | 0.05 | 1.01 |
M | 0.25 | 0.25 | 3.7 | 0.50 | 0.62 | 0.89 | ||
| U | 3.51 | 3.59 | −6.5 | 76.0 | −0.78 | 0.44 | 0.88 |
M | 3.52 | 3.54 | −1.6 | −0.22 | 0.83 | 1.11 | ||
| U | 0.23 | −0.19 | 21.2 | 69.9 | 2.54 | 0.01 | 0.89 |
M | 0.19 | 0.06 | 6.4 | 0.92 | 0.36 | 1.25 | ||
| U | 28.37 | 28.08 | 1.1 | −156.7 | 0.13 | 0.90 | 1.00 |
M | 28.76 | 28.02 | 2.8 | 0.38 | 0.70 | 1.08 | ||
| U | 0.28 | 0.17 | 27.2 | 82.7 | 3.18 | 0.00 | 1.45 * |
M | 0.26 | 0.28 | −4.7 | −0.58 | 0.56 | 0.97 | ||
Farm characteristics | ||||||||
| U | 0.41 | 0.27 | 28.5 | 85.8 | 3.37 | 0.00 | 1.22 |
M | 0.39 | 0.41 | −4.1 | −0.52 | 0.61 | 1.00 | ||
| U | 0.57 | 0.34 | 47.7 | 92.1 | 5.67 | 0.00 | 1.27 |
M | 0.56 | 0.54 | 3.8 | 0.49 | 0.62 | 1.00 | ||
| U | 0.20 | 0.11 | 25.4 | 85.5 | 2.95 | 0.00 | 1.52 * |
M | 0.19 | 0.20 | −3.7 | −0.45 | 0.66 | 0.99 | ||
| U | 22.30 | 14.31 | 32.1 | 73.4 | 3.55 | 0.00 | 5.46 ** |
M | 20.31 | 18.19 | 8.5 | 1.42 | 0.16 | 2.16 ** | ||
| U | 74.18 | 69.79 | 4.6 | 91.1 | 0.54 | 0.59 | 1.23 |
M | 74.79 | 74.40 | −0.4 | −0.05 | 0.96 | 0.97 | ||
| U | 0.57 | 0.30 | 56.2 | 90.1 | 6.66 | 0.00 | 1.11 |
M | 0.55 | 0.58 | −5.6 | −0.72 | 0.47 | 1.07 | ||
| U | 3.98 | 3.77 | 25.9 | 32.1 | 3.12 | 0.00 | 0.89 |
M | 3.98 | 3.83 | 17.6 | 2.24 | 0.03 | 1.07 | ||
| U | 0.27 | 0.13 | 34.5 | 93.2 | 4.00 | 0.00 | 1.49 * |
M | 0.25 | 0.24 | 2.3 | 0.29 | 0.77 | 1.03 | ||
| U | 0.24 | 0.33 | −21.7 | 31.4 | −2.62 | 0.01 | 0.79 * |
M | 0.25 | 0.18 | 14.8 | 2.18 | 0.03 | 1.32 * | ||
Village characteristics | ||||||||
| U | 27.88 | 28.52 | −5.4 | 85.0 | −0.67 | 0.51 | 0.63 * |
M | 27.87 | 27.97 | −0.8 | 0.12 | 0.91 | 0.82 | ||
| U | 1.43 | 1.02 | 27.5 | 85.4 | 3.14 | 0.00 | 2.34 ** |
M | 1.37 | 1.43 | −4.0 | −0.52 | 0.60 | 1.41 * |
Rice Yields | Nutrient Use Amount | ||||
---|---|---|---|---|---|
Treatment var. | N | P | K | NPK | |
| 253.34 * | 1.79 | 2.17 | −1.42 | 1.31 |
(147.55) | (1.31) | (5.24) | (4.24) | (1.04) | |
Large-scale grain producers’ characteristics | |||||
| −10.42 | −0.44 | 7.45 | 5.58 | 0.57 |
(356.23) | (2.61) | (13.65) | (13.64) | (1.94) | |
| 5.11 | 0.28 *** | −0.14 | 0.30 | 0.09 ** |
(12.05) | (0.10) | (0.36) | (0.30) | (0.04) | |
| 7.87 | 0.30 | 1.07 | 0.75 | 0.18 |
(25.67) | (0.24) | (0.82) | (0.70) | (0.18) | |
| 113.37 | −2.42 * | 0.28 | −5.36 | −1.35 |
(152.56) | (1.42) | (6.06) | (4.50) | (1.22) | |
| −2.30 | −0.08 | −0.15 | −0.27 | −0.03 |
(6.83) | (0.06) | (0.20) | (0.18) | (0.04) | |
| 77.34 | −0.50 | 0.75 | 3.11 | −0.20 |
(140.52) | (1.35) | (4.96) | (4.00) | (0.90) | |
Household characteristics | |||||
| 137.21 | −2.08 | −13.00 | −7.56 | −0.90 |
(332.57) | (3.20) | (10.05) | (8.71) | (1.92) | |
