The Effect of Green Urbanization on Forestry Green Total Factor Productivity in China: Analysis from a Carbon Neutral Perspective
Abstract
:1. Introduction
2. Literature Review
2.1. Measurements and Drivers of FGTFP
2.2. Urbanization, Forestry Carbon Emission Reduction and Forestry Carbon Sink
3. Materials and Methods
3.1. Impact Mechanism of Green Urbanization on FGTFP
3.1.1. Forest-Tourism Integration Effect
3.1.2. Environmental Regulation Effect
3.2. Measurement of FGTFP
3.3. Model Setting
3.4. Variables Selection
3.4.1. Dependent Variable
3.4.2. Core Independent Variable: Green Urbanization
Criteria Layer | Specific Indicator | Unit | Attributes |
---|---|---|---|
Ecology urbanization |
| % | + |
| 10,000 hm2 | + | |
| 10,000 hm2 | + | |
| 10,000 hm2 | + | |
| % | + | |
| % | + | |
| t/10,000 Yuan | - | |
Population urbanization |
| People | + |
| People/km2 | + | |
| % | + | |
Economic urbanization |
| 10,000 Yuan | + |
| % | + | |
| % | + | |
| 10,000 Yuan | + | |
| % | - | |
Social urbanization |
| Vehicle | + |
| People | + | |
| Book | + | |
| % | + | |
| % | + | |
Spatial Urbanization |
| km2 | + |
| km2 | + | |
| km2 | + |
3.4.3. Control Variables
3.5. Data Source
4. Results
4.1. Interannual Variation Characteristics of FGTFP
4.2. Baseline Regression Results
4.3. Robustness Tests
4.4. Endogenous Discussion
4.5. Mechanism Tests
4.6. Heterogeneity Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1. | The negative indicators in the indicator system are calculated with a positive process. |
2. | (1) The development of green urbanization is often controlled by local government subjects, so the intensity of environmental regulation is dominated by mandatory government regulations. It is measured by the proportion of investment in environmental pollution control to GDP. (2) Energy carbon emission intensity: the province’s total CO2 emissions of coal, coke, crude oil, gasoline, kerosene, diesel, fuel oil, LPG and natural gas divided by GDP. |
3. | That is, the product term of the lagged first-order green urbanization index and the first-order difference of the green urbanization index. |
4. | https://www.sohu.com/a/445727316_749700, accessed on 21 October 2022. |
References
- Dudek, D.J.; LeBlanc, A. Offsetting new CO2 emissions: A rational first greenhouse policy step. Contemp. Econ. Policy 1990, 8, 29–42. [Google Scholar] [CrossRef]
- Wang, S.M.; Chen, J.M.; Ju, W.; Feng, X.; Chen, M.; Chen, P.; Yu, G. Carbon sinks and sources in China’s forests during 1901–2001. J. Environ. Manag. 2007, 85, 524–537. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Liu, H.; Strömberg, C.A.E.; Wang, H.; Strong, P.J.; Yang, X.; Wu, Y. Contribution of forests to the carbon sink via biologically-mediated silicate weathering: A case study of China. Sci. Total Environ. 2018, 615, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Ge, J. Carbon sinks and output of China’s forestry sector: An ecological economic development perspective. Sci. Total Environ. 2019, 655, 1169–1180. [Google Scholar] [CrossRef]
- Shrestha, P.; Sun, C. Carbon Emission Flow and Transfer through International Trade of Forest Products. For. Sci. 2019, 65, 439–451. [Google Scholar] [CrossRef]
