The Differentiation in Cultivated Land Quality between Modern Agricultural Areas and Traditional Agricultural Areas: Evidence from Northeast China
Abstract
:1. Introduction
2. Theoretical Framework of Cultivated Land Quality
2.1. Theoretical Framework
2.2. Indicator System
3. Evaluation Method of Cultivated Land Quality
3.1. Calculation of Individual Quality Index of CLQ
3.2. Calculation of Comprehensive Index of Cultivated Land Quality
4. Materials and Data Sources
4.1. Research Area
4.2. Data Sources and Processing
4.3. Indicator Grading and Weight
5. Results and Analysis
5.1. The Difference of CLQ in MA and TA
5.2. The Difference in CLQ Spatial Distribution in MA and TA
5.2.1. Spatial Differences in Cultivated Land Comprehensive Quality (CLCQ)
5.2.2. Spatial Differences in Cultivated Land Individual Quality (CLIQ)
5.3. The Differences in Average CLQ between MA and TA
5.4. Relationship Analysis of Individual Cultivated Land Qualities
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fonseca, L.M.; Domingues, J.P.; Dima, A.M. Mapping the sustainable development goals relationships. Sustainability 2020, 12, 3359. [Google Scholar] [CrossRef] [Green Version]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2020. Transforming Food Systems for Affordable Healthy Diets; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Tsalis, T.A.; Malamateniou, K.E.; Koulouriotis, D.; Nikolaou, I.E. New challenges for corporate sustainability reporting: United Nations’ 2030 Agenda for sustainable development and the sustainable development goals. Corp. Soc. Responsib. Environ. Manag. 2020, 27, 1617–1629. [Google Scholar] [CrossRef]
- Da Cunha Dias, T.A.; Lora EE, S.; Maya DM, Y.; del Olmo, O.A. Global potential assessment of available land for bioenergy projects in 2050 within food security limits. Land Use Policy 2021, 105, 105346. [Google Scholar] [CrossRef]
- Qu, S.; Hu, S.; Li, W.; Wang, H.; Zhang, C.; Li, Q. Interaction between urban land expansion and land use policy: An analysis using the DPSIR framework. Land Use Policy 2020, 99, 104856. [Google Scholar] [CrossRef]
- Kong, X.B. China must protect high-quality arable land. Nature 2014, 506, 7. [Google Scholar] [CrossRef] [PubMed]
- Li, J.M.; Li, Z.H. Physical limitations and challenges to Grain Security in China. Food Secur. 2014, 6, 159–167. [Google Scholar] [CrossRef]
- Qu, S.; Hu, S.; Li, Q. Stages and spatial patterns of urban built-up land transition in China. Acta Geogr. Sin. 2020, 75, 1539–1553. [Google Scholar] [CrossRef]
- Wu, Y.; Shan, L.; Guo, Z.; Peng, Y. Cultivated land protection policies in China facing 2030: Dynamic balance system versus basic farmland zoning. Habitat Int. 2017, 69, 126–138. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Mason-D’Croz, D.; Palmer, J.; Benton, T.G.; Bodirsky, B.L.; Bogard, J.R.; Hall, A.; Lee, B.; Nyborg, K.; et al. Innovation can accelerate the transition towards a sustainable food system. Nat. Food 2020, 1, 266–272. [Google Scholar] [CrossRef]
- Han, H.; Feng, G.; Deng, G. Research on the Evaluation of Agricultural Disaster Resistance in Henan Province Based on GIS Technology. E3S Web Conf. 2020, 189, 1013–1019. [Google Scholar] [CrossRef]
- Webbm, N.P.; Marshall, N.A.; Stringe, L.C.; Reed, M.S.; Chappell, A.; Herrick, J.E. Land degradation and climate change: Building climate resilience in agriculture. Front. Ecol. Environ. 2017, 15, 450–459. [Google Scholar] [CrossRef]
- Šimanský, V.; Juriga, M.; Jonczak, J.; Łukasz, U.; Stępień, W. How relationships between soil organic matter parameters and soil structure characteristics are affected by the long-term fertilization of a sandy soil. Geoderma 2019, 342, 75–84. [Google Scholar] [CrossRef]
