Agricultural Land Abandonment in Bulgaria: A Long-Term Remote Sensing Perspective, 1950–1980
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Imagery and Aerial Photographs to Examine Long-Run Land Use and Land Cover Changes
2.2. Study Areas and Datasets
2.3. Data Pre-Processing
2.3.1. Geometric Correction of Aerial Photographs
2.3.2. Geometric Correction of Satellite Images
2.4. Classification of Aerial and Satellite Images
2.4.1. Classification Schema
2.4.2. Methodology
2.4.3. Accuracy Assessments—OA and Kappa
3. Results for Each Date—Visual Interpretation and Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Subedi, Y.R.; Kristiansen, P.; Cacho, O. Drivers and Consequences of Agricultural Land Abandonment and Its Reutilisation Pathways: A Systematic Review. Environ. Dev. 2022, 42, 100681. [Google Scholar] [CrossRef]
- Perpina Castillo, C.; Kavalov, B.; Diogo, V.; Jacobs-Crisioni, C.; Batista e Silva, F.; Lavalle, C. Agricultural Land Abandonment in the EU within 2015–2030; Joint Research Centre (Seville Site): Seville, Spain, 2018. [Google Scholar]
- Emmerson, M.; Morales, M.B.; Oñate, J.J.; Batáry, P.; Berendse, F.; Liira, J.; Aavik, T.; Guerrero, I.; Bommarco, R.; Eggers, S.; et al. Chapter Two—How Agricultural Intensification Affects Biodiversity and Ecosystem Services. In Advances in Ecological Research; Dumbrell, A.J., Kordas, R.L., Woodward, G., Eds.; Large-Scale Ecology: Model Systems to Global Perspectives; Academic Press: New York, NY, USA, 2016; Volume 55, pp. 43–97. [Google Scholar]
- Ustaoglu, E.; Collier, M.J. Farmland Abandonment in Europe: An Overview of Drivers, Consequences, and Assessment of the Sustainability Implications. Environ. Rev. 2018, 26, 396–416. [Google Scholar] [CrossRef]
- Levers, C.; Schneider, M.; Prishchepov, A.V.; Estel, S.; Kuemmerle, T. Spatial Variation in Determinants of Agricultural Land Abandonment in Europe. Sci. Total Environ. 2018, 644, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Lasanta, T.; Arnáez, J.; Pascual, N.; Ruiz-Flaño, P.; Errea, M.P.; Lana-Renault, N. Space–Time Process and Drivers of Land Abandonment in Europe. CATENA 2017, 149, 810–823. [Google Scholar] [CrossRef]
- Lavalle, C.; Silva, F.B.E.; Baranzelli, C.; Jacobs-Crisioni, C.; Kompil, M.; Perpiña Castillo, C.; Vizcaino, P.; Ribeiro Barranco, R.; Vandecasteele, I.; Kavalov, B.; et al. The LUISA Territorial Modelling Platform and Urban Data Platform: An EU-Wide Holistic Approach. In Territorial Impact Assessment; Medeiros, E., Ed.; Advances in Spatial Science; Springer International Publishing: Cham, Switzerland, 2020; pp. 177–194. ISBN 978-3-030-54502-4. [Google Scholar]
- Perpiña Castillo, C.; Jacobs-Crisioni, C.; Diogo, V.; Lavalle, C. Modelling Agricultural Land Abandonment in a Fine Spatial Resolution Multi-Level Land-Use Model: An Application for the EU. Environ. Model. Softw. 2021, 136, 104946. [Google Scholar] [CrossRef]
- Mallinis, G.; Emmanoloudis, D.; Giannakopoulos, V.; Maris, F.; Koutsias, N. Mapping and Interpreting Historical Land Cover/Land Use Changes in a Natura 2000 Site Using Earth Observational Data: The Case of Nestos Delta, Greece. Appl. Geogr. 2011, 31, 312–320. [Google Scholar] [CrossRef]
- Sheeren, D.; Ladet, S.; Ribière, O.; Raynaud, B.; Paegelow, M.; Houet, T. Assessing Land Cover Changes in the French Pyrenees since the 1940s: A Semi-Automatic GEOBIA Approach Using Aerial Photographs. In Proceedings of the Multidisciplinary Research on Geographical Information in Europe and Beyond, Avignon, France, 24–27 April 2012; p. 3. [Google Scholar]