- Sun, M.; Wang, Y.; Shi, L.; Klemeš, J.J. Uncovering energy use, carbon emissions and environmental burdens of pulp and paper industry: A systematic review and meta-analysis. Renew. Sustain. Energy Rev. 2018, 92, 823–833. [Google Scholar] [CrossRef]
- Xu, T.; Sathaye, J.; Kramer, K. Sustainability options in pulp and paper making: Costs of conserved energy and carbon reduction in the US. Sustain. Cities Soc. 2013, 8, 56–62. [Google Scholar] [CrossRef]
- Zhao, Q.; Ding, S.; Wen, Z.; Toppinen, A. Energy Flows and Carbon Footprint in the Forestry-Pulp and Paper Industry. Forests 2019, 10, 725. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Li, X.; Liu, L.; Chen, Y.; Wang, X.; Lu, S. Coupling and coordinated development of new urbanization and agro-ecological environment in China. Sci. Total Environ. 2021, 776, 145837. [Google Scholar] [CrossRef]
- Sun, W.; Huang, C. How does urbanization affect carbon emission efficiency? Evidence from China. J. Clean. Prod. 2020, 272, 122828. [Google Scholar] [CrossRef]
- Wang, W.Z.; Liu, L.C.; Liao, H.; Wei, Y.M. Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries. Energy Policy 2021, 151, 112171. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, M.; Tang, Z.; Mei, Z. Urbanization, land use change, and carbon emissions: Quantitative assessments for city-level carbon emissions in Beijing-Tianjin-Hebei region. Sustain. Cities Soc. 2021, 66, 102701. [Google Scholar] [CrossRef]
- Sun, H.; Samuel, C.A.; Amissah, J.C.K.; Taghizadeh-Hesary, F.; Mensah, I.A. Non-linear nexus between CO2 emissions and economic growth: A comparison of OECD and B&R countries. Energy 2020, 212, 118637. [Google Scholar] [CrossRef]
- Grumbine, R.E. Assessing environmental security in China. Front. Ecol. Environ. 2014, 12, 403–411. [Google Scholar] [CrossRef]
- Chen, M.; Liu, W.; Lu, D.; Chen, H.; Ye, C. Progress of China’s new-type urbanization construction since 2014: A preliminary assessment. Cities 2018, 78, 180–193. [Google Scholar] [CrossRef]
- Li, G. The Green Productivity Revolution of Agriculture in China from 1978 to 2008. China Econ. Q. 2014, 13, 537–558. [Google Scholar] [CrossRef]
- Du, Z.; Su, T.; Ge, J.; Wang, X. Towards the Carbon Neutrality: The Role of Carbon Sink and Its Spatial Spillover Effects. Econ. Res. J. 2021, 56, 187–202. [Google Scholar]
- Yang, H.; Yuan, T.; Zhang, X.; Li, S. A Decade Trend of Total Factor Productivity of Key State-Owned Forestry Enterprises in China. Forests 2016, 7, 97. [Google Scholar] [CrossRef]
- Li, L.; Hao, T.; Chi, T. Evaluation on China’s forestry resources efficiency based on big data. J. Clean. Prod. 2017, 142, 513–523. [Google Scholar] [CrossRef]
- Gao, D.; Zhang, B.; Li, S. Spatial Effect Analysis of Total Factor Productivity and Forestry Economic Growth. Forests 2021, 12, 702. [Google Scholar] [CrossRef]
- Yin, H.; Cao, Y. An Empirical Study on the Measurement of Forestry Total Factor Productivity Based on DEA Malmquist Model. Sci. Program. 2022, 2022, 6931780. [Google Scholar] [CrossRef]