- Yu, H.; Ling, N.; Wang, T.; Zhu, C.; Wang, Y.; Wang, S.; Gao, Q. Responses of soil biological traits and bacterial communities to nitrogen fertilization mediate maize yields across three soil types. Soil Tillage Res. 2019, 185, 61–69. [Google Scholar] [CrossRef]
- Qu, Y.; Jiang, G.H.; Li, Z.; Tian, Y.; Wei, S. Understanding rural land use transition and regional consolidation implications in China. Land Use Policy 2018, 82, 742–753. [Google Scholar] [CrossRef]
- Du, X.; Zhang, X.; Jin, X. Assessing the effectiveness of land consolidation for improving agricultural productivity in China. Land Use Policy 2018, 70, 360–367. [Google Scholar] [CrossRef]
- FAO. A Framework for Land Evaluation; Soils Bulletin: Rome, Italy, 1976. [Google Scholar]
- Bodaghabadi, M.B.; Martinez-Casasnovas, J.A.; Khakili, P.; Masihabadi, M.H.; Gandomkar, A. Assessment of the FAO traditional land evaluation methods, A case study: Iranian Land Classification method. Soil Use Manag. 2015, 31, 384–396. [Google Scholar] [CrossRef] [Green Version]
- Rossiter, D.G. A theoretical framework for land evaluation. Geoderma 1996, 72, 165–190. [Google Scholar] [CrossRef]
- Steiner, F.; Dunford, R.; Dosdall, N. The use of the agricultural land evaluation and site assessment system in the United States. Landsc. Urban Plan. 1987, 14, 183–199. [Google Scholar] [CrossRef]
- Steiner, F. Agricultural land evaluation and site assessment in the United States: An introduction. Environ. Manag. 1987, 11, 375–377. [Google Scholar] [CrossRef]
- Qian, F.; Wang, W.; Wang, Q.; Lal, R. Implementing land evaluation and site assessment (LESA system) in farmland protection: A case-study in northeastern China. Land Degrad. Dev. 2021, 32, 2437–2452. [Google Scholar] [CrossRef]
- Pieri, C.; Dumanski, J.; Hamblin, A.; Young, A. Land Quality Indicators; World Bank Discussion Papers: Washington, DC, USA, 1995; p. 315. [Google Scholar]
- Dumanski, J.; Pieri, C. Land quality indicators: Research plan. Agric. Ecosyst. Environ. 2000, 81, 93–102. [Google Scholar] [CrossRef]
- FAO. An International Framework for Evaluating Sustainable Land Management; World Soil Resources Report; FAO: Rome, Italy, 1993. [Google Scholar]
- Izakovičová, Z.; Špulerová, J.; Petrovič, F. Integrated approach to sustainable land use management. Environments 2018, 5, 37. [Google Scholar] [CrossRef] [Green Version]
- Van Diepen, C.A.; Van Keulen, H.; Wolf, J.; Berkhout, J.A.A. Land evaluation: From intuition to quantification. Adv. Soil Sci. 1991, 15, 139–204. [Google Scholar] [CrossRef]
- Bunemann, E.K.; Bongiorno, G.; Bai, Z.G.; Creamer, R.E.; Deyn, G.D.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mader, P.; et al. Soil quality-A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Katalin, J.; Szabolcs, C.; Balázs, M.; Márta, L. Interpretation of soil quality indicators for land suitability assessment-A multivariate approach for Central European arable soils. Ecol. Indic. 2019, 99, 261–272. [Google Scholar] [CrossRef]
- Liu, Y.S.; Zhang, Y.Y.; Guo, L.Y. Towards realistic assessment of cultivated land quality in an ecologically fragile environment: A satellite imagery-based approach. Appl. Geogr. 2010, 30, 271–281. [Google Scholar] [CrossRef]
- Du, G.; Liu, Y.; Yu, F.; Liu, M.; Zheng, H. Evolution of concepts of cultivated land quality and recognition. Trans. Chin. Soc. Agric. Eng. 2016, 32, 243–249, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Veisi, H.; Liaghati, H.; Alipour, A. Developing an ethics-based approach to indicators of sustainable agriculture using analytic hierarchy process (AHP). Ecol. Indic. 2016, 60, 644–654. [Google Scholar] [CrossRef]