- Xystrakis, F.; Psarras, T.; Koutsias, N. A Process-Based Land Use/Land Cover Change Assessment on a Mountainous Area of Greece during 1945–2009: Signs of Socio-Economic Drivers. Sci. Total Environ. 2017, 587–588, 360–370. [Google Scholar] [CrossRef]
- Janus, J.; Bożek, P.; Taszakowski, J.; Doroż, A. Decaying Villages in the Centre of Europe with No Population Decline: Long-Term Analysis Using Historical Aerial Images and Remote Sensing Data. Habitat Int. 2022, 121, 102520. [Google Scholar] [CrossRef]
- Cousins, S.A.O. Analysis of Land-Cover Transitions Based on 17th and 18th Century Cadastral Maps and Aerial Photographs. Landsc. Ecol. 2001, 16, 41–54. [Google Scholar] [CrossRef]
- Sobala, M. Landscape Effects of Conflicts in Space Management. A Historical Approach Based on the Silesian and Żywiec Beskids (West Carpathians, Poland). Environ. Socio-Econ. Stud. 2016, 4, 51–60. [Google Scholar] [CrossRef]
- Sobala, M.; Rahmonov, O.; Myga-Piatek, U. Historical and Contemporary Forest Ecosystem Changes in the Beskid Mountains (Southern Poland) between 1848 and 2014. iFor. Biogeosci. For. 2017, 10, 939–947. [Google Scholar] [CrossRef] [Green Version]
- Solarski, M.; Krzysztofik, R. Is the Naturalization of the Townscape a Condition of De-Industrialization? An Example of Bytom in Southern Poland. Land 2021, 10, 838. [Google Scholar] [CrossRef]
- Ettehadi Osgouei, P.; Sertel, E.; Kabadayı, M.E. Integrated Usage of Historical Geospatial Data and Modern Satellite Images Reveal Long-Term Land Use/Cover Changes in Bursa/Turkey, 1858–2020. Sci. Rep. 2022, 12, 9077. [Google Scholar] [CrossRef]
- Rodríguez-Soler, R.; Uribe-Toril, J.; De Pablo Valenciano, J. Worldwide Trends in the Scientific Production on Rural Depopulation, a Bibliometric Analysis Using Bibliometrix R-Tool. Land Use Policy 2020, 97, 104787. [Google Scholar] [CrossRef]
- Sluiter, R.; de Jong, S.M. Spatial Patterns of Mediterranean Land Abandonment and Related Land Cover Transitions. Landsc. Ecol. 2007, 22, 559–576. [Google Scholar] [CrossRef]
- Bruno, D.; Sorando, R.; Álvarez-Farizo, B.; Castellano, C.; Céspedes, V.; Gallardo, B.; Jiménez, J.J.; López, M.V.; López-Flores, R.; Moret-Fernández, D.; et al. Depopulation Impacts on Ecosystem Services in Mediterranean Rural Areas. Ecosyst. Serv. 2021, 52, 101369. [Google Scholar] [CrossRef]
- Quaranta, G.; Salvia, R.; Salvati, L.; Paola, V.D.; Coluzzi, R.; Imbrenda, V.; Simoniello, T. Long-Term Impacts of Grazing Management on Land Degradation in a Rural Community of Southern Italy: Depopulation Matters. Land Degrad. Dev. 2020, 31, 2379–2394. [Google Scholar] [CrossRef]
- Stratoulias, D.; Kabadayı, M.E. Feature and Information Extraction for Regions of Southeast Europe from Corona Satellite Images Acquired in 1968. In Proceedings of the Eighth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2020); International Society for Optics and Photonics, Paphos, Cyprus, 26 August 2020; Volume 11524. [Google Scholar]
- Stratoulias, D.; Kabadayı, M.E. Land Cover Feature Extraction from Corona Spy Satellite Images During the Cold WAR—1968. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 6069–6072. [Google Scholar]
- Stratoulias, D.; Grekousis, G. Information Extraction and Population Estimates of Settlements from Historic Corona Satellite Imagery in the 1960s. Sensors 2021, 21, 2423. [Google Scholar] [CrossRef]
- Gutman, G.; Radeloff, V. Land-Cover and Land-Use Changes in Eastern Europe after the Collapse of the Soviet Union in 1991; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-42636-5. [Google Scholar]
- Marinova, T.; Nenovsky, N. Cooperative Agricultural Farms in Bulgaria during Communism (1944–1989): An Institutional Reconstruction. Rom. Econ. J. 2019, XXII, 40–73. [Google Scholar]
