Changes in the Landform and Water Conditions of the Industri-Alized Urban Area as a Result of Mining Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Methods
3. Results
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosilovich, M.G.; Schubert, S.D.; Walker, G.K. Global Changes of the Water Cycle Intensity. J. Clim. 2005, 18, 1591–1608. [Google Scholar] [CrossRef] [Green Version]
- Levizzani, V.; Cattani, E. Satellite Remote Sensing of Precipitation and the Terrestrial Water Cycle in a Changing Climate. Remote Sens. 2019, 11, 2301. [Google Scholar] [CrossRef] [Green Version]
- Drenkhan, F.; Carey, M.; Huggel, C.; Seidel, J.; Oré, M.T. The changing water cycle: Climatic and socioeconomic drivers of water-related changes in the Andes of Peru. WIREs Water 2015, 2, 715–733. [Google Scholar] [CrossRef]
- Solarski, M.; Machowski, R.; Rzetala, M.; Rzetala, M.A. Hypsometric changes in urban areas resulting from multiple years of mining activity. Sci. Rep. 2022, 12, 2982. [Google Scholar] [CrossRef] [PubMed]
- Ilie, O.; Dacian, M. Ground surface subsidence as effect of underground mining of the thick coal seams in the Jiu Valley Basin. Arch. Min. Sci. 2012, 57, 547–577. [Google Scholar] [CrossRef] [Green Version]
- Abdikan, S.; Arikan, M.; Sanli, F.B.; Cakir, Z. Monitoring of coal mining subsidence in peri-urban area of Zonguldak city (NW Turkey) with persistent scatterer interferometry using ALOS-PALSAR. Environ. Earth Sci. 2014, 71, 4081–4089. [Google Scholar] [CrossRef]
- Yuan, M.; Li, M.; Liu, H.; Lv, P.; Li, B.; Zheng, W. Subsidence Monitoring Base on SBAS-InSAR and Slope Stability Analysis Method for Damage Analysis in Mountainous Mining Subsidence Regions. Remote Sens. 2021, 13, 3107. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Zhang, Y.; Liu, Y.; Wang, B.; Zhang, G. Spatially Varying Relationships between Land Subsidence and Urbanization: A Case Study in Wuhan, China. Remote Sens. 2022, 14, 291. [Google Scholar] [CrossRef]
- Wang, J.; Lu, C.; Sun, Q.; Xiao, W.; Cao, G.; Li, H.; Yan, L.; Zhang, B. Simulating the hydrologic cycle in coal mining subsidence areas with a distributed hydrologic model. Sci. Rep. 2017, 7, 39983. [Google Scholar] [CrossRef]
- Guzy, A.; Malinowska, A.A. Assessment of the Impact of the Spatial Extent of Land Subsidence and Aquifer System Drainage Induced by Underground Mining. Sustainability 2020, 12, 7871. [Google Scholar] [CrossRef]
- Solarski, M. Anthropogenic transformations of the Bytom area relief in the period of 1883–1994. Environ. Socio-Econ. Stud. 2013, 1, 1–8. [Google Scholar] [CrossRef]
- Machowski, R.; Rzetala, M.A.; Rzetala, M.; Solarski, M. Geomorphological and hydro-logical effects of subsidence and land use change in industrial and urban areas. Land Degrad. Dev. 2016, 27, 1740–1752. [Google Scholar] [CrossRef]
- Szypuła, B. Quantitative changes of anthropogenic relief over the last 100 years in the Silesian Upland (south Poland). Z. Geomorphol. 2014, 58, 175–183. [Google Scholar] [CrossRef]
- Marschalko, M.; Yilmaz, I.; Lamich, D.; Drusa, M.; Kubečková, M.; Peňaz, T.; Burkotová, T.; Slivka, V.; Bednárik, M.; Krčmář, D.; et al. Unique documentation, analysis of origin and development of an undrained depression in a subsidence basin caused by underground coal mining (Kozinec, Czech Republic). Env. Earth Sci 2014, 72, 11–20. [Google Scholar] [CrossRef]
- Harnischmacher, S.; Zepp, H. Mining and its impact on the earth surface in the Ruhr District (Germany). Z. Fur Geomorphol. 2014, 58 (Suppl. S3), 3–22. [Google Scholar] [CrossRef]
