Comparative Analysis of Photosynthetically Active Radiation Models Based on Radiometric Attributes in Mainland Spain
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Graphical Analysis of PAR and Other Radiometric Variables
3.2. Complete Models Development and Validation
- -
- G1: models that include and (m_1, m_4, and m_5),
- -
- G2: models that do not include sin (α) and simultaneously (m_2, m_3, and m_6),
Models | a | b | c | d | Station | MAE 1 | MBE 1 | RMSE 1 | MPE (%) | R2 | |
---|---|---|---|---|---|---|---|---|---|---|---|
G1 | m_1 | 0.018 | −0.030 | 0.385 | - | CEDER | 25.683 | 3.242 | 33.425 | −1.795 | 0.995 |
PSA | 28.445 | −6.253 | 36.641 | 1.246 | 0.994 | ||||||
m_4 | 0.028 | −0.029 | 0.373 | −0.008 | CEDER | 25.313 | 2.542 | 33.177 | −1.816 | 0.996 | |
PSA | 28.913 | −6.040 | 37.433 | 1.186 | 0.994 | ||||||
m_5 | 0.019 | −0.030 | 0.380 | 0.004 | CEDER | 25.595 | 2.990 | 33.360 | −1.851 | 0.995 | |
PSA | 28.673 | −6.152 | 36.979 | 1.226 | 0.994 | ||||||
G2 | m_2 | 0.295 | 0.035 | −0.198 | - | CEDER | 108.033 | 6.330 | 145.848 | −16.338 | 0.913 |
PSA | 92.002 | −18.124 | 127.034 | −1.284 | 0.922 | ||||||
m_3 | 0.126 | 0.006 | 0.255 | - | CEDER | 101.927 | 7.143 | 136.499 | −19.155 | 0.923 | |
PSA | 86.357 | −12.325 | 116.862 | −1.599 | 0.935 | ||||||
m_6 | 0.094 | 0.001 | 0.038 | 0.301 | CEDER | 101.762 | 8.770 | 136.903 | −20.294 | 0.923 | |
PSA | 85.478 | −11.117 | 115.844 | −1.799 | 0.936 |
3.3. Comparison between Complete Models and Bibliographic Models
CEDER-CIEMAT | PSA-CIEMAT | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Models | MAE 1 | MBE 1 | RMSE 1 | MPE(%) | R2 | MAE 1 | MBE 1 | RMSE 1 | MPE(%) | R2 |
m_1 | 25.6828 | 3.242 | 33.425 | 1.795 | 0.995 | 28.445 | −6.253 | 36.641 | 1.246 | 0.994 |
m_4 | 25.3128 | 2.542 | 33.177 | −1.816 | 0.996 | 28.913 | −6.040 | 37.433 | 1.186 | 0.994 |
m_5 | 25.5951 | 2.990 | 33.360 | −1.851 | 0.995 | 28.673 | −6.152 | 36.979 | 1.226 | 0.994 |
Alados | 110.944 | 110.581 | 136.863 | −15.840 | 0.994 | 116.581 | 5.819 | 53.018 | 1.125 | 0.992 |
Foyo-Moreno | 110.0813 | 109.323 | 150.393 | −12.479 | 0.994 | 124.593 | 123.633 | 166.398 | −10.524 | 0.991 |
Wang | 43.4608 | 36.287 | 53.859 | −8.035 | 0.994 | 40.835 | 27.326 | 56.229 | −2.993 | 0.991 |
Ferrera-Cobos | 136.1521 | 135.026 | 174.649 | −16.660 | 0.994 | 151.318 | 148.399 | 193.599 | −12.384 | 0.991 |
3.4. Comparison between Complete Models and Interval Models
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Model | a | b | c | d | e | Station | MPE (%) | MBE 1 | RMSE 1 | R2 |
---|---|---|---|---|---|---|---|---|---|---|
0.189 | 0.109 | - | - | - | CEDER | −69.046 | 151.513 | 356.347 | 0.557 | |
PSA | −12.277 | 6.877 | 232.068 | 0.740 | ||||||
0.007 | 0.372 | - | - | - | CEDER | −2.114 | 10.983 | 35.786 | 0.996 | |
