Residential Heating Using Woody Biomass in Germany—Supply, Demand, and Spatial Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodical Framework
2.2. Yields and Productivity for Biomass Supply
2.3. ES Assessment and Trade-Off Analysis
3. Results
3.1. Land Demand for Woody Biomass Provision
Case of Demand: Annual Values | Total | Per Unit | Source/Remarks |
---|---|---|---|
Annual tree growth | 121.6 million m³ | 10.8 m³/ha | [14] on forest area 11.3 Mill ha |
Harvest timber 2020 | 80.4 million m³ | 7.12 m³/ha | [20] 66% logged |
Stock accumulation | 41.2 million m³ | 3.59 m³/ha | Difference of above |
Thinning wood for fuel | 11.8 million m³ | 1.04 m³/ha | 6.78 million t * (0.576 t/m³ density) |
Harvest remnants for fuel | 1.68 million m³ | 0.14 m³/ha | 2% recommended for state forests |
Sawmill timber production | 48 million m³ | 4.2 m³/ha | 60% timber, 40% remnants [31] |
Remnants as wood chips | 20.9 million m³ | 1.85 m³/ha | 26% of the logged timber [31] |
Wood chips for fuel | 12.54 million m³ | 1.11 m³/ha | 60% of the wood chips (statistics) |
Remnants as sawn dust | 9.65 million m³ | 0.85 m³/ha | 14% of the logged timber [31] |
Sawn dust for fuel (pellet production) | 5.15 million m³ | 0.46 m³/ha | 3.35 million t production [32] = 53% of resource potential |
Total fuel potential from only remnants | 19.37 million m³ | 1.71 m³/ha | Sum: harvest remnants, wood chips, sawn dust for fuel |
Solid wooden fuel demand | 33.9 million m³ | 4.6 m³/house | [33] |
Land demand when using all harvested | Section 3.3 | 0.64 ha/house | Harvested timber/fuelwood demand |
Land demand when using thinning wood | Section 3.3 | 4.42 ha/house | Thinning wood/fuelwood demand |
Land demand when using only remnants | Section 3.3 | 2.69 ha/house | Sum remnants/fuelwood demand |
3.2. Ecosystem Service Trade-Offs and Synergies of Energy Biomass Provision from Forestry Land
3.3. Demand for Energy Biomass and Associated Land Using Different Management Practices and Fuel Types
Case of Demand: Annual Values | Total | Per Unit | Source/Remarks |
---|---|---|---|
Private households’ wood log demand | 18.6 million m³ | 4.6 m³/house | [33,34] (2019) |
Private households’ wood pellet demand | 2.90 million m³ | 4.3 m³/house | [23] 573,000 single + 108,000 multi-family houses 2018 |
Private households’ wood chip demand | 1.24 million m³ | 6.1 m³/house | [23] 182,000 single + 21,000 multi-family houses 2018 |
Forest land demand using all logs harvested | 2.6 million ha | 7.12 m³/ha | ca. 70% wood logs from forest [33,34] |
Forest land demand using only thinning | 17.9 million ha | 1.04 m³/ha | S. above, this would be 158% of the German forest area |
Land demand for pellet heating from remnants | 6.30 million ha | 9.26 ha/boiler | S. above (may overlap with previous and next) |
Land demand for chip heating from remnants | 1.12 million ha | 5.52 ha/boiler | S. above (may overlap with two previous) |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smil, V. Energy in Nature and Society: General Energetics of Complex Systems; Massachusetts Institute of Technology: Cambridge, MA, USA, 2008. [Google Scholar]
- Bridge, G.; Bouzarovski, S.; Bradshaw, M.; Eyre, N. Geographies of energy transition: Space, place and the low-carbon economy. Energy Policy 2013, 53, 331–340. [Google Scholar] [CrossRef]
- Trainor, A.M.; McDonald, R.I.; Fargione, J. Energy Sprawl Is the Largest Driver of Land Use Change in United States. PLoS ONE 2016, 11, e0162269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiesecker, J.M.; Naugle, D.E.; Baruch-Mordo, S.; Baumgarten, L.; Cameron, D.R.; Lopez, J.J.C.; Crane, L.; Evans, J.S.; Fargione, J.; Tamayo, J.C.G. Energy Sprawl Solutions: Balancing Global Development and Conservation; Island Press: Washington, DC, USA, 2017. [Google Scholar]