- Helvoigt, T.L.; Adams, D.M. A stochastic frontier analysis of technical progress, efficiency change and productivity growth in the Pacific Northwest sawmill industry. For. Policy Econ. 2009, 11, 280–287. [Google Scholar] [CrossRef]
- Chen, J.; Wu, Y.; Song, M.; Zhu, Z. Stochastic frontier analysis of productive efficiency in China’s Forestry Industry. J. For. Econ. 2017, 28, 87–95. [Google Scholar] [CrossRef]
- Xiong, L.; Wang, F.; Cheng, B.; Yu, C. Identifying factors influencing the forestry production efficiency in Northwest China. Resour. Conserv. Recycl. 2018, 130, 12–19. [Google Scholar] [CrossRef]
- Zheng, Y.; Gao, C.; Lei, G. Empirical Analyses of Forestry Industry Agglomeration and Eco-Efficiency: Based on Panel Data Test on 15 Provinces in China. Econ. Geogr. 2017, 37, 136–142. [Google Scholar] [CrossRef]
- Ning, Y.; Liu, Z.; Ning, Z.; Zhang, H. Measuring Eco-Efficiency of State-Owned Forestry Enterprises in Northeast China. Forests 2018, 9, 455. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Yao, S. Evaluation of Forestry Ecological Efficiency: A Spatiotemporal Empirical Study Based on China’s Provinces. Forests 2021, 12, 142. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Z. Impact and threshold effect of Internet technology upgrade on forestry green total factor productivity: Evidence from China. J. Clean. Prod. 2020, 271, 122657. [Google Scholar] [CrossRef]
- Liang, C.; Wei, X.; Meng, J.; Chen, W. How to Improve Forest Carbon Sequestration Output Performance: An Evidence from State-Owned Forest Farms in China. Forests 2022, 13, 778. [Google Scholar] [CrossRef]
- Sun, H.; Edziah, B.K.; Sun, C.; Kporsu, A.K. Institutional quality and its spatial spillover effects on energy efficiency. Socio Econ. Plan. Sci. 2021, 83, 101023. [Google Scholar] [CrossRef]
- Zhu, E.; Deng, J.; Zhou, M.; Gan, M.; Jiang, R.; Wang, K.; Shahtahmassebi, A. Carbon emissions induced by land-use and land-cover change from 1970 to 2010 in Zhejiang, China. Sci. Total Environ. 2019, 646, 930–939. [Google Scholar] [CrossRef] [PubMed]
- Yameogo, C.E.W. Globalization, urbanization, and deforestation linkage in Burkina Faso. Environ. Sci. Pollut. Res. Int. 2021, 28, 22011–22021. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhang, W. The causal relationship between carbon emissions and land urbanization quality: A panel data analysis for Chinese provinces. J. Clean. Prod. 2016, 137, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Liao, L.; Zhao, C.; Li, X.; Qin, J. Towards low carbon development: The role of forest city constructions in China. Ecol. Indic. 2021, 131, 108199. [Google Scholar] [CrossRef]
- Xu, C.; Wang, B.; Chen, J. Forest carbon sink in China: Linked drivers and long short-term memory network-based prediction. J. Clean. Prod. 2022, 359, 132085. [Google Scholar] [CrossRef]
- Ren, Y.; Yan, J.; Wei, X.; Wang, Y.; Yang, Y.; Hua, L.; Xiong, Y.; Niu, X.; Song, X. Effects of rapid urban sprawl on urban forest carbon stocks: Integrating remotely sensed, GIS and forest inventory data. J. Environ. Manag. 2012, 113, 447–455. [Google Scholar] [CrossRef]