PSA | 1.437 | −1.049 | 44.151 | 0.994 | ||||||
0.318 | −0.204 | - | - | - | CEDER | −17.194 | −1.998 | 147.847 | 0.911 | |
PSA | −1.731 | −25.528 | 128.259 | 0.921 | ||||||
0.128 | 0.256 | - | - | - | CEDER | −19.24 | 5.498 | 136.714 | 0.924 | |
PSA | −1.652 | −13.661 | 116.63 | 0.935 | ||||||
0.018 | −0.030 | 0.385 | - | - | CEDER | −1.795 | 3.242 | 33.425 | 0.995 | |
PSA | 1.246 | −6.253 | 36.641 | 0.994 | ||||||
0.295 | 0.035 | −0.198 | - | - | CEDER | −16.338 | 6.33 | 145.848 | 0.913 | |
PSA | −1.284 | −18.124 | 127.034 | 0.922 | ||||||
0.125 | 0.006 | 0.254 | - | - | CEDER | −19.155 | 7.143 | 136.499 | 0.923 | |
PSA | −1.599 | −12.325 | 116.862 | 0.935 | ||||||
0.025 | 0.353 | −0.014 | - | - | CEDER | −2.15 | 9.442 | 34.877 | 0.996 | |
PSA | 1.296 | −0.789 | 44.92 | 0.993 | ||||||
0.009 | 0.365 | 0.006 | - | - | CEDER | −2.206 | 10.633 | 35.49 | 0.996 | |
PSA | 1.394 | −0.802 | 44.623 | 0.993 | ||||||
0.093 | 0.039 | 0.303 | - | - | CEDER | −20.343 | 8.661 | 136.944 | 0.923 | |
PSA | −1.812 | −11.213 | 115.783 | 0.936 | ||||||
0.028 | −0.029 | 0.373 | −0.008 | - | CEDER | −1.816 | 2.542 | 33.177 | 0.996 | |
PSA | 1.186 | −6.04 | 37.433 | 0.994 | ||||||
0.019 | −0.030 | 0.380 | 0.004 | - | CEDER | −1.851 | 2.99 | 33.36 | 0.995 | |
PSA | 1.226 | −6.152 | 36.979 | 0.994 | ||||||
0.094 | 0.001 | 0.038 | 0.301 | - | CEDER | −20.294 | 8.77 | 136.903 | 0.923 | |
PSA | −1.799 | −11.117 | 115.844 | 0.936 | ||||||
0.073 | 0.373 | −0.072 | −0.087 | - | CEDER | −1.070 | 8.825 | 35.513 | 0.996 | |
PSA | 1.310 | −3.016 | 41 | 0.993 | ||||||
0.056 | −0.025 | 0.383 | −0.044 | −0.053 | CEDER | −1.165 | 3.082 | 33.085 | 0.996 | |
PSA | 1.200 | -6.521 | 36.047 | 0.994 |
Cloudy Skies | Partly Cloudy Skies | Clear Skies | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | a | b | c | d | e | a | b | c | d | e | a | b | c | d | e |
0.068 | 0.021 | 0.218 | −0.001 | 0.311 | −0.022 | ||||||||||
0.003 | 0.378 | −0.003 | 0.400 | 0.045 | 0.321 | ||||||||||
0.143 | −0.067 | 0.275 | −0.124 | 0.291 | 0.027 | ||||||||||
0.077 | 0.171 | 0.157 | 0.182 | 0.287 | 0.014 | ||||||||||
0.002 | 0.001 | 0.377 | 0.006 | −0.021 | 0.402 | 0.051 | −0.042 | 0.351 | |||||||
0.143 | 0.026 | −0.080 | 0.264 | 0.028 | −0.128 | 0.306 | −0.020 | 0.022 | |||||||
0.065 | 0.026 | 0.213 | 0.147 | 0.020 | 0.185 | 0.297 | −0.026 | 0.028 | |||||||
0.012 | 0.376 | −0.009 | 0.025 | 0.366 | −0.019 | 0.045 | 0.318 | 0.014 | |||||||
0.003 | 0.377 | 0.012 | 0.009 | 0.362 | 0.027 | 0.053 | 0.331 | −0.024 | |||||||
0.194 | −0.119 | −0.164 | 0.059 | 0.108 | 0.329 | 0.059 | 0.261 | 0.304 | |||||||
0.012 | 0.002 | 0.374 | −0.010 | 0.023 | −0.016 | 0.377 | −0.013 | 0.051 | −0.041 | 0.350 | 0.003 | ||||
0.002 | 0.001 | 0.372 | 0.015 | 0.013 | −0.016 | 0.374 | 0.020 | 0.052 | −0.041 | 0.353 | −0.005 | ||||
