Residential Heating Using Woody Biomass in Germany—Supply, Demand, and Spatial Implications
Abstract
1. Introduction
2. Materials and Methods
2.1. Methodical Framework
2.2. Yields and Productivity for Biomass Supply
2.3. ES Assessment and Trade-Off Analysis
3. Results
3.1. Land Demand for Woody Biomass Provision
Case of Demand: Annual Values | Total | Per Unit | Source/Remarks |
---|---|---|---|
Annual tree growth | 121.6 million m³ | 10.8 m³/ha | [14] on forest area 11.3 Mill ha |
Harvest timber 2020 | 80.4 million m³ | 7.12 m³/ha | [20] 66% logged |
Stock accumulation | 41.2 million m³ | 3.59 m³/ha | Difference of above |
Thinning wood for fuel | 11.8 million m³ | 1.04 m³/ha | 6.78 million t * (0.576 t/m³ density) |
Harvest remnants for fuel | 1.68 million m³ | 0.14 m³/ha | 2% recommended for state forests |
Sawmill timber production | 48 million m³ | 4.2 m³/ha | 60% timber, 40% remnants [31] |
Remnants as wood chips | 20.9 million m³ | 1.85 m³/ha | 26% of the logged timber [31] |
Wood chips for fuel | 12.54 million m³ | 1.11 m³/ha | 60% of the wood chips (statistics) |
Remnants as sawn dust | 9.65 million m³ | 0.85 m³/ha | 14% of the logged timber [31] |
Sawn dust for fuel (pellet production) | 5.15 million m³ | 0.46 m³/ha | 3.35 million t production [32] = 53% of resource potential |
Total fuel potential from only remnants | 19.37 million m³ | 1.71 m³/ha | Sum: harvest remnants, wood chips, sawn dust for fuel |
Solid wooden fuel demand | 33.9 million m³ | 4.6 m³/house | [33] |
Land demand when using all harvested | Section 3.3 | 0.64 ha/house | Harvested timber/fuelwood demand |
Land demand when using thinning wood | Section 3.3 | 4.42 ha/house | Thinning wood/fuelwood demand |
Land demand when using only remnants | Section 3.3 | 2.69 ha/house | Sum remnants/fuelwood demand |
3.2. Ecosystem Service Trade-Offs and Synergies of Energy Biomass Provision from Forestry Land
3.3. Demand for Energy Biomass and Associated Land Using Different Management Practices and Fuel Types
Case of Demand: Annual Values | Total | Per Unit | Source/Remarks |
---|---|---|---|
Private households’ wood log demand | 18.6 million m³ | 4.6 m³/house | [33,34] (2019) |
Private households’ wood pellet demand | 2.90 million m³ | 4.3 m³/house | [23] 573,000 single + 108,000 multi-family houses 2018 |
Private households’ wood chip demand | 1.24 million m³ | 6.1 m³/house | [23] 182,000 single + 21,000 multi-family houses 2018 |
Forest land demand using all logs harvested | 2.6 million ha | 7.12 m³/ha | ca. 70% wood logs from forest [33,34] |
Forest land demand using only thinning | 17.9 million ha | 1.04 m³/ha | S. above, this would be 158% of the German forest area |
Land demand for pellet heating from remnants | 6.30 million ha | 9.26 ha/boiler | S. above (may overlap with previous and next) |
Land demand for chip heating from remnants | 1.12 million ha | 5.52 ha/boiler | S. above (may overlap with two previous) |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smil, V. Energy in Nature and Society: General Energetics of Complex Systems; Massachusetts Institute of Technology: Cambridge, MA, USA, 2008. [Google Scholar]
- Bridge, G.; Bouzarovski, S.; Bradshaw, M.; Eyre, N. Geographies of energy transition: Space, place and the low-carbon economy. Energy Policy 2013, 53, 331–340. [Google Scholar] [CrossRef]
- Trainor, A.M.; McDonald, R.I.; Fargione, J. Energy Sprawl Is the Largest Driver of Land Use Change in United States. PLoS ONE 2016, 11, e0162269. [Google Scholar] [CrossRef] [PubMed]
- Kiesecker, J.M.; Naugle, D.E.; Baruch-Mordo, S.; Baumgarten, L.; Cameron, D.R.; Lopez, J.J.C.; Crane, L.; Evans, J.S.; Fargione, J.; Tamayo, J.C.G. Energy Sprawl Solutions: Balancing Global Development and Conservation; Island Press: Washington, DC, USA, 2017. [Google Scholar]