- Zheng, L.; Zhu, L.; Wang, W.; Guo, L.; Chen, B. Land Subsidence Related to Coal Mining in China Revealed by L-Band InSAR Analysis. Int. J. Environ. Res. Public Health 2020, 17, 1170. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Yao, W.; Lin, X.; Ma, B.; Bai, L. An Accurate Digital Subsidence Model for Deformation Detection of Coal Mining Areas Using a UAV-Based LiDAR. Remote Sens. 2022, 14, 421. [Google Scholar] [CrossRef]
- Cabala, J.M.; Cmiel, S.R.; Idziak, A.F. Environmental impact of mining activity in the Upper Silesian Coal Basin (Poland). Geol. Belg. 2004, 7, 225–229. [Google Scholar]
- Cheng, W.; Bian, Z.; Dong, J.; Lei, S. Soil properties in reclaimed farmland by filling subsidence basin due to underground coal mining with mineral wastes in China. Trans. Nonferrous Met. Soc. China 2014, 24, 2627–2635. [Google Scholar] [CrossRef]
- Hürlimann, M.; Guo, Z.; Puig-Polo, C.; Medina, V. Impacts of future climate and land cover changes on landslide susceptibility: Regional scale modelling in the Val d’ Aran region (Pyrenees, Spain). Landslides 2022, 19, 99–118. [Google Scholar] [CrossRef]
- Detailed Geological Map of Poland, 1:50,000; Geological Publisher: Warsaw, Poland, 1954.
- Jones, A.; Duck, R.; Reed, R.; Weyers, J. Practical Skills in Environmental Science; Prentice Hall: London, UK, 2000. [Google Scholar]
- Topographic map (Topographische karte), 1:25,000.; Messtischblatt, 5679-Beuthen: Berlin, Germany, 1934.
- Topographic map (Topographische karte), 1:25,000.; Messtischblatt, 5779-Schwientochlowitz: Berlin, Germany, 1929.
- Topographic map of Poland, 1: 10,000; M-34-62-B-a-2 (Ruda Śląska-Ruda), M-34-62-B-a-4 (Ruda Śląska), M-34-62-B-b-1 (Świętochłowice), M-34-62-B-b-3 (Ruda Śląska-Kochłowice); Chief Land Surveyor: Warsaw, Poland, 1994.
- Gutry-Korycka, M.; Werner-Więckowska, H. Guide to Hydrographic Field Research; Polish Scientific Publishers: Warsaw, Poland, 1989. [Google Scholar]
- Machowski, R.; Rzetala, M. Impact of subsidence basins on changes in the catchment water cycle. In International Multidiscyplinary Scientific Geoconferences, Proceedings of the 18th GeoConference on Water Resources. Forest, Marine and Ocean Ecosystems, Albena, Bulgaria, 30 June–9 July 2018; Albena, Bulgaria, 30 June–9 July 2018, STEF92 Technology Ltd.: Sofia, Bulgaria, 2018; pp. 407–414. [Google Scholar] [CrossRef]
- Liu, S.; Han, Y.; Su, H. Regional Evapotranspiration Estimation by the Improved MOD16-sm Model and Its Application in Central China. Water 2022, 14, 1491. [Google Scholar] [CrossRef]
- Jiao, P.; Hu, S.-J. Optimal Alternative for Quantifying Reference Evapotranspiration in Northern Xinjiang. Water 2022, 14, 1. [Google Scholar] [CrossRef]
- Althoff, D.; Santos, R.A.d.; Bazame, H.C.; Cunha, F.F.d.; Filgueiras, R. Improvement of Hargreaves–Samani Reference Evapotranspiration Estimates with Local Calibration. Water 2019, 11, 2272. [Google Scholar] [CrossRef] [Green Version]
- Valipour, M. Temperature analysis of reference evapotranspiration models. Meteorol. Appl. 2015, 22, 385–394. [Google Scholar] [CrossRef]
- Hargreaves, G.L.; Samani, Z.A. Evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- McKenney, M.S.; Rosenberg, N.J. Sensitivity of some potential evapotranspiration estimation methods to climate change. Agric. For. Meteorol. 1993, 64, 81–110. [Google Scholar] [CrossRef]
- Dynowska, I.; Dynowski, J. Hydrographical Exercises for Geographers; Jagiellonian University: Cracow, Poland, 1982. [Google Scholar]
- Różkowski, J.; Pacholewski, A. Water balances of representative catchments in the carbonate Jura formations of the Kraków-Wieluń Upland (Polish). Przegląd Geol. 1996, 44, 850–854. [Google Scholar]
- Available online: https://www.gov.pl/attachment/8530a475-f8dc-4ae0-af57-1ff5b7da7342 (accessed on 26 August 2022).