- Pangelova, B.; Rogan, J. Land Cover and Land Use Change Detection and Analyses in Plovdiv, Bulgaria, Between 1986 and 2000. In Proceedings of the ASPRS 2006 Annual Conference, Reno, Nevada, 1–5 May 2006. [Google Scholar]
- Feranec, J.; Kopecka, M.; Vatseva, R.; Stoimenov, A.; Otahel, J.; Betak, J.; Husar, K. Landscape Change Analysis and Assessment (Case Studies in Slovakia and Bulgaria). Open Geosci. 2009, 1, 106–119. [Google Scholar] [CrossRef]
- Kitev, A. Impact of Settlements on the Landscapes of Slavyanka Mountain (South-Western Bulgaria). J. Settl. Spat. Plan. 2014, 3, 65–69. [Google Scholar]
- Avetisyan, D.; Velizarova, E.; Nedkov, R.; Borisova, D. Assessment and Mapping of the Current State of the Landscapes/Ecosystems in Haskovo Region (Southeastern Bulgaria) in Relation to Ecosystem Services Using Remote Sensing and GIS. In Proceedings of the Sixth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2018), Paphos, Cyprus, 6 August 2018; Volume 10773, pp. 555–563. [Google Scholar]
- Eftimoski, M.; Ross, S.A.; Sobotkova, A. The Impact of Land Use and Depopulation on Burial Mounds in the Kazanlak Valley, Bulgaria: An Ordered Logit Predictive Model. J. Cult. Herit. 2017, 23, 1–10. [Google Scholar] [CrossRef]
- Mladenov, C.; Dimitrov, E.; Kazakov, B. Demographical Development of Bulgaria during the Transitional Period. J. Mediterr. Geogr. 2008, 110, 117–123. [Google Scholar] [CrossRef]
- Ilieva, M.; Mladenov, C. Changes in the Rural Areas in Bulgaria: Processes and Prospects. Geogr. Pol. 2003, 76, 97–110. [Google Scholar]
- Mladenov, C.; Ilieva, M. The Depopulation of the Bulgarian Villages. Bull. Geography. Socio-Econ. Ser. 2012, 17, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Koulov, B.; Boyadjiev, V.; Ravnachka, A. The Demographyc Draining of Bulgaria’s Rural Area: A GIS-Aided Geospatial Analysis (1992–2017). In Three Decades of Transformation in the East-Central European Countryside; Bański, J., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 239–260. ISBN 978-3-030-21237-7. [Google Scholar]
- Dashora, A.; Lohani, B.; Malik, J.N. A Repository of Earth Resource Information—CORONA Satellite Programme. Curr. Sci. 2007, 92, 926–932. [Google Scholar]
- Coskun Hepcan, C. Quantifying Landscape Pattern and Connectivity in a Mediterranean Coastal Settlement: The Case of the Urla District, Turkey. Environ. Monit. Assess. 2013, 185, 143–155. [Google Scholar] [CrossRef]
- Mihai, B.; Nistor, C.; Toma, L.; Săvulescu, I. High Resolution Landscape Change Analysis with CORONA KH-4B Imagery. A Case Study from Iron Gates Reservoir Area. Procedia Environ. Sci. 2016, 32, 200–210. [Google Scholar] [CrossRef] [Green Version]
- Saleem, A. Using CORONA and Landsat Data for Evaluating and Mapping Long-Term LULC Changes in Iraqi Kurdistan. Ph.D. Thesis, Curtin University, Perth, Australia, 2017. [Google Scholar]
- Shahtahmassebi, A.R.; Lin, Y.; Lin, L.; Atkinson, P.M.; Moore, N.; Wang, K.; He, S.; Huang, L.; Wu, J.; Shen, Z.; et al. Reconstructing Historical Land Cover Type and Complexity by Synergistic Use of Landsat Multispectral Scanner and CORONA. Remote Sens. 2017, 9, 682. [Google Scholar] [CrossRef] [Green Version]
- Nita, M.D.; Munteanu, C.; Gutman, G.; Abrudan, I.V.; Radeloff, V.C. Widespread Forest Cutting in the Aftermath of World War II Captured by Broad-Scale Historical Corona Spy Satellite Photography. Remote Sens. Environ. 2018, 204, 322–332. [Google Scholar] [CrossRef]
- Saleem, A.; Corner, R.; Awange, J. On the Possibility of Using CORONA and Landsat Data for Evaluating and Mapping Long-Term LULC: Case Study of Iraqi Kurdistan. Appl. Geogr. 2018, 90, 145–154. [Google Scholar] [CrossRef]