0.180 | 0.026 | −0.118 | −0.118 | 0.063 | 0.012 | 0.096 | 0.315 | 0.026 | −0.049 | 0.319 | 0.394 | ||||
0.053 | 0.375 | −0.051 | −0.132 | 0.026 | 0.367 | −0.020 | −0.002 | 0.087 | 0.395 | −0.091 | −0.133 | ||||
0.053 | 0.001 | 0.374 | −0.051 | −0.129 | 0.019 | −0.016 | 0.376 | −0.008 | 0.008 | 0.058 | −0.040 | 0.364 | −0.016 | −0.025 |
References
- Hindersin, S.; Leupold, M.; Kerner, M.; Hanelt, D. Key Parameters for Outdoor Biomass Production of Scenedesmus Obliquus in Solar Tracked Photobioreactors. J. Appl. Phycol. 2014, 26, 2315–2325. [Google Scholar] [CrossRef]
- Raymond Hunt, E., Jr. Relationship between Woody Biomass and PAR Conversion Efficiency for Estimating Net Primary Production from NDVI. Int. J. Remote Sens. 1994, 15, 1725–1729. [Google Scholar] [CrossRef]
- Ramírez-Pérez, L.J.; Morales-Díaz, A.B.; De Alba-Romenus, K.; González-Morales, S.; Benavides-Mendoza, A.; Juárez-Maldonado, A. Determination of Micronutrient Accumulation in Greenhouse Cucumber Crop Using a Modeling Approach. Agronomy 2017, 7, 79. [Google Scholar] [CrossRef]
- Kim, T.H.; Lee, Y.; Han, S.H.; Hwang, S.J. The Effects of Wavelength and Wavelength Mixing Ratios on Microalgae Growth and Nitrogen, Phosphorus Removal Using Scenedesmus Sp. for Wastewater Treatment. Bioresour. Technol. 2013, 130, 75–80. [Google Scholar] [CrossRef]
- Trofimchuk, O.A.; Petikar, P.V.; Turanov, S.B.; Romanenko, S.A. The Influence of PAR Irradiance on Yield Growth of Chlorella Microalgae. IOP Conf. Ser. Mater. Sci. Eng. 2019, 510. [Google Scholar] [CrossRef]
- Schmidt, J.J.; Gagnon, G.A.; Jamieson, R.C. Microalgae Growth and Phosphorus Uptake in Wastewater under Simulated Cold Region Conditions. Ecol. Eng. 2016, 95, 588–593. [Google Scholar] [CrossRef]
- Vadiveloo, A.; Moheimani, N.R.; Cosgrove, J.J.; Bahri, P.A.; Parlevliet, D. Effect of Different Light Spectra on the Growth and Productivity of Acclimated Nannochloropsis Sp. (Eustigmatophyceae). Algal Res. 2015, 8, 121–127. [Google Scholar] [CrossRef]
- Prasad, R.; Gupta, S.K.; Shabnam, N.; Oliveira, C.Y.B.; Nema, A.K.; Ansari, F.A.; Bux, F. Role of Microalgae in Global CO2 Sequestration: Physiological Mechanism, Recent Development, Challenges, and Future Prospective. Sustainability 2021, 13, 13061. [Google Scholar] [CrossRef]
- Farrelly, D.J.; Everard, C.D.; Fagan, C.C.; McDonnell, K.P. Carbon Sequestration and the Role of Biological Carbon Mitigation: A Review. Renew. Sustain. Energy Rev. 2013, 21, 712–727. [Google Scholar] [CrossRef]
- Ali, H.; Park, C.W. Numerical Multiphase Modeling of CO2 Absorption and Desorption in Microalgal Raceway Ponds to Improve Their Carbonation Efficiency. Energy 2017, 127, 358–371. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W.; Rivard, B.; Feng, J. Remote Estimation of Gross Primary Production in Wheat Using Chlorophyll-Related Vegetation Indices. Agric. For. Meteorol. 2009, 149, 1015–1021. [Google Scholar] [CrossRef]