- Nock, C.A.; Paquette, A.; Follett, M.; Nowak, D.J.; Messier, C. Effects of Urbanization on Tree Species Functional Diversity in Eastern North America. Ecosystems 2013, 16, 1487–1497. [Google Scholar] [CrossRef]
- Tyrväinen, L.; Silvennoinen, H.; Hallikainen, V. Effect of the season and forest management on the visual quality of the nature-based tourism environment: A case from Finnish Lapland. Scand. J. For. Res. 2016, 32, 349–359. [Google Scholar] [CrossRef]
- Hyde, W.F.; Yin, R. 40 Years of China’s forest reforms: Summary and outlook. For. Policy Econ. 2019, 98, 90–95. [Google Scholar] [CrossRef]
- Moreno, G.; Aviron, S.; Berg, S.; Crous-Duran, J.; Franca, A.; de Jalon, S.G.; Hartel, T.; Mirck, J.; Pantera, A.; Palma, J.H.N.; et al. Agroforestry systems of high nature and cultural value in Europe: Provision of commercial goods and other ecosystem services. Agroforest. Syst. 2018, 92, 877–891. [Google Scholar] [CrossRef] [Green Version]
- Ke, S.; Qiao, D.; Yuan, W.; He, Y. Broadening the scope of forest transition inquiry: What does China’s experience suggest? For. Policy Econ. 2020, 118, 102240. [Google Scholar] [CrossRef]
- Guo, R.; Yuan, Y. Different types of environmental regulations and heterogeneous influence on energy efficiency in the industrial sector: Evidence from Chinese provincial data. Energy Policy 2020, 145, 11747. [Google Scholar] [CrossRef]
- Yuan, Y.; Xie, R. Research on the Effect of Environmental Regulation to Industrial Restructuring——Empirical Test Based on Provincial Panel Data of China. China Ind. Econ. 2014, 8, 57–69. [Google Scholar] [CrossRef]
- Jin, G.; Shen, K. Polluting Thy Neighbor or Benefiting Thy Neighbor: Enforcement Interaction of Environmental Regulation and Productivity Growth of Chinese Cities. Manag. World 2018, 34, 43–55. [Google Scholar] [CrossRef]
- Sant’Anna, A.A.; Costa, L. Environmental regulation and bail outs under weak state capacity: Deforestation in the Brazilian Amazon. Ecol. Econ. 2021, 186, 107071. [Google Scholar] [CrossRef]
- Tone, K. Dealing with Undesirable Outputs in DEA: A Slacks-based Measure( SBM) Approach. GRIPS Research Report Series; Grants-in-Aid for Scientific Research: Tokyo, Japan, 2003. [Google Scholar]
- Oh, D.-H. A global Malmquist-Luenberger productivity index. J. Product. Anal. 2010, 34, 183–197. [Google Scholar] [CrossRef]
- Hedges, L.V. Fixed effects models. In The Handbook of Research Synthesis; Russell Sage Foundation: New York, NY, USA, 1994; pp. 285–299. [Google Scholar]
- Chen, S. The evaluation indicator of ecological development transition in China’s regional economy. Ecol. Indic. 2015, 51, 42–52. [Google Scholar] [CrossRef]
- Dong, G.; Ge, Y.; Zhu, W.; Qu, Y.; Zhang, W. Coupling Coordination and Spatiotemporal Dynamic Evolution Between Green Urbanization and Green Finance: A Case Study in China. Front. Environ. Sci. 2021, 8, 621846. [Google Scholar] [CrossRef]
- Yu, J.; Ye, L. Evaluation Index System of New-pattern Urbanization in China: Construction, Measure and Comparison. Wuhan Univ. J. 2018, 2, 145–156. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, Z.; Chen, B.; Gong, P.; Fu, H.; Xu, B. A Prolonged Artificial Nighttime-Light Dataset of China (1984–2020); National Tibetan Plateau Data Center: Beijing, China, 2021. [Google Scholar] [CrossRef]