- Gurjar, S.K.; Tare, V. Estimating Long-Term LULC Changes in an Agriculture-Dominated Basin Using CORONA (1970) and LISS IV (2013–14) Satellite Images: A Case Study of Ramganga River, India. Environ. Monit. Assess. 2019, 191, 217. [Google Scholar] [CrossRef]
- Akın, A.; Erdoğan, M.A. Analysing Temporal and Spatial Urban Sprawl Change of Bursa City Using Landscape Metrics and Remote Sensing. Model. Earth Syst. Environ. 2020, 6, 1331–1343. [Google Scholar] [CrossRef]
- Fekete, A. CORONA High-Resolution Satellite and Aerial Imagery for Change Detection Assessment of Natural Hazard Risk and Urban Growth in El Alto/La Paz in Bolivia, Santiago de Chile, Yungay in Peru, Qazvin in Iran, and Mount St. Helens in the USA. Remote Sens. 2020, 12, 3246. [Google Scholar] [CrossRef]
- Rendenieks, Z.; Nita, M.D.; Nikodemus, O.; Radeloff, V.C. Half a Century of Forest Cover Change along the Latvian-Russian Border Captured by Object-Based Image Analysis of Corona and Landsat TM/OLI Data. Remote Sens. Environ. 2020, 249, 112010. [Google Scholar] [CrossRef]
- Deshpande, P.; Belwalkar, A.; Dikshit, O.; Tripathi, S. Historical Land Cover Classification from CORONA Imagery Using Convolutional Neural Networks and Geometric Moments. Int. J. Remote Sens. 2021, 42, 5144–5171. [Google Scholar] [CrossRef]
- Krina, A.; Xystrakis, F.; Karantininis, K.; Koutsias, N. Monitoring and Projecting Land Use/Land Cover Changes of Eleven Large Deltaic Areas in Greece from 1945 Onwards. Remote Sens. 2020, 12, 1241. [Google Scholar] [CrossRef] [Green Version]
- Pressel, P. Meeting the Challenge: The Hexagon KH-9 Reconnaissance Satellite; Allen, N., Ed.; American Institute of Aeronautics and Astronautics (AIAA): Reston, VA, USA, 2013; ISBN 978-1-62410-204-2. [Google Scholar]
- Pieczonka, T.; Bolch, T.; Junfeng, W.; Shiyin, L. Heterogeneous Mass Loss of Glaciers in the Aksu-Tarim Catchment (Central Tien Shan) Revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 Stereo Imagery. Remote Sens. Environ. 2013, 130, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Fowler, M.J.F. The Archaeological Potential of Declassified HEXAGON KH-9 Panoramic Camera Satellite Photographs. AARG News 2016, 53, 30–36. [Google Scholar]
- Fowler, M.J.F. Declassified Intelligence Satellite Photographs. In Archaeology from Historical Aerial and Satellite Archives; Hanson, W.S., Oltean, I.A., Eds.; Springer: New York, NY, USA, 2013; pp. 47–66. ISBN 978-1-4614-4505-0. [Google Scholar]
- Hammer, E.; FitzPatrick, M.; Ur, J. Succeeding CORONA: Declassified HEXAGON Intelligence Imagery for Archaeological and Historical Research. Antiquity 2022, 96, 679–695. [Google Scholar] [CrossRef]
- Holzer, N.; Vijay, S.; Yao, T.; Xu, B.; Buchroithner, M.; Bolch, T. Four Decades of Glacier Variations at Muztagh Ata (Eastern Pamir): A Multi-Sensor Study Including Hexagon KH-9 and Pléiades Data. Cryosphere 2015, 9, 2071–2088. [Google Scholar] [CrossRef] [Green Version]
- Maurer, J.M.; Rupper, S.B.; Schaefer, J.M. Quantifying Ice Loss in the Eastern Himalayas since 1974 Using Declassified Spy Satellite Imagery. Cryosphere 2016, 10, 2203–2215. [Google Scholar] [CrossRef] [Green Version]
- Pieczonka, T.; Bolch, T. Region-Wide Glacier Mass Budgets and Area Changes for the Central Tien Shan between ~1975 and 1999 Using Hexagon KH-9 Imagery. Glob. Planet. Chang. 2015, 128, 1–13. [Google Scholar] [CrossRef]