- Pinker, R.T.; Zhao, M.; Wang, H.; Wood, E.F. Impact of Satellite Based PAR on Estimates of Terrestrial Net Primary Productivity. Int. J. Remote Sens. 2010, 31, 5221–5237. [Google Scholar] [CrossRef]
- Leblon, B.; Guerif, M.; Baret, F. The Use of Remotely Sensed Data in Estimation of PAR Use Efficiency and Biomass Production of Flooded Rice. Remote Sens. Environ. 1991, 38, 147–158. [Google Scholar] [CrossRef]
- Gu, L.; Baldocchi, D.; Verma, S.B.; Black, T.A.; Vesala, T.; Falge, E.M.; Dowty, P.R. Advantages of Diffuse Radiation for Terrestrial Ecosystem Productivity. J. Geophys. Res. Atmos. 2002, 107, ACL-2. [Google Scholar] [CrossRef]
- Roderick, M.L.; Farquhar, G.D.; Berry, S.L.; Noble, I.R. On the Direct Effect of Clouds and Atmospheric Particles on the Productivity and Structure of Vegetation. Oecologia 2001, 129, 21–30. [Google Scholar] [CrossRef]
- Lee, C.-s.; Hoes, P.; Cóstola, D.; Hensen, J.L.M. Assessing the Performance Potential of Climate Adaptive Greenhouse Shells. Energy 2019, 175, 534–545. [Google Scholar] [CrossRef]
- Cemek, B.; Demir, Y.; Uzun, S.; Ceyhan, V. The Effects of Different Greenhouse Covering Materials on Energy Requirement, Growth and Yield of Aubergine. Energy 2006, 31, 1780–1788. [Google Scholar] [CrossRef]
- Wang, C.; Du, J.; Liu, Y.; Chow, D. A Climate-Based Analysis of Photosynthetically Active Radiation Availability in Large-Scale Greenhouses across China. J. Clean. Prod. 2021, 315, 127901. [Google Scholar] [CrossRef]
- Wang, L.; Gong, W.; Lin, A.; Hu, B. Analysis of Photosynthetically Active Radiation under Various Sky Conditions in Wuhan, Central China. Int. J. Biometeorol. 2014, 58, 1711–1720. [Google Scholar] [CrossRef]
- Wang, L.; Gong, W.; Ma, Y.; Hu, B.; Zhang, M. Photosynthetically Active Radiation and Its Relationship with Global Solar Radiation in Central China. Int. J. Biometeorol. 2014, 58, 1265–1277. [Google Scholar] [CrossRef]
- Ferrera-Cobos, F.; Vindel, J.M.; Valenzuela, R.X.; González, J.A. Analysis of Spatial and Temporal Variability of the PAR/GHI Ratio and PAR Modeling Based on Two Satellite Estimates. Remote Sens. 2020, 12, 1262. [Google Scholar] [CrossRef]
- Akitsu, T.K.; Nasahara, K.N.; Ijima, O.; Hirose, Y.; Ide, R.; Takagi, K.; Kume, A. The Variability and Seasonality in the Ratio of Photosynthetically Active Radiation to Solar Radiation: A Simple Empirical Model of the Ratio. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102724. [Google Scholar] [CrossRef]
- Xia, X.; Li, Z.; Wang, P.; Chen, H.; Cribb, M. Estimation of Aerosol Effects on Surface Irradiance Based on Measurements and Radiative Transfer Model Simulations in Northern China. J. Geophys. Res. 2007, 112, D22S10. [Google Scholar] [CrossRef]