- Choiński, A. Physical Limnology of Poland; Adam Mickiewicz University: Poznań, Poland, 2007. [Google Scholar]
- Hydrographic map of Poland, 1:50 000. Sheet: M-34-62-B (Chorzów); Chief Land Surveyor: Warsaw, Poland, 2001.
- Sopata, P.; Stoch, T.; Wójcik, A.; Mrocheń, D. Land Surface Subsidence Due to Mining-Induced Tremors in the Upper Silesian Coal Basin (Poland)–Case Study. Remote Sens. 2020, 12, 3923. [Google Scholar] [CrossRef]
- Abramowicz, A.; Rahmonov, O.; Chybiorz, R. Environmental Management and Landscape Transformation on Self-Heating Coal-Waste Dumps in the Upper Silesian Coal Basin. Land 2021, 10, 23. [Google Scholar] [CrossRef]
- Dulias, R. The Impact of Mining on the Landscape, A Study of the Upper Silesian Coal Basin in Poland; Environmental Science and Engineering; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Rahmonov, O.; Krzysztofik, R.; Środek, D.; Smolarek-Lach, J. Vegetation- and Environmental Changes on Non-Reclaimed Spoil Heaps in Southern Poland. Biology 2020, 9, 164. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, G.; Dyderski, M.K.; Kąpała-Bomba, A.; Jagodziński, A.M.; Pasierbiński, A.; Błońska, A.; Bierza, W.; Magurno, F.; Sierka, E. Use of Remote Sensing to track post-industrial vegetation development. Land Degrad. Dev. 2021, 32, 1426–1439. [Google Scholar] [CrossRef]
- Dwucet, K.; Wach, J. Calculation of land surface changes caused by deep mining exploitation on the example of Katowice voivodeship. In A guide to Exercises in Environmental Protection; University of Economics: Katowice, Poland, 1994; pp. 95–97. [Google Scholar]
- Luo, M.; Liu, Y.; Shao, T. Response of Drylands’ Water-cycle to the Global Warming. Int. J. Climatol. 2021, 41, 4587–4602. [Google Scholar] [CrossRef]
- Yoon, J.H.; Wang, S.Y.; Gillies, R.; Kravitz, B.; Hipps, L.; Rash, P.J. Increasing water cycle extremes in California and in relation to ENSO cycle under global warming. Nat. Commun. 2015, 6, 8657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.; Cheng, L.; Luo, P.; Liu, P.; Zhang, L.; Li, F.; Liu, L.; Wang, J. A Climatic Perspective on the Impacts of Global Warming on Water Cycle of Cold Mountainous Catchments in the Tibetan Plateau: A Case Study in Yarlung Zangbo River Basin. Water 2020, 12, 2338. [Google Scholar] [CrossRef]
- Coe, M.T.; Foley, J.A. Human and natural impacts on the water resources of the Lake Chad basin. J. Geophys. Res.-Atmos. 2001, 106, 3349–3356. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, X.; Zhou, Q.; Yin, G.; Liu, J. Dynamical variations of the terrestrial water cycle components and the influences of the climate factors over the Aral Sea Basin through multiple datasets. J. Hydrol. 2022, 604, 127270. [Google Scholar] [CrossRef]
- Allies, A.; Demarty, J.; Olioso, A.; Bouzou Moussa, I.; Issoufou, H.B.-A.; Velluet, C.; Bahir, M.; Maïnassara, I.; Oï, M.; Chazarin, J.-P.; et al. Evapotranspiration Estimation in the Sahel Using a New Ensemble-Contextual Method. Remote Sens. 2020, 12, 380. [Google Scholar] [CrossRef] [Green Version]