- Lamsal, D.; Fujita, K.; Sakai, A. Surface Lowering of the Debris-Covered Area of Kanchenjunga Glacier in the Eastern Nepal Himalaya since 1975, as Revealed by Hexagon KH-9 and ALOS Satellite Observations. Cryosphere 2017, 11, 2815–2827. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Li, Z.; Li, J.; Zhao, R.; Ding, X. Glacier Mass Balance in the Qinghai–Tibet Plateau and Its Surroundings from the Mid-1970s to 2000 Based on Hexagon KH-9 and SRTM DEMs. Remote Sens. Environ. 2018, 210, 96–112. [Google Scholar] [CrossRef]
- Bolch, T.; Yao, T.; Bhattacharya, A.; Hu, Y.; King, O.; Liu, L.; Pronk, J.B.; Rastner, P.; Zhang, G. Earth Observation to Investigate Occurrence, Characteristics and Changes of Glaciers, Glacial Lakes and Rock Glaciers in the Poiqu River Basin (Central Himalaya). Remote Sens. 2022, 14, 1927. [Google Scholar] [CrossRef]
- Surazakov, A.; Aizen, V. Positional Accuracy Evaluation of Declassified Hexagon KH-9 Mapping Camera Imagery. Photogramm. Eng. Remote Sens. 2010, 76, 603–608. [Google Scholar] [CrossRef] [Green Version]
- Maurer, J.; Rupper, S. Tapping into the Hexagon Spy Imagery Database: A New Automated Pipeline for Geomorphic Change Detection. ISPRS J. Photogramm. Remote Sens. 2015, 108, 113–127. [Google Scholar] [CrossRef]
- Dehecq, A.; Gardner, A.S.; Alexandrov, O.; McMichael, S.; Hugonnet, R.; Shean, D.; Marty, M. Automated Processing of Declassified KH-9 Hexagon Satellite Images for Global Elevation Change Analysis Since the 1970s. Front. Earth Sci. 2020, 8, 566802. [Google Scholar] [CrossRef]
- Drummond, M.A.; Stier, M.P.; Diffendorfer, J.J.E. Historical Land Use and Land Cover for Assessing the Northern Colorado Front Range Urban Landscape. J. Maps 2019, 15, 89–93. [Google Scholar] [CrossRef]
- Peña-Angulo, D.; Khorchani, M.; Errea, P.; Lasanta, T.; Martínez-Arnáiz, M.; Nadal-Romero, E. Factors Explaining the Diversity of Land Cover in Abandoned Fields in a Mediterranean Mountain Area. CATENA 2019, 181, 104064. [Google Scholar] [CrossRef]
- Gerard, F.; Petit, S.; Smith, G.; Thomson, A.; Brown, N.; Manchester, S.; Wadsworth, R.; Bugar, G.; Halada, L.; Bezák, P.; et al. Land Cover Change in Europe between 1950 and 2000 Determined Employing Aerial Photography. Prog. Phys. Geogr. Earth Environ. 2010, 34, 183–205. [Google Scholar] [CrossRef] [Green Version]
- Ruelland, D.; Tribotte, A.; Puech, C.; Dieulin, C. Comparison of Methods for LUCC Monitoring over 50 Years from Aerial Photographs and Satellite Images in a Sahelian Catchment. Int. J. Remote Sens. 2011, 32, 1747–1777. [Google Scholar] [CrossRef]
- Liu, D.; Toman, E.; Fuller, Z.; Chen, G.; Londo, A.; Zhang, X.; Zhao, K. Integration of Historical Map and Aerial Imagery to Characterize Long-Term Land-Use Change and Landscape Dynamics: An Object-Based Analysis via Random Forests. Ecol. Indic. 2018, 95, 595–605. [Google Scholar] [CrossRef]
- Vogels, M.F.A.; de Jong, S.M.; Sterk, G.; Addink, E.A. Agricultural Cropland Mapping Using Black-and-White Aerial Photography, Object-Based Image Analysis and Random Forests. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 114–123. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs. Population Division. World Population Prospects 2022: Summary of Results; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2022. [Google Scholar]
- Mihaylov, V.T. Ethnic and Regional Aspects of the Demographic Crisis in Bulgaria. Reg. Res. Russ. 2021, 11, 254–262. [Google Scholar] [CrossRef]
- Traykov, T.; Naydenov, K. Demographic Situation in Rural Areas of Republic of Bulgaria in 21 Century. In Proceedings of the 1st International Scientific Conference Geobalcanica, Skopje, Republic of Macedonia, 5–7 June 2015; pp. 201–208. [Google Scholar]
- National Register of Populated Places, National Statistical Institute of the Republic of Bulgaria. Available online: https://www.nsi.bg/nrnm/index.php?f=9&ezik=en (accessed on 1 October 2022).