| 21.53 | 0.04 | 0.74 | −0.27 | 0.08 |
(61.15) | (0.55) | (2.22) | (1.72) | (0.41) | |
| 104.23 *** | 0.95 * | 0.06 | 1.18 | 0.28 |
(30.30) | (0.57) | (1.28) | (0.89) | (0.17) | |
| −4.17 * | −0.05 ** | −0.08 | −0.06 | −0.01 |
(2.50) | (0.02) | (0.09) | (0.07) | (0.01) | |
| −66.66 | 0.25 | −8.29 * | −5.95 | 0.50 |
147.89 | (1.87) | (4.62) | (4.20) | (1.34) | |
Households’ farm characteristics | |||||
| 244.55 | 2.16 | 0.83 | 4.83 | 2.09 |
(153.50) | (1.71) | (5.08) | (4.20) | (1.29) | |
| 113.83 | 0.95 | 6.75 | 2.27 | −0.07 |
(152.04) | (1.37) | (8.06) | (5.40) | (0.81) | |
| −194.19 | −3.98 ** | −6.18 | −4.82 | −2.47 *** |
(190.99) | (1.69) | (6.42) | (5.66) | (0.95) | |
| −2.25 | −0.06 * | −0.13 | −0.10* | −0.02 ** |
(2.50) | (0.03) | (0.08) | (0.06) | (0.01) | |
| −0.38 | −0.00 | −0.01 | −0.02 | −0.01 * |
(0.85) | (0.01) | (0.02) | (0.02) | (0.00) | |
| 278.99 * | −0.80 | 0.13 | −4.69 | −0.32 |
(156.49) | (1.28) | (6.52) | (4.63) | (0.79) | |
| 150.79 * | 0.13 | −0.38 | 1.14 | 0.41 |
(84.68) | (0.80) | (3.32) | (2.83) | (0.55) | |
| −229.92 | 2.59 | −1.37 | 0.97 | −0.05 |
(185.33) | (1.79) | (5.53) | (5.46) | (0.92) | |
| 6274.29 *** | −8.78 *** | −4.48 | −8.69 | −4.26 ** |
(273.76) | (2.49) | (6.04) | (5.71) | (2.08) | |
Village characteristics | |||||
| −17.57 *** | 0.06 | −0.11 | −0.29 | 0.05 |
(7.15) | (0.07) | (0.23) | (0.21) | (0.07) | |
| 9.21 | 0.57 * | 1.54 | 0.62 | 0.46 * |
(39.24) | (0.29) | (1.10) | (1.01) | (0.24) | |
| Yes | Yes | Yes | Yes | Yes |
Contants | 10,269.76 *** | 31.03 *** | 94.61 *** | 74.64 *** | 15.74 *** |
(910.48) | (7.34) | (29.78) | (25.55) | (5.24) | |
R-squared | 0.76 | 0.27 | 0.12 | 0.18 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Li, J.; Ma, J. Impacts of Extension Contact on the Adoption of Formulated Fertilizers and Farm Performance among Large-Scale Farms in Rural China. Land 2022, 11, 1974. https://doi.org/10.3390/land11111974
Xu Z, Li J, Ma J. Impacts of Extension Contact on the Adoption of Formulated Fertilizers and Farm Performance among Large-Scale Farms in Rural China. Land. 2022; 11(11):1974. https://doi.org/10.3390/land11111974
Chicago/Turabian StyleXu, Zengwei, Jing Li, and Jiliang Ma. 2022. "Impacts of Extension Contact on the Adoption of Formulated Fertilizers and Farm Performance among Large-Scale Farms in Rural China" Land 11, no. 11: 1974. https://doi.org/10.3390/land11111974
APA StyleXu, Z., Li, J., & Ma, J. (2022). Impacts of Extension Contact on the Adoption of Formulated Fertilizers and Farm Performance among Large-Scale Farms in Rural China. Land, 11(11), 1974. https://doi.org/10.3390/land11111974