- Vale, R. Land-use for sustainable personal transport. In Proceedings of the China Planning Network CPN Beijing, Beijing, China, 14–19 July 2008. [Google Scholar]
- Vale, R.; Vale, B. Time to Eat the Dog? The Real Guide to Sustainable Living; Thames and Hudson: London, UK, 2009. [Google Scholar]
- Fritsche, U.; Berndes, G.; Cowie, A.; Johnson, F.; Dale, V.; Langeveld, H.; Sharma, N.; Watson, H.; Woods, J. Energy and Land Use—Global Land Outlook Working Paper; UNCCD: Bonn, Germany; IRENA: Abu Dhabi, United Arab Emirates, 2017. [Google Scholar]
- Pehl, M.; Arvesen, A.; Humpenöder, F.; Popp, A.; Hertwich, E.G.; Luderer, G. Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modeling. Nat. Energy 2017, 2, 939–945. [Google Scholar] [CrossRef]
- Le Quéré, C.; Andrew, R.M.; Friedlingstein, P.; Sitch, S.; Hauck, J.; Pongratz, J.; Pickers, P.A.; Korsbakken, J.I.; Peters, G.P. Global Carbon Budget 2018. Earth Syst. Sci. Data 2018, 10, 2141–2194. [Google Scholar] [CrossRef]
- Gingrich, S.; Lauk, C.; Niedertscheider, M.; Pichler, M.; Schaffartzik, A.; Schmid, M.; Magerl, A.; Le Noë, J.; Bhan, M.; Erb, K. Hidden emissions of forest transitions: A socio-ecological reading of forest change. Curr. Opin. Environ. Sustain. 2019, 38, 14–21. [Google Scholar] [CrossRef]
- Tran, H.T.; Vale, B.; Vale, R. Measuring the Sustainable Built Environment: Carbon or Land? In Proceedings of the SB10 Sustainable Building Conference, Espoo, Finland, 22–24 September 2010. [Google Scholar]
- Tran, T.H.; Egermann, M. Land-use implications of energy transition pathways towards decarbonisation—Comparing the footprints of Vietnam, New Zealand and Finland. Energy Policy 2022, 166, 112951. [Google Scholar] [CrossRef]
- Burkhart, B.; Maes, J. Mapping Ecosystem Services; Pensoft Publishers: Sofia, Bulgaria, 2017. [Google Scholar]
- Grunewald, K.; Herold, H.; Marzelli, S.; Meinel, G.; Richter, B.; Syrbe, R.-U.; Walz, U. Assessment of ecosystem services at the national level in Germany—Illustration of the concept and the development of indicators by way of the example wood provision. Ecol. Indic. 2016, 70, 181–195. [Google Scholar] [CrossRef]
- Elsasser, P.; Altenbrunn, K.; Köthke, M.; Lorenz, M.; Meyerhoff, J. Regionalisierte Bewertung der Waldleistungen in Deutschland. Regionalised Assessment of Forest Services in Germany Thünen Rep 79; Johann Heinrich von Thünen-Institut: Braunschweig, Germany, 2020. [Google Scholar] [CrossRef]
- Grunewald, K.; Syrbe, R.-U.; Walz, U.; Richter, B.; Meinel, G.; Herold, H.; Marzelli, S. Germany’s ecosystem services—State of the indicator development for a nationwide assessment and monitoring. One Ecosyst. 2017, 2, e14021. [Google Scholar] [CrossRef]
- La Notte, A.; Grammatikopoulou, I.; Grunewald, K.; Barton, D.N.; Ekinci, B. Ecosystem and Ecosystem Services Accounts: Time for Applications; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
- Syrbe, R.-U.; Grunewald, K. Ecosystem service supply and demand—The challenge to balance spatial mismatches. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2017, 13, 148–161. [Google Scholar] [CrossRef]
- Messineo, A.; Volpe, R.; Asdrubali, F. Evaluation of Net Energy Obtainable from Combustion of Stabilised Olive Mill By-Products. Energies 2012, 5, 1384–1397. [Google Scholar] [CrossRef]
- DESTATIS Statistisches Bundesamt. Amount of Timber Logged at New Record High in 2020 due to Forest Damage; Press release #192 from 15 April 2021. Available online: https://www.destatis.de/EN/Press/2021/04/PE21_192_413.html (accessed on 20 October 2022).