- Chen, G.; Weng, Q.; Hay, G.J.; He, Y. Geographic Object-Based Image Analysis (GEOBIA): Emerging Trends and Future Opportunities. GISci. Remote Sens. 2018, 55, 159–182. [Google Scholar] [CrossRef]
- Cao, J.; Fu, J.; Yuan, X.; Gong, J. Nonlinear Bias Compensation of ZiYuan-3 Satellite Imagery with Cubic Splines. ISPRS J. Photogramm. Remote Sens. 2017, 133, 174–185. [Google Scholar] [CrossRef]
- Topaloğlu, R.H.; Aksu, G.A.; Ghale, Y.A.G.; Sertel, E. High-Resolution Land Use and Land Cover Change Analysis Using GEOBIA and Landscape Metrics: A Case of Istanbul, Turkey. Geocarto Int. 2021, 36, 1–27. [Google Scholar] [CrossRef]
- Janata, T.; Cajthaml, J. Georeferencing of Multi-Sheet Maps Based on Least Squares with Constraints—First Military Mapping Survey Maps in the Area of Czechia. Appl. Sci. 2021, 11, 299. [Google Scholar] [CrossRef]
- Rocco, I.; Arandjelovic, R.; Sivic, J. Convolutional Neural Network Architecture for Geometric Matching. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 2553–2567. [Google Scholar] [CrossRef] [Green Version]
- Zitová, B.; Flusser, J. Image Registration Methods: A Survey. Image Vis. Comput. 2003, 21, 977–1000. [Google Scholar] [CrossRef] [Green Version]
- Ye, S.; Pontius, R.G.; Rakshit, R. A Review of Accuracy Assessment for Object-Based Image Analysis: From per-Pixel to per-Polygon Approaches. ISPRS J. Photogramm. Remote Sens. 2018, 141, 137–147. [Google Scholar] [CrossRef]
- Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-Pixel vs. Object-Based Classification of Urban Land Cover Extraction Using High Spatial Resolution Imagery. Remote Sens. Environ. 2011, 115, 1145–1161. [Google Scholar] [CrossRef]
- Baatz, M.; Schape, A. Multiresolution Segmentation: An Optimization Approach for High Quality Multi-Scale Image Segmentation. In XII Angewandte Geographische Informationsverarbeitung; Wichmann-Verlag: Heidelberg, Germany, 2000; pp. 12–23. [Google Scholar]
- Darwish, A.; Leukert, K.; Reinhardt, W. Image Segmentation for the Purpose of Object-Based Classification. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003. [Google Scholar]
- Blaschke, T. Object Based Image Analysis for Remote Sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Tian, J.; Chen, D.-M. Optimization in Multi-scale Segmentation of High-resolution Satellite Images for Artificial Feature Recognition. Int. J. Remote Sens. 2007, 28, 4625–4644. [Google Scholar] [CrossRef]
- Lucas, R.; Rowlands, A.; Brown, A.; Keyworth, S.; Bunting, P. Rule-Based Classification of Multi-Temporal Satellite Imagery for Habitat and Agricultural Land Cover Mapping. ISPRS J. Photogramm. Remote Sens. 2007, 62, 165–185. [Google Scholar] [CrossRef]
- Bauer, T.; Strauss, P. A Rule-Based Image Analysis Approach for Calculating Residues and Vegetation Cover under Field Conditions. Catena 2014, 113, 363–369. [Google Scholar] [CrossRef]
- Goossens, R.; De Wulf, A.; Bourgeois, J.; Gheyle, W.; Willems, T. Satellite Imagery and Archaeology: The Example of CORONA in the Altai Mountains. J. Archaeol. Sci. 2006, 33, 745–755. [Google Scholar] [CrossRef]
- Beck, A.; Philip, G.; Abdulkarim, M.; Donoghue, D. Evaluation of Corona and Ikonos High Resolution Satellite Imagery for Archaeological Prospection in Western Syria. Antiquity 2007, 81, 161–175. [Google Scholar] [CrossRef] [Green Version]
- Goerlich, F.; Bolch, T.; Mukherjee, K.; Pieczonka, T. Glacier Mass Loss during the 1960s and 1970s in the Ak-Shirak Range (Kyrgyzstan) from Multiple Stereoscopic Corona and Hexagon Imagery. Remote Sens. 2017, 9, 275. [Google Scholar] [CrossRef] [Green Version]