- Vale, R. Land-use for sustainable personal transport. In Proceedings of the China Planning Network CPN Beijing, Beijing, China, 14–19 July 2008. [Google Scholar]
- Vale, R.; Vale, B. Time to Eat the Dog? The Real Guide to Sustainable Living; Thames and Hudson: London, UK, 2009. [Google Scholar]
- Fritsche, U.; Berndes, G.; Cowie, A.; Johnson, F.; Dale, V.; Langeveld, H.; Sharma, N.; Watson, H.; Woods, J. Energy and Land Use—Global Land Outlook Working Paper; UNCCD: Bonn, Germany; IRENA: Abu Dhabi, United Arab Emirates, 2017. [Google Scholar]
- Pehl, M.; Arvesen, A.; Humpenöder, F.; Popp, A.; Hertwich, E.G.; Luderer, G. Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modeling. Nat. Energy 2017, 2, 939–945. [Google Scholar] [CrossRef]
- Le Quéré, C.; Andrew, R.M.; Friedlingstein, P.; Sitch, S.; Hauck, J.; Pongratz, J.; Pickers, P.A.; Korsbakken, J.I.; Peters, G.P. Global Carbon Budget 2018. Earth Syst. Sci. Data 2018, 10, 2141–2194. [Google Scholar] [CrossRef] [Green Version]
- Gingrich, S.; Lauk, C.; Niedertscheider, M.; Pichler, M.; Schaffartzik, A.; Schmid, M.; Magerl, A.; Le Noë, J.; Bhan, M.; Erb, K. Hidden emissions of forest transitions: A socio-ecological reading of forest change. Curr. Opin. Environ. Sustain. 2019, 38, 14–21. [Google Scholar] [CrossRef]
- Tran, H.T.; Vale, B.; Vale, R. Measuring the Sustainable Built Environment: Carbon or Land? In Proceedings of the SB10 Sustainable Building Conference, Espoo, Finland, 22–24 September 2010. [Google Scholar]
- Tran, T.H.; Egermann, M. Land-use implications of energy transition pathways towards decarbonisation—Comparing the footprints of Vietnam, New Zealand and Finland. Energy Policy 2022, 166, 112951. [Google Scholar] [CrossRef]
- Burkhart, B.; Maes, J. Mapping Ecosystem Services; Pensoft Publishers: Sofia, Bulgaria, 2017. [Google Scholar]
- Grunewald, K.; Herold, H.; Marzelli, S.; Meinel, G.; Richter, B.; Syrbe, R.-U.; Walz, U. Assessment of ecosystem services at the national level in Germany—Illustration of the concept and the development of indicators by way of the example wood provision. Ecol. Indic. 2016, 70, 181–195. [Google Scholar] [CrossRef]
- Elsasser, P.; Altenbrunn, K.; Köthke, M.; Lorenz, M.; Meyerhoff, J. Regionalisierte Bewertung der Waldleistungen in Deutschland. Regionalised Assessment of Forest Services in Germany Thünen Rep 79; Johann Heinrich von Thünen-Institut: Braunschweig, Germany, 2020. [Google Scholar] [CrossRef]
- Grunewald, K.; Syrbe, R.-U.; Walz, U.; Richter, B.; Meinel, G.; Herold, H.; Marzelli, S. Germany’s ecosystem services—State of the indicator development for a nationwide assessment and monitoring. One Ecosyst. 2017, 2, e14021. [Google Scholar] [CrossRef] [Green Version]
- La Notte, A.; Grammatikopoulou, I.; Grunewald, K.; Barton, D.N.; Ekinci, B. Ecosystem and Ecosystem Services Accounts: Time for Applications; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
- Syrbe, R.-U.; Grunewald, K. Ecosystem service supply and demand—The challenge to balance spatial mismatches. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2017, 13, 148–161. [Google Scholar] [CrossRef]
- Messineo, A.; Volpe, R.; Asdrubali, F. Evaluation of Net Energy Obtainable from Combustion of Stabilised Olive Mill By-Products. Energies 2012, 5, 1384–1397. [Google Scholar] [CrossRef] [Green Version]
- DESTATIS Statistisches Bundesamt. Amount of Timber Logged at New Record High in 2020 due to Forest Damage; Press release #192 from 15 April 2021. Available online: https://www.destatis.de/EN/Press/2021/04/PE21_192_413.html (accessed on 20 October 2022).