- Air Quality Limit Values in Germany in 2021 Complied with Almost Everywhere. Further Efforts Are Needed to Protect Health. Agency for Environmental Protection. Available online: https://www.umweltbundesamt.de/presse/pressemitteilungen/luftqualitaetsgrenzwerte-in-deutschland-2021-nahezu10.02.2022 (accessed on 14 March 2022).
- Tran, T.H. Sustainable Patterns of Living Based on an Investigation of Footprint in Hanoi-Vietnam, Wellington-New Zealand and Oulu-Finland. Ph.D. Thesis, Victoria University of Wellington, Wellington, New Zealand, 2014. [Google Scholar]
- Döring, P.; Glasenapp, S.; Mantau, U. Energieholzverwendung in Privaten Haushalten 2018. Marktvolumen und Verwendete Holzsortimente Energy Wood Use in Private Households 2018. Market Volume and Wood Assortments Used; INFRO e. K.-Informationssysteme für Rohstoffe: Hamburg, Germany, 2020. [Google Scholar]
- BMEL Federal Ministry of Food and Agriculture. Forest in Germany. Sel. Results of the 3. Nat. Forest Inventory/Greenhouse Gas Inventory. Berlin. 2017. Available online: https://bwi.info/?lang=en (accessed on 6 March 2022).
- Döring, P.; Mantau, U. Standorte der Holzwirtschaft—Sägeindustrie—Einschnitte und Sägenebenprodukte 2010 Timber Industry Sites—Sawmill Industry—Cuts and Sawmill by-Products; Deutsches Pelletinstitut: Hamburg, Germany, 2012. [Google Scholar]
- DSTATIS Statistisches Bundesamt. Floor Area Total according to Types of Use in Germany. Available online: https://www.destatis.de/EN/Themes/Economic-Sectors-Enterprises/Agriculture-Forestry-Fisheries/Land-Use/Tables/areas-new.html (accessed on 10 September 2019).
- Hastik, R.; Basso, S.; Geitner, C.; Haida, C.; Poljanec, A.; Portaccio, A.; Vrščay, B.; Walzer, C. Renewable energies and ecosystem services impacts. Renew. Sustain. Energy Rev. 2015, 48, 608–623. [Google Scholar] [CrossRef]
- UBA. Reporting under the United Nations Framework Convention on Climate Changean and the Nagoya Protocol 2020: National Inventory Report on the German Greenhouse Gas Inventory 1990–2018; UBA: Lagos, Nigeria, 2020. [Google Scholar]
- Thrän, D.; Ponitka, J.; Arendt, O. Focus on: Bioenergy-Technologies/Bioenergie-Technologien; Leipzig: DBFZ Deutsches Biomasseforschungszentrunm gGmbH: Leipzig, Germany, 2016. [Google Scholar]
- IBS (Ingenieurbüro für Haustechnik Schreiner). Data and Info about Wood Pellets. Fuel Data, Standards, Fuel Consumption, Pellets Price, Production, Advantages, Delivery. 2011. Available online: http://energieberatung.ibs-hlk.de/planpellet_dat.htm (accessed on 18 October 2022).
- DEPI Deutsches Pelletinstitut. Pellets Production. Available online: https://depi.de/de/pelletproduktion#1aait (accessed on 6 March 2022).
- DEPV Deutscher Energieholz- und Pelletverband e.V. Pellet Market in Germany Continues to Grow—Over 4 Million Tons of GHG Emissions Saved for the First Time. Available online: https://depv.de/p/Pelletmarkt-in-Deutschland-wachst-weiter-erstmals-uber-4-Mio-Tonnen-THG-Emissionen-eingespart-3nedNipYKbZxHK4YC9KqXV (accessed on 6 March 2022).