- Rösler, A. Comparasion of evaporation conditions from a sunken and floating pans on Lake Sława. Limnol. Rev. 2002, 2, 333–341. [Google Scholar]
- Xu, C.-Y.; Singh, V.P. Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions. J. Hydrol. 2005, 308, 105–121. [Google Scholar] [CrossRef]
- Al-Ghobari, H.M. Estimation of reference evapotranspiration for southern region of Saudi Arabia. Irrig. Sci. 2000, 19, 81–86. [Google Scholar] [CrossRef]
- Tandogdu, Y.; Camgoz, O. An experimental approach for estimating evapotranspiration. Cim Bulletin 1999, 92, 55–60. [Google Scholar]
- Dulias, R. Impact of mining subsidence on the relief of the Rybnik Plateau, Poland. Z. Für Geomorphol. 2011, 55, 25–36. [Google Scholar] [CrossRef]
- Bell, F.; Stacey, T.; Genske, D. Mining subsidence and its effect on the environment: Some differing examples. Environ. Geol. 2000, 40, 135–152. [Google Scholar] [CrossRef]
- Rurek, M.; Gonia, A.; Hojan, M. Environmental and Socio-Economic Effects of Underground Brown Coal Mining in Piła Młyn (Poland). Land 2022, 11, 219. [Google Scholar] [CrossRef]
- Harnischmacher, S. Quantification of mining subsidence in the Ruhr District (Germany). Géomorphologie Relief Process. Environ. 2010, 16, 261–274. [Google Scholar] [CrossRef] [Green Version]
- Wright, P.; Stow, R. Detecting mining subsidence from space. Int. J. Remote Sens. 1999, 20, 1183–1188. [Google Scholar] [CrossRef]
- Fan, H.; Gao, X.; Yang, J.; Deng, K.; Yu, Y. Monitoring Mining Subsidence Using A Combination of Phase-Stacking and Offset-Tracking Methods. Remote Sens. 2015, 7, 9166–9183. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; Wang, L.; Wen, B.; Du, S. A New Model for three-dimensional Deformation Extraction with Single-track InSAR Based on Mining Subsidence Characteristics. Int. J. Appl. Earth Obs. Geoinf. 2021, 94, 102223. [Google Scholar] [CrossRef]
- Zhang, B.; Lu, C.; Wang, J.; Sun, Q.; He, X.; Cao, G.; Zhao, Y.; Yan, L.; Gong, B. Using storage of coal-mining subsidence area for minimizing flood. J. Hydrol. 2019, 572, 571–581. [Google Scholar] [CrossRef]
- Rzetala, M.; Jagus, A. New lake district in Europe: Origin and hydrochemical characteristics. Water Environ. J. 2011, 26, 108–117. [Google Scholar] [CrossRef]
- Quanyuan, W.; Jiewu, P.; Shanzhong, Q.; Yiping, L.; Congcong, H.; Tingxiang, L.; Limei, H. Impacts of coal mining subsidence on the surface landscape in Longkou city, Shandong Province of China. Environ. Earth Sci. 2009, 59, 783–791. [Google Scholar] [CrossRef]
- Fan, T.; Yan, J.; Wang, S.; Zhang, B.; Ruan, S.; Zhang, M.; Li, S.; Chen, Y.; Liu, J. Water quality variation of mining-subsidence lake during the initial stage: Cases study of Zhangji and Guqiao Mines. J. Coal Sci. Eng. 2012, 18, 297–301. [Google Scholar] [CrossRef]
- Zhang, M.; Yuan, X.; Guan, D.; Liu, H.; Zhang, G.; Wang, K.; Zhou, L.; Wu, S.; Sun, K. Eco-exergy Evaluation of New Wetlands in the Yanzhou Coalfield Subsidence Areas Using Structural-Dynamic Modelling. Mine Water Env. 2019, 38, 746–756. [Google Scholar] [CrossRef]