- Hou, M.; Yao, S. Testing of the EKC Relationship between Amount of Forest Resources and Economic Growth: An Empirical Study Based on Provincial Panel Data. Sci. Silvae Sin. 2019, 55, 113–122. [Google Scholar] [CrossRef]
- Su, S.; Wu, J.; Gan, J. Comparative analysis of total factor productivity change among family forestry operators since forest tenure reform in Fujian, Zhejiang and Jiangxi provinces. Resour. Sci. 2015, 37, 112–124. [Google Scholar]
- Bartik, T. How Do the Effects of Local Growth on Employment Rates Vary with Initial Labor Market Conditions? W.E. Upjohn Institute for Employment Research: Kalamazoo, MI, USA, 2009. [Google Scholar] [CrossRef] [Green Version]
- Yi, X.; Zhou, L. Does Digital Financial Inclusion Significantly Influence Household Consumption? Evidence from Household Survey Data in China. J. Financ. Res. 2018, 11, 47–67. [Google Scholar]
- Ehrhardt-Martinez, K.; Crenshaw, E.M.; Jenkins, J.C. Deforestation and the Environmental Kuznets Curve: A Cross-National Investigation of Intervening Mechanisms. Soc. Sci. Q. 2002, 83, 226–243. [Google Scholar] [CrossRef]
- Huber, J. Towards industrial ecology: Sustainable development as a concept of ecological modernization. J. Environ. Policy Plan. 2000, 2, 269–285. [Google Scholar] [CrossRef] [Green Version]
- Jiang, G. How Does Agro-Tourism Integration Influence the Rebound Effect of China’s Agricultural Eco-Efficiency? An Economic Development Perspective. Front. Environ. Sci. 2022, 10, 921103. [Google Scholar] [CrossRef]
- Hu, P.; Zhong, Y. The Mechanism of Improving Agricultural Eco efficiency by the Integration of Agriculture and Tourism Supported by the Government: Taking the National Leisure Agriculture and Rural Tourism Demonstration Counties as an Example. Chin. Rural. Econ. 2019, 12, 85–104. [Google Scholar]
- Chang, X.; Zhang, Y. Mechanism and Effect of Agriculture-Tourism Integration on Agricultural Eco-Efficiency in China. J. Agro For. Econ. Manag. 2022, 21, 310–319. [Google Scholar] [CrossRef]
- Söderholm, P.; Bergquist, A.-K.; Söderholm, K. Environmental Regulation in the Pulp and Paper Industry: Impacts and Challenges. Curr. For. Rep. 2019, 5, 185–198. [Google Scholar] [CrossRef] [Green Version]
- Liao, X.; Shi, X. Public appeal, environmental regulation and green investment: Evidence from China. Energy Policy 2018, 119, 554–562. [Google Scholar] [CrossRef]
- Ouyang, X.; Fang, X.; Cao, Y.; Sun, C. Factors behind CO2 emission reduction in Chinese heavy industries: Do environmental regulations matter? Energy Policy 2020, 145, 111765. [Google Scholar] [CrossRef]
- Wu, R.; Lin, B. Environmental regulation and its influence on energy-environmental performance: Evidence on the Porter Hypothesis from China’s iron and steel industry. Resour. Conserv. Recycl. 2022, 176, 105954. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, R. Effects of environmental regulation on CO2 emissions: An empirical analysis of 282 cities in China. Sustain. Prod. Consum. 2022, 29, 259–272. [Google Scholar] [CrossRef]