- FNR Fachagentur Nachwachsende Rohstoffe e.V. Manual Bioenergy Small Plants; Agency for Renewable Resources: Gülzow-Prüzen, Germany, 2013. [Google Scholar]
- FNR Fachagentur Nachwachsende Rohstoffe e.V. Bioenergy in Germany: Fact and Figures 2019; Agency for Renewable Resources: Gülzow-Prüzen, Germany, 2019. [Google Scholar]
- Hepperle, F. Prognose Reionaler Energieholzpotenziale [Forecasting Regional Energy Wood Potentials]; FVA-Einblick 3/2006; Bayerische Landesanstalt für Wald und Forstwirtschaft: Freising, Germany, 2006. [Google Scholar]
- Szarka, N.; Lenz, V.; Thrän, D. The crucial role of biomass-based heat in a climate-friendly Germany—A scenario analysis. Energy 2019, 186, 115859. [Google Scholar] [CrossRef]
- Ruiz, P.; Nijs, W.; Tarvydas, D.; Sgobbi, A.; Zucker, A.; Pilli, R.; Jonsson, R.; Camia, A.; Thiel, C.; Hoyer-Klick, C.; et al. ENSPRESO—An open, EU-28 wide, transparent and coherent database of wind, solar and biomass energy potentials. Energy Strategy Rev. 2019, 26, 100379. [Google Scholar] [CrossRef]
- SMUL Sächsisches Staatsministerium für Umwelt und Landwirtschaft. Forest Strategy 2050 for the Free State of Saxony. p. 48. Available online: https://www.publikationen.sachsen.de (accessed on 22 October 2022).
Ecosystem Service Group | Threats | Benefits |
---|---|---|
Provisioning services, such as wild plants and animals; ground and surface water; fibers, timber, and genetic and other materials; energy. | No negative impacts on the water amount and quality nor on forest foods (fruits, mushrooms); competition with timber use and other tree products due to higher deciduous tree share, less edible mushrooms. | Use of otherwise abandoned forests and low-quality timber, unused areas, or resources; higher stability against forest pests and storm damage in the case of more deciduous trees; more fodder for game. |
Regulating and maintenance services such as the removal of germs, nutrients and pollutants, flood protection, air refreshment, climate mediation, pollination, nurseries. | Soil organic matter content depletion; change in habitat quality in the case of land use intensification; changed transpiration rate and an altered interception during the non-leaf time, probably higher runoff in winter. | More resilient tree stands against storms and snow break of deciduous trees in winter; better balance of chemical and biological conditions of soils (less acidic) and tree health in the case of more native tree species; enhanced diversity. |
Cultural services such as aesthetics, recreation, inspiration, education, science, spiritual heritage, and symbolic values. | Changing landscape character during the non-leaf time in winter; noise and fragmentation due to land use intensification. | Forests easier to walk through; more regional-typical forest scenery; older and bigger trees; easier to climb and play in the forest. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syrbe, R.-U.; Han, T.T.; Grunewald, K.; Xiao, S.; Wende, W. Residential Heating Using Woody Biomass in Germany—Supply, Demand, and Spatial Implications. Land 2022, 11, 1937. https://doi.org/10.3390/land11111937
Syrbe R-U, Han TT, Grunewald K, Xiao S, Wende W. Residential Heating Using Woody Biomass in Germany—Supply, Demand, and Spatial Implications. Land. 2022; 11(11):1937. https://doi.org/10.3390/land11111937
Chicago/Turabian StyleSyrbe, Ralf-Uwe, Tran Thuc Han, Karsten Grunewald, Suili Xiao, and Wolfgang Wende. 2022. "Residential Heating Using Woody Biomass in Germany—Supply, Demand, and Spatial Implications" Land 11, no. 11: 1937. https://doi.org/10.3390/land11111937
APA StyleSyrbe, R.-U., Han, T. T., Grunewald, K., Xiao, S., & Wende, W. (2022). Residential Heating Using Woody Biomass in Germany—Supply, Demand, and Spatial Implications. Land, 11(11), 1937. https://doi.org/10.3390/land11111937