- Pierzchała, Ł.; Sierka, E. Do submerged plants improve the water quality in mining subsidence reservoirs? Appl. Ecol. Environ. Res. 2020, 18, 5661–5672. [Google Scholar] [CrossRef]
Elevation [m a.s.l.] | 1883 | 1994 | 1883–1994 | ||
---|---|---|---|---|---|
[km2] | [%] | [km2] | [%] | Δ% | |
240.0–260.0 | 1.59 | 3.1 | 3.23 | 6.3 | 3.2 |
260.1–280.0 | 9.53 | 18.6 | 14.86 | 29.0 | 10.4 |
280.1–300.0 | 29.63 | 57.8 | 25.94 | 50.6 | −7.2 |
300.1–320.0 | 10.51 | 20.5 | 7.13 | 13.9 | −6.6 |
320.1–340.0 | 0.00 | 0.0 | 0.10 | 0.2 | 0.2 |
∑ | 51.26 | 100.0 | 51.26 | 100.0 | 0.0 |
Gradient [°] | 1883 | 1994 | 1883–1994 | ||
---|---|---|---|---|---|
[km2] | [%] | [km2] | [%] | Δ% | |
0.0°–1.0° | 6.05 | 11.8 | 11.89 | 23.2 | 11.4 |
1.1°–3.0° | 18.76 | 36.6 | 21.99 | 42.9 | 6.3 |
3.1°–5.0° | 13.07 | 25.5 | 9.02 | 17.6 | −7.9 |
5.1°–9.0° | 9.64 | 18.8 | 4.72 | 9.2 | −9.6 |
9.1°–20.0° | 3.43 | 6.7 | 2.72 | 5.3 | −1.4 |
>20.0° | 0.31 | 0.6 | 0.92 | 1.8 | 1.2 |
∑ | 51.26 | 100.0 | 51.26 | 100.0 | 0.0 |
Changes in Elevation | [km2] | [%] |
---|---|---|
20.1 m–30.0 m | 0.21 | 0.4 |
10.1 m–20.0 m | 0.77 | 1.5 |
5.1 m–10.0 m | 1.38 | 2.7 |
1.1 m–5.0 m | 4.10 | 8.0 |
−1.0 m–1.0 m | 6.00 | 11.7 |
−1.1 m–−5.0 m | 14.46 | 28.2 |
−5.1 m–−10.0 m | 17.22 | 33.6 |
−10.1 m–−20.0 m | 6.61 | 12.9 |
−20.1 m–−30.0 m | 0.51 | 1.0 |
Endorheic Area | Area [m2] | Average Annual Precipitation [m3] | Average Annual Evaporation [m3] | Difference [m3] | ||
---|---|---|---|---|---|---|
Subsidence Basin | Water Reservoirs | Subsidence Basin | Water Reservoirs | |||
I | 3 107 500 | 10 000 | 2 280 451 | 1 496 744 | 6 083 | 777 624 |
II | 2 035 750 | 6 750 | 1 494 089 | 980 530 | 4 106 | 509 453 |
III | 803 750 | 8 750 | 594 344 | 387 130 | 5 323 | 201 891 |
IV | 527 500 | 7 500 | 391 353 | 254 073 | 4 562 | 132 718 |
V | 199 000 | 1 000 | 146 300 | 95 849 | 608 | 49 843 |
VI | 192 500 | 0 | 140 814 | 92 719 | 0 | 48 095 |
∑ | 6 866 000 | 34 000 | 5 047 351 | 3 307 045 | 20 682 | 1 719 624 |
6 900 000 | 3 327 727 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machowski, R. Changes in the Landform and Water Conditions of the Industri-Alized Urban Area as a Result of Mining Activities. Land 2022, 11, 1710. https://doi.org/10.3390/land11101710
Machowski R. Changes in the Landform and Water Conditions of the Industri-Alized Urban Area as a Result of Mining Activities. Land. 2022; 11(10):1710. https://doi.org/10.3390/land11101710
Chicago/Turabian StyleMachowski, Robert. 2022. "Changes in the Landform and Water Conditions of the Industri-Alized Urban Area as a Result of Mining Activities" Land 11, no. 10: 1710. https://doi.org/10.3390/land11101710
APA StyleMachowski, R. (2022). Changes in the Landform and Water Conditions of the Industri-Alized Urban Area as a Result of Mining Activities. Land, 11(10), 1710. https://doi.org/10.3390/land11101710