- Yu, B. Ecological effects of new-type urbanization in China. Renew. Sustain. Energy Rev. 2021, 135, 110239. [Google Scholar] [CrossRef]
- Kangas, K.; Brown, G.; Kivinen, M.; Tolvanen, A.; Tuulentie, S.; Karhu, J.; Markovaara-Koivisto, M.; Eilu, P.; Tarvainen, O.; Simila, J.; et al. Land use synergies and conflicts identification in the framework of compatibility analyses and spatial assessment of ecological, socio-cultural and economic values. J. Environ. Manag. 2022, 316, 115174. [Google Scholar] [CrossRef] [PubMed]
- Ke, S.; Qiao, D.; Zhang, X.; Feng, Q. Changes of China’s forestry and forest products industry over the past 40 years and challenges lying ahead. For. Policy Econ. 2019, 106, 101949. [Google Scholar] [CrossRef]
Variable | Definition | Mean | Std. Dev | Min | Max |
---|---|---|---|---|---|
Inputs | |||||
Land | Forest land area | 931.599 | 895.015 | 2.250 | 4499.170 |
Capital | Forestry fixed-asset investment | 12.002 | 43.607 | 0.009 | 469.432 |
Labor | Number of employees in forestry system | 44,912.677 | 62,100.011 | 704.000 | 470,317.000 |
Energy | Forestry energy investment | 15.122 | 43.732 | 0.028 | 438.191 |
Desired output | |||||
Economic benefits | Forestry output value | 969.187 | 1425.666 | 2.038 | 8167.577 |
Ecological benefits | Forestry carbon sink | 16,326.196 | 20,831.662 | 14.707 | 87,281.959 |
Undesired output | |||||
Carbon emissions | Forestry carbon emissions | 470.182 | 629.846 | 0.406 | 3256.067 |
Variable | Mean | Std. Dev | Min | Max |
---|---|---|---|---|
fgtfp | 1.267 | 1.495 | 0.102 | 30.798 |
gur | 1.225 | 0.435 | 0.054 | 2.840 |
pgdp | 8.885 | 6.189 | 0.729 | 27.500 |
tech | 2279.591 | 1537.735 | 39.000 | 7404.000 |
stru | 33.288 | 27.468 | 0.012 | 89.625 |
fgdp | 6.041 | 4.615 | 0.112 | 28.214 |
nature | 0.186 | 0.201 | 0.001 | 1.08 |
edu | 12.675 | 1.262 | 6.793 | 14.893 |
gov | 0.117 | 0.082 | 0.013 | 1.022 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
fgtfp | fgtfp | fgtfp | fgtfp | |
gur | 0.1106 *** | 0.1106 *** | 0.5824 ** | 0.1632 ** |
(0.0324) | (0.0281) | (0.2691) | (0.0714) | |
pgdp | −0.0154 | −0.0154 | −0.0480 | 0.1134 |
(0.0274) | (0.0169) | (0.1047) | (0.1985) | |
tech | 0.0337 * | 0.0337 * | 0.1336 *** | 0.1224 ** |
(0.0185) | (0.0174) | (0.0461) | (0.0479) | |
stru | −0.0409 | −0.0409 ** | −0.0373 * | −0.0515 ** |
(0.0292) | (0.0196) | (0.0199) | (0.0208) | |
fgdp | 0.0851 *** | 0.0851 *** | 0.2766 *** | 0.2946 *** |
(0.0236) | (0.0245) | (0.0650) | (0.0641) | |
nature | −0.0491 *** | −0.0491 *** | −0.1796 * | −0.1995 ** |
(0.0144) | (0.0145) | (0.0931) | (0.0895) | |
edu | −0.0554 | −0.0554 | −0.2597 | −0.2725 |
(0.1093) | (0.1135) | (0.1874) | (0.1975) | |
gov | 0.0322 * | 0.0322 *** | 0.0197 | 0.0284 |
(0.0181) | (0.0114) | (0.0154) | (0.0223) | |
Constant | 0.2398 | 0.2398 | 0.5157 | −2.6596 |
(0.5422) | (0.3950) | (1.9178) | (3.3019) | |
Year | No | No | No | Yes |
Province | No | No | Yes | Yes |
R2 | 0.0421 | 0.0814 | 0.1217 | |
N | 540 | 540 | 540 | 540 |
Hausman | 0.0014 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
EW M | L. gur | L2. Gur | 0.25 | 0.50 | 0.75 | |
gur | 0.4808 ** | 0.2093 *** | 0.1448 ** | 0.0783 *** | 0.0925 *** | 0.0743 *** |