- Kidder, S.Q.; Vonder Haar, T.H. Satellite Meteorology—An Introduction; Academic Press: Cambridge, MA, USA, 1995; ISBN 978-0124064300. [Google Scholar]
- Ferrera-Cobos, F.; Vindel, J.M.; Valenzuela, R.X.; González, J.A. Models for Estimating Daily Photosynthetically Active Radiation in Oceanic and Mediterranean Climates and Their Improvement by Site Adaptation Techniques. Adv. Sp. Res. 2020, 65, 1894–1909. [Google Scholar] [CrossRef]
- Vindel, J.M.; Valenzuela, R.X.; Navarro, A.A.; Zarzalejo, L.F.; Paz-Gallardo, A.; Souto, J.; Méndez-Gómez, R.; Cartelle, D.; Casares, J. Modeling Photosynthetically Active Radiation from Satellite-Derived Estimations over Mainland Spain. Remote Sens. 2018, 10, 849. [Google Scholar] [CrossRef]
- Lozano, I.L.; Sánchez-Hernández, G.; Guerrero-Rascado, J.L.; Alados, I.; Foyo-Moreno, I. Analysis of Cloud Effects on Long-Term Global and Diffuse Photosynthetically Active Radiation at a Mediterranean Site. Atmos. Res. 2022, 268, 106010. [Google Scholar] [CrossRef]
- Escobedo, J.F.; Gomes, E.N.; Oliveira, A.P.; Soares, J. Modeling Hourly and Daily Fractions of UV, PAR and NIR to Global Solar Radiation under Various Sky Conditions at Botucatu, Brazil. Appl. Energy 2009, 86, 299–309. [Google Scholar] [CrossRef]
- Alados, I.; Foyo-Moreno, I.; Alados-Arboledas, L. Photosynthetically Active Radiation: Measurements and Modelling. Agric. For. Meteorol. 1996, 78, 121–131. [Google Scholar] [CrossRef]
- Mizoguchi, Y.; Yasuda, Y.; Ohtani, Y.; Watanabe, T.; Kominami, Y.; Yamanoi, K. A Practical Model to Estimate Photosynthetically Active Radiation Using General Meteorological Elements in a Temperate Humid Area and Comparison among Models. Theor. Appl. Climatol. 2014, 115, 583–589. [Google Scholar] [CrossRef]
- Yu, X.; Wu, Z.; Jiang, W.; Guo, X. Predicting Daily Photosynthetically Active Radiation from Global Solar Radiation in the Contiguous United States. Energy Convers. Manag. 2015, 89, 71–82. [Google Scholar] [CrossRef]
- Pashiardis, S.; Kalogirou, S.; Pelengaris, A. Characteristics of Photosynthetic Active Radiation (PAR) Through Statistical Analysis at Larnaca, Cyprus. SM J. Biometrics Biostat. 2017, 2, 1–16. [Google Scholar] [CrossRef]
- Ferrera-Cobos, F.; Vindel, J.M.; Valenzuela, R.X. A New Index Assessing the Viability of PAR Application Projects Used to Validate PAR Models. Agronomy 2021, 11, 470. [Google Scholar] [CrossRef]
- García-Rodríguez, A.; Granados-López, D.; García-Rodríguez, S.; Díez-Mediavilla, M.; Alonso-Tristán, C. Modelling Photosynthetic Active Radiation (PAR) through Meteorological Indices under All Sky Conditions. Agric. For. Meteorol. 2021, 310, 108627. [Google Scholar] [CrossRef]
- National Renewable Energy Laboratory. Users Manual for SERf QC Software—Assessing the Quality of Solar Radiation; National Renewable Energy Laboratory: Golden, CO, USA, 1993.