- Air Quality Limit Values in Germany in 2021 Complied with Almost Everywhere. Further Efforts Are Needed to Protect Health. Agency for Environmental Protection. Available online: https://www.umweltbundesamt.de/presse/pressemitteilungen/luftqualitaetsgrenzwerte-in-deutschland-2021-nahezu10.02.2022 (accessed on 14 March 2022).
- Tran, T.H. Sustainable Patterns of Living Based on an Investigation of Footprint in Hanoi-Vietnam, Wellington-New Zealand and Oulu-Finland. Ph.D. Thesis, Victoria University of Wellington, Wellington, New Zealand, 2014. [Google Scholar]
- Döring, P.; Glasenapp, S.; Mantau, U. Energieholzverwendung in Privaten Haushalten 2018. Marktvolumen und Verwendete Holzsortimente Energy Wood Use in Private Households 2018. Market Volume and Wood Assortments Used; INFRO e. K.-Informationssysteme für Rohstoffe: Hamburg, Germany, 2020. [Google Scholar]
- BMEL Federal Ministry of Food and Agriculture. Forest in Germany. Sel. Results of the 3. Nat. Forest Inventory/Greenhouse Gas Inventory. Berlin. 2017. Available online: https://bwi.info/?lang=en (accessed on 6 March 2022).
- Döring, P.; Mantau, U. Standorte der Holzwirtschaft—Sägeindustrie—Einschnitte und Sägenebenprodukte 2010 Timber Industry Sites—Sawmill Industry—Cuts and Sawmill by-Products; Deutsches Pelletinstitut: Hamburg, Germany, 2012. [Google Scholar]
- DSTATIS Statistisches Bundesamt. Floor Area Total according to Types of Use in Germany. Available online: https://www.destatis.de/EN/Themes/Economic-Sectors-Enterprises/Agriculture-Forestry-Fisheries/Land-Use/Tables/areas-new.html (accessed on 10 September 2019).
- Hastik, R.; Basso, S.; Geitner, C.; Haida, C.; Poljanec, A.; Portaccio, A.; Vrščay, B.; Walzer, C. Renewable energies and ecosystem services impacts. Renew. Sustain. Energy Rev. 2015, 48, 608–623. [Google Scholar] [CrossRef]
- UBA. Reporting under the United Nations Framework Convention on Climate Changean and the Nagoya Protocol 2020: National Inventory Report on the German Greenhouse Gas Inventory 1990–2018; UBA: Lagos, Nigeria, 2020. [Google Scholar]
- Thrän, D.; Ponitka, J.; Arendt, O. Focus on: Bioenergy-Technologies/Bioenergie-Technologien; Leipzig: DBFZ Deutsches Biomasseforschungszentrunm gGmbH: Leipzig, Germany, 2016. [Google Scholar]
- IBS (Ingenieurbüro für Haustechnik Schreiner). Data and Info about Wood Pellets. Fuel Data, Standards, Fuel Consumption, Pellets Price, Production, Advantages, Delivery. 2011. Available online: http://energieberatung.ibs-hlk.de/planpellet_dat.htm (accessed on 18 October 2022).
- DEPI Deutsches Pelletinstitut. Pellets Production. Available online: https://depi.de/de/pelletproduktion#1aait (accessed on 6 March 2022).
- DEPV Deutscher Energieholz- und Pelletverband e.V. Pellet Market in Germany Continues to Grow—Over 4 Million Tons of GHG Emissions Saved for the First Time. Available online: https://depv.de/p/Pelletmarkt-in-Deutschland-wachst-weiter-erstmals-uber-4-Mio-Tonnen-THG-Emissionen-eingespart-3nedNipYKbZxHK4YC9KqXV (accessed on 6 March 2022).