(0.2246) | (0.0657) | (0.0575) | (0.0089) | (0.0048) | (0.0063) | |
Constant | −0.3964 | −3.7005 | −2.1620 | - | - | - |
(3.7495) | (3.3001) | (4.2408) | - | - | - | |
CV | Yes | Yes | Yes | Yes | Yes | Yes |
Year | Yes | Yes | Yes | Yes | Yes | Yes |
Province | Yes | Yes | Yes | Yes | Yes | Yes |
N | 540 | 510 | 480 | 540 | 540 | 540 |
R2 | 0.1192 | 0.1258 | 0.1209 | - | - | - |
Variable | iv_L. gur | iv_bartik | ||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
First-Stage | Second-Stage | First-Stage | Second-Stage | |
gur | 0.2498 ** | 0.3277 ** | ||
(0.1234) | (0.1453) | |||
IV | 0.8377 *** | 5.1822 *** | ||
(0.0945) | (1.1122) | |||
Constant | −1.1090 | 0.2498 ** | 3.9648 | −0.2705 |
(0.8502) | (0.1234) | 0.5216 | (0.9557) | |
CV | Yes | Yes | Yes | Yes |
Year | Yes | Yes | Yes | Yes |
Province | Yes | Yes | Yes | Yes |
Kleibergen-Paap rk | 21.556 | 18.772 | ||
LM | [0.0000] | [0.0000] | ||
Kleibergen-Paap rk | 78.656 | 21.710 | ||
Wald F | [16.38] | [16.38] | ||
R2 | 0.1376 | 0.0173 | ||
N | 510 | 510 | 510 | 510 |
Variable | (1) | (2) |
---|---|---|
Forest Tourism Income | Forest Tourism Numbers | |
gur | 0.5942 ** | 0.2834 *** |
(0.2833) | (0.1004) | |
CV | Yes | Yes |
Year | Yes | Yes |
Province | Yes | Yes |
Constant | −33.7765 *** | 0.9493 |
(8.7464) | (5.9751) | |
N | 540 | 540 |
R2 | 0.8514 | 0.8639 |
Variable | (1) | (2) | (3) |
---|---|---|---|
Command-And-Control Type | Market Incentive-Based Type | Public Participation Type | |
gur | 0.2485 * | 0.3861 *** | 0.2860 * |
(0.1347) | (0.1380) | (0.1470) | |
CV | Yes | Yes | Yes |
Year | Yes | Yes | Yes |
Province | Yes | Yes | Yes |
Constant | −26.6582 *** | −15.1670 ** | −4.7919 |
(8.4207) | (6.9259) | (4.4728) | |
N | 540 | 540 | 540 |
R2 | 0.3985 | 0.6354 | 0.7227 |
Variable | (1) | (2) |
---|---|---|
State Forest Area | Non-State Forest Area | |
gur | 0.1272 | 0.1745 ** |
(0.1965) | (0.0746) | |
Constant | −12.2810 | −0.0803 |
(8.9336) | (3.0083) | |
CV | Yes | Yes |
Year | Yes | Yes |
Province | Yes | Yes |
N | 162 | 378 |
R2 | 0.1826 | 0.1760 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Wang, H.; Liu, C.; Xiong, L.; Qian, Z. The Effect of Green Urbanization on Forestry Green Total Factor Productivity in China: Analysis from a Carbon Neutral Perspective. Land 2022, 11, 1900. https://doi.org/10.3390/land11111900
Wang F, Wang H, Liu C, Xiong L, Qian Z. The Effect of Green Urbanization on Forestry Green Total Factor Productivity in China: Analysis from a Carbon Neutral Perspective. Land. 2022; 11(11):1900. https://doi.org/10.3390/land11111900
Chicago/Turabian StyleWang, Fengting, Hao Wang, Cong Liu, Lichun Xiong, and Zhiquan Qian. 2022. "The Effect of Green Urbanization on Forestry Green Total Factor Productivity in China: Analysis from a Carbon Neutral Perspective" Land 11, no. 11: 1900. https://doi.org/10.3390/land11111900
APA StyleWang, F., Wang, H., Liu, C., Xiong, L., & Qian, Z. (2022). The Effect of Green Urbanization on Forestry Green Total Factor Productivity in China: Analysis from a Carbon Neutral Perspective. Land, 11(11), 1900. https://doi.org/10.3390/land11111900