- Sengupta, M.; Habte, A.; Kurtz, S.; Dobos, A.; Wilbert, S.; Lorenz, E.; Stoffel, T.; Renné, D.; Gueymard, C.; Myers, D.; et al. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications; IEA: Paris, France, 2015. [Google Scholar]
- Liu, B.Y.H.; Jordan, R.C. The Interrelationship and Characteristic Distribution of Direct, Diffuse and Total Solar Radiation. Sol. Energy 1960, 4, 1–19. [Google Scholar] [CrossRef]
- Köppen, W.; Geiger, R. Das Geographische System Der Klimate; Gebrüder, B., Ed.; Mit 14 Textflguren: Berlin, Germany, 1936. [Google Scholar]
- Agencia Estatal de Meteorología (AEMET); Instituto de Meteorologia de Portugal (IM). Atlas Climático Ibérico—Iberian Climate Atlas; AEMET-Ministerio de Medio Ambiente, y Medio Rural y Marino & Instituto de Meteorologia de Portugal: Madrid, Spain, 2011. [Google Scholar]
- Zo, I.S.; Jee, J.B.; Kim, B.Y.; Lee, K.T. Baseline Surface Radiation Network (BSRN) Quality Control of Solar Radiation Data on the Gangneung-Wonju National University Radiation Station. Asia-Pacific J. Atmos. Sci. 2017, 53, 11–19. [Google Scholar] [CrossRef]
- Hu, B.; Wang, Y.; Liu, G. Spatiotemporal Characteristics of Photosynthetically Active Radiation in China. J. Geophys. Res. Atmos. 2007, 112, 1–12. [Google Scholar] [CrossRef]
- Polo, J.; Zarzalejo, L.F.; Ramirez, L.; Espinar, B. Iterative Filtering of Ground Data for Qualifying Statistical Models for Solar Irradiance Estimation from Satellite Data. Sol. Energy 2006, 80, 240–247. [Google Scholar] [CrossRef]
- Sengupta, M.; Habte, A.; Wilbert, S.; Gueymard, C.A.; Remund, J. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications; IEA: Paris, France, 2021. [Google Scholar]
- Iqbal, M. An Introduction to Solar Radiation; Academic Press: Toronto, ON, USA, 1983; ISBN 0123737508/9780123737502/0123737524/9780123737526. [Google Scholar]
- Salazar, G.; Raichijk, C. Evaluation of Clear-Sky Conditions in High Altitude Sites. Renew. Energy 2014, 64, 197–202. [Google Scholar] [CrossRef]
- Wang, L.; Gong, W.; Hu, B.; Lin, A.; Li, H.; Zou, L. Modeling and Analysis of the Spatiotemporal Variations of Photosynthetically Active Radiation in China during 1961–2012. Renew. Sustain. Energy Rev. 2015, 49, 1019–1032. [Google Scholar] [CrossRef]
- Foyo-Moreno, I.; Alados, I.; Alados-Arboledas, L. A New Conventional Regression Model to Estimate Hourly Photosynthetic Photon Flux Density under All Sky Conditions. Int. J. Climatol. 2017, 37, 1067–1075. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wane, O.; Ramírez Ceballos, J.A.; Ferrera-Cobos, F.; Navarro, A.A.; Valenzuela, R.X.; Zarzalejo, L.F. Comparative Analysis of Photosynthetically Active Radiation Models Based on Radiometric Attributes in Mainland Spain. Land 2022, 11, 1868. https://doi.org/10.3390/land11101868
Wane O, Ramírez Ceballos JA, Ferrera-Cobos F, Navarro AA, Valenzuela RX, Zarzalejo LF. Comparative Analysis of Photosynthetically Active Radiation Models Based on Radiometric Attributes in Mainland Spain. Land. 2022; 11(10):1868. https://doi.org/10.3390/land11101868
Chicago/Turabian StyleWane, Ousmane, Julián A. Ramírez Ceballos, Francisco Ferrera-Cobos, Ana A. Navarro, Rita X. Valenzuela, and Luis F. Zarzalejo. 2022. "Comparative Analysis of Photosynthetically Active Radiation Models Based on Radiometric Attributes in Mainland Spain" Land 11, no. 10: 1868. https://doi.org/10.3390/land11101868
APA StyleWane, O., Ramírez Ceballos, J. A., Ferrera-Cobos, F., Navarro, A. A., Valenzuela, R. X., & Zarzalejo, L. F. (2022). Comparative Analysis of Photosynthetically Active Radiation Models Based on Radiometric Attributes in Mainland Spain. Land, 11(10), 1868. https://doi.org/10.3390/land11101868