- Altmaier, A.; Kany, C. Digital Surface Model Generation from CORONA Satellite Images. ISPRS J. Photogramm. Remote Sens. 2002, 56, 221–235. [Google Scholar] [CrossRef]
- Watanabe, N.; Nakamura, S.; Liu, B.; Wang, N. Utilization of Structure from Motion for Processing CORONA Satellite Images: Application to Mapping and Interpretation of Archaeological Features in Liangzhu Culture, China. Archaeol. Res. Asia 2017, 11, 38–50. [Google Scholar] [CrossRef]
- Rashid, I.; Aneaus, S. Landscape Transformation of an Urban Wetland in Kashmir Himalaya, India Using High-Resolution Remote Sensing Data, Geospatial Modeling, and Ground Observations over the Last 5 Decades (1965–2018). Environ. Monit. Assess. 2020, 192, 635. [Google Scholar] [CrossRef] [PubMed]
- Prokop, P. Remote Sensing of Severely Degraded Land: Detection of Long-Term Land-Use Changes Using High-Resolution Satellite Images on the Meghalaya Plateau, Northeast India. Remote Sens. Appl. Soc. Environ. 2020, 20, 100432. [Google Scholar] [CrossRef]
Date | Total Population of Ruen | Total Population of Stamboliyski |
---|---|---|
1934 | 691 | 1479 |
1946 | 716 | 3224 |
1956 | 606 | 7866 |
1965 | 409 | 12,804 |
1975 | 324 | 13,313 |
1985 | 211 | 13,449 |
1992 | 176 | 13,015 |
2001 | 175 | 12,580 |
2011 | 156 | 11,601 |
2020 | 268 | 10,738 |
Project | Mission | Date | Entity ID | Total Frame Count | Used Frame for Ruen | Used Frame for Stamboliyski |
---|---|---|---|---|---|---|
Corona | KH-4B | 5 May 1968 | DS1103-1058DA049 | 4 | - | d |
DS1103-1058DA050 | 4 | d | - | |||
Hexagon | KH-9 | 12 July 1975 | D3C1210-200256A037 | 7 | c | d |
Hexagon | KH-9 | 16 July 1980 | D3C1216-100235F054 | 10 | e | d |
Date | Number of Aerial Photographs of Ruen | Number of Aerial Photographs of Stamboliyski |
---|---|---|
1945 | 1 | 0 |
1952 | 5 | 5 |
1965 | 3 | 3 |
1975 | 2 | 2 |
Date | Spatial Resolution (m) of the Aerial Photographs of Ruen | Spatial Resolution (m) of the Aerial Photographs of Stamboliyski | Date | Spatial Resolution (m) of the Declassified Satellite Images of Ruen | Spatial Resolution (m) of the Declassified Satellite Images of Stamboliyski |
---|---|---|---|---|---|
1945 | 0.31 | - | 1968 | 2.71 | 2.93 |
1952 | 0.45 | 0.2 | 1975 | 1.06 | 0.93 |
1965 | 0.41 | 0.43 | 1980 | 0.96 | 1.01 |
1975 | 0.55 | 0.57 |
Data Type | Date | Overall Accuracy (%) | Kappa (%) |
---|---|---|---|
Aerial photographs | 1945 | 95.17 | 94.21 |
1952 | 94.57 | 93.63 | |
1965 | 93.57 | 92.59 | |
Satellite images | 1975 | 93.84 | 92.77 |
1968 | 91.42 | 90.12 | |
1980 | 93.07 | 91.87 |
Data Type | Date | Overall Accuracy (%) | Kappa (%) |
---|---|---|---|
Aerial photographs | 1952 | 92.59 | 91.35 |
1965 | 91.11 | 89.81 | |
1975 | 93.60 | 92.59 | |
Satellite images | 1968 | 94.11 | 93.17 |
1980 | 91.11 | 89.76 |
Aerial Photographs | Satellite Images | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1945 | 1952 | 1965 | 1975 | 1968 | 1980 | |||||||
Land Cover Classes | PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) |
Built-up | 95.00 | 100 | 89.47 | 100 | 95.00 | 100 | 100 | 100 | 95.00 | 100 | 95.00 | 100 |
Cropland | 100 | 100 | 100 | 100 | 95.00 | 86.36 | 90.00 | 94.74 | 95.00 | 86.36 | 100 | 86.96 |
Grassland | 85.00 | 100 | 85.00 | 94.44 | 95.00 | 90.48 | 90.00 | 85.71 | 85.00 | 77.27 | 95.00 | 90.48 |
Permanent Crop | 95.00 | 95 | 100 | 100 | 85.00 | 94.44 | 95.00 | 100 | 80.00 | 94.12 | 90 | 100 |
Shrubland | 90.00 | 94.74 | 90.00 | 85.71 | 85.00 | 94.44 | 85.00 | 85.00 | 85.00 | 100 | 80.00 | 84.21 |
Tree Cover | 100 | 85.71 | 100 | 86.96 | 100 | 90.91 | 100 | 95.24 | 100 | 90.91 | 95.00 | 95.00 |
Water Bodies | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Bare/Sparse vegetation | - | - | - | - | 100 | 100 | - | - | 100 | 90.91 | - | - |