- FNR Fachagentur Nachwachsende Rohstoffe e.V. Manual Bioenergy Small Plants; Agency for Renewable Resources: Gülzow-Prüzen, Germany, 2013. [Google Scholar]
- FNR Fachagentur Nachwachsende Rohstoffe e.V. Bioenergy in Germany: Fact and Figures 2019; Agency for Renewable Resources: Gülzow-Prüzen, Germany, 2019. [Google Scholar]
- Hepperle, F. Prognose Reionaler Energieholzpotenziale [Forecasting Regional Energy Wood Potentials]; FVA-Einblick 3/2006; Bayerische Landesanstalt für Wald und Forstwirtschaft: Freising, Germany, 2006. [Google Scholar]
- Szarka, N.; Lenz, V.; Thrän, D. The crucial role of biomass-based heat in a climate-friendly Germany—A scenario analysis. Energy 2019, 186, 115859. [Google Scholar] [CrossRef]
- Ruiz, P.; Nijs, W.; Tarvydas, D.; Sgobbi, A.; Zucker, A.; Pilli, R.; Jonsson, R.; Camia, A.; Thiel, C.; Hoyer-Klick, C.; et al. ENSPRESO—An open, EU-28 wide, transparent and coherent database of wind, solar and biomass energy potentials. Energy Strategy Rev. 2019, 26, 100379. [Google Scholar] [CrossRef]
- SMUL Sächsisches Staatsministerium für Umwelt und Landwirtschaft. Forest Strategy 2050 for the Free State of Saxony. p. 48. Available online: https://www.publikationen.sachsen.de (accessed on 22 October 2022).
Ecosystem Service Group | Threats | Benefits |
---|---|---|
Provisioning services, such as wild plants and animals; ground and surface water; fibers, timber, and genetic and other materials; energy. | No negative impacts on the water amount and quality nor on forest foods (fruits, mushrooms); competition with timber use and other tree products due to higher deciduous tree share, less edible mushrooms. | Use of otherwise abandoned forests and low-quality timber, unused areas, or resources; higher stability against forest pests and storm damage in the case of more deciduous trees; more fodder for game. |
Regulating and maintenance services such as the removal of germs, nutrients and pollutants, flood protection, air refreshment, climate mediation, pollination, nurseries. | Soil organic matter content depletion; change in habitat quality in the case of land use intensification; changed transpiration rate and an altered interception during the non-leaf time, probably higher runoff in winter. | More resilient tree stands against storms and snow break of deciduous trees in winter; better balance of chemical and biological conditions of soils (less acidic) and tree health in the case of more native tree species; enhanced diversity. |
Cultural services such as aesthetics, recreation, inspiration, education, science, spiritual heritage, and symbolic values. | Changing landscape character during the non-leaf time in winter; noise and fragmentation due to land use intensification. | Forests easier to walk through; more regional-typical forest scenery; older and bigger trees; easier to climb and play in the forest. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syrbe, R.-U.; Han, T.T.; Grunewald, K.; Xiao, S.; Wende, W. Residential Heating Using Woody Biomass in Germany—Supply, Demand, and Spatial Implications. Land 2022, 11, 1937. https://doi.org/10.3390/land11111937
Syrbe R-U, Han TT, Grunewald K, Xiao S, Wende W. Residential Heating Using Woody Biomass in Germany—Supply, Demand, and Spatial Implications. Land. 2022; 11(11):1937. https://doi.org/10.3390/land11111937
Chicago/Turabian StyleSyrbe, Ralf-Uwe, Tran Thuc Han, Karsten Grunewald, Suili Xiao, and Wolfgang Wende. 2022. "Residential Heating Using Woody Biomass in Germany—Supply, Demand, and Spatial Implications" Land 11, no. 11: 1937. https://doi.org/10.3390/land11111937
APA StyleSyrbe, R.-U., Han, T. T., Grunewald, K., Xiao, S., & Wende, W. (2022). Residential Heating Using Woody Biomass in Germany—Supply, Demand, and Spatial Implications. Land, 11(11), 1937. https://doi.org/10.3390/land11111937