Aerial Photographs | Satellite Images | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1952 | 1965 | 1975 | 1968 | 1980 | ||||||
Land Cover Classes | PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) |
Built-up | 95.00 | 90.48 | 96.00 | 100 | 92.00 | 92.00 | 96.00 | 100 | 100 | 92.59 |
Cropland | 95.00 | 86.36 | 96.00 | 75.00 | 100 | 86.21 | 100 | 83.33 | 100 | 96.15 |
Grassland | 90.00 | 100 | 84.00 | 91.30 | 81.82 | 94.74 | 88.00 | 100 | 92.00 | 79.31 |
Permanent Crop | 90.00 | 94.74 | 88.00 | 100 | 96 | 100 | 84.00 | 91.30 | 96.00 | 100 |
Shrubland | - | - | 86.67 | 86.67 | 80.00 | 100 | 90.00 | 100 | 60.00 | 75.00 |
Tree Cover | 95.00 | 90.48 | 90.00 | 90.00 | 100 | 96.15 | 100 | 96.15 | 84.00 | 95.45 |
Water Bodies | 90.00 | 100 | 96.00 | 100 | 96.00 | 100 | 100 | 92.59 | 88.00 | 100 |
Bare/Sparse vegetation | 93.33 | 87.50 | 90.00 | 90.00 | 90.00 | 85.71 | 90.00 | 100 | 90.00 | 81.82 |
LC Class | 1945 | 1952 | 1965 | 1968 | 1975 | 1980 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Area (ha) | % | Area (ha) | % | Area (ha) | % | Area (ha) | % | Area (ha) | % | Area (ha) | % | |
Bare/Sparse vegetation | - | 0% | - | 0% | 3.71 | 1% | 2.56 | 0% | - | 0% | - | 0% |
Built-up | 8.39 | 2% | 10.32 | 2% | 18.46 | 3% | 21.63 | 4% | 22.44 | 4% | 34.01 | 6% |
Cropland | 198.13 | 36% | 208.39 | 36% | 181.84 | 31% | 189.99 | 32% | 188.58 | 32% | 148.76 | 25% |
Grassland | 36.93 | 7% | 39.53 | 7% | 44.04 | 8% | 51.36 | 9% | 82.03 | 14% | 94.52 | 16% |
Permanent crop | 63.13 | 11% | 63.82 | 11% | 47.47 | 8% | 38.47 | 7% | 39.22 | 7% | 67.53 | 12% |
Shrubland | 61.64 | 11% | 51.99 | 9% | 52.77 | 9% | 58.48 | 10% | 58.71 | 10% | 65 | 11% |
Tree cover | 184.52 | 33% | 201.61 | 35% | 232.64 | 40% | 221.53 | 38% | 190.91 | 33% | 172.89 | 30% |
Water bodies | 0.79 | 0% | 0.62 | 0% | 0.15 | 0% | 1.54 | 0% | 3.47 | 1% | 3.26 | 1% |
LC Class | 1952 | 1965 | 1968 | 1975 | 1980 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area (ha) | % | Area (ha) | % | Area (ha) | % | Area (ha) | % | Area (ha) | % | |
Bare/Sparse vegetation | 11.19 | 1% | 43.64 | 3% | 21.78 | 2% | 59.79 | 4% | 76.19 | 5% |
Built-up | 114.09 | 11% | 362.71 | 26% | 344.41 | 25% | 423.28 | 30% | 433.25 | 31% |
Cropland | 809.43 | 77% | 655.74 | 48% | 692.17 | 50% | 614.49 | 44% | 639.65 | 45% |
Grassland | 21.94 | 2% | 47.18 | 3% | 61.59 | 4% | 51.92 | 4% | 52.35 | 4% |
Permanent crop | 49.8 | 5% | 157.93 | 11% | 146.21 | 11% | 133.59 | 10% | 107.85 | 8% |
Shrubland | - | 0% | 19.08 | 1% | 8.37 | 1% | 2.38 | 0% | 14.04 | 1% |
Tree cover | 28.76 | 3% | 39.16 | 3% | 48.35 | 4% | 48.64 | 3% | 36.54 | 3% |
Water bodies | 13.9 | 1% | 48.05 | 3% | 50.86 | 4% | 71.94 | 5% | 46.18 | 3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabadayı, M.E.; Ettehadi Osgouei, P.; Sertel, E. Agricultural Land Abandonment in Bulgaria: A Long-Term Remote Sensing Perspective, 1950–1980. Land 2022, 11, 1855. https://doi.org/10.3390/land11101855
Kabadayı ME, Ettehadi Osgouei P, Sertel E. Agricultural Land Abandonment in Bulgaria: A Long-Term Remote Sensing Perspective, 1950–1980. Land. 2022; 11(10):1855. https://doi.org/10.3390/land11101855
Chicago/Turabian StyleKabadayı, Mustafa Erdem, Paria Ettehadi Osgouei, and Elif Sertel. 2022. "Agricultural Land Abandonment in Bulgaria: A Long-Term Remote Sensing Perspective, 1950–1980" Land 11, no. 10: 1855. https://doi.org/10.3390/land11101855
APA StyleKabadayı, M. E., Ettehadi Osgouei, P., & Sertel, E. (2022). Agricultural Land Abandonment in Bulgaria: A Long-Term Remote Sensing Perspective, 1950–1980. Land, 11(10), 1855. https://doi.org/10.3390/land11101855