- Xie, L.W.; Zhong, J.; Chen, F.F.; Cao, F.X.; Li, J.J.; Wu, L.C. Evaluation of soil fertility in the succession of karst rocky desertification using principal component analysis. Solid Earth 2015, 6, 515–524. [Google Scholar] [CrossRef] [Green Version]
- Shukla, M.K.; Lal, R.; Ebinger, M. Determining soil quality indicators by factor analysis. Soil Tillage Res. 2006, 87, 194–204. [Google Scholar] [CrossRef]
- Tan, Y.; Chen, H.; Lian, K.; Yu, Z. Comprehensive Evaluation of Cultivated Land Quality at County Scale: A Case Study of Shengzhou, Zhejiang Province, China. Int. J. Environ. Res. Public Health 2020, 17, 1169. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.Y.; Duan, W.K.; Fleskens, L.; Li, M.; Hao, J.M. Study on evaluation of regional cultivated land quality based on resource-asset-capital attributes and its spatial mechanism. Appl. Geogr. 2020, 125, 102284. [Google Scholar] [CrossRef]
- Lai, Z.; Chen, M.; Liu, T. Changes in and prospects for cultivated land use since the reform and opening up in China. Land Use Policy 2020, 97, 104781. [Google Scholar] [CrossRef]
- Chichilnisky, G. What is sustainable development? Land Econ. 1997, 73, 467–491. [Google Scholar] [CrossRef]
- Mukhopadhyay, K.; Thomassin, P.J.; Zhang, J. Food security in China at 2050: A global CGE exercise. J. Econ. Struct. 2018, 7, 1. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Y.; Glendinning, A.; Xu, Y. Land-use changes and land policies evolution in China’s urbanization processes. Land Use Policy 2018, 75, 375–387. [Google Scholar] [CrossRef]
- Lu, H.; Xie, H.; Lv, T.; Yao, G. Determinants of cultivated land recuperation in ecologically damaged areas in China. Land Use Policy 2019, 81, 160–166. [Google Scholar] [CrossRef]
- Li, T.; Liu, Y.; Lin, S.; Liu, Y.; Xie, Y. Soil pollution management in china: A brief introduction. Sustainability 2019, 11, 556. [Google Scholar] [CrossRef] [Green Version]
- Ventrella, D.; Giglio, L.; Charfeddine, M.; Lopez, R.; Castellini, M.; Sollitto, D.; Castrignanò, A.; Fornaro, F. Climate change impact on crop rotations of winter durum wheat and tomato in southern Italy: Yield analysis and soil fertility. Ital. J. Agron. 2012, 7, e15. [Google Scholar] [CrossRef] [Green Version]
- Jiang, G.; Zhang, R.; Ma, W.; Zhou, D.; Wang, X.; He, X. Cultivated land productivity potential improvement in land consolidation schemes in Shenyang, China: Assessment and policy implications. Land Use Policy 2017, 68, 80–88. [Google Scholar] [CrossRef]
- Tang, X.; Pan, Y.; Liu, Y. Analysis and demonstration of investment implementation model and paths for China’s cultivated land consolidation. Appl. Geogr. 2017, 82, 24–34. [Google Scholar] [CrossRef]
- Li, H.; Song, W. Expansion of rural settlements on high-quality arable land in Tongzhou District in Beijing, China. Sustainability 2019, 11, 5153. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Cao, X. What is the policy improvement of China’s land consolidation? Evidence from completed land consolidation projects in Shaanxi Province. Land Use Policy 2020, 99, 104847. [Google Scholar] [CrossRef]
- Song, W.; Wu, K.; Zhao, H.; Zhao, R.; Li, T. Arrangement of high-standard basic farmland construction based on village-region cultivated land quality uniformity. Chin. Geogr. Sci. 2019, 29, 325–340. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. How to Protect the Farmland of Food Production? 2021. Available online: http://www.moa.gov.cn/xw/zwdt/202104/t20210424_6366511.htm (accessed on 12 May 2021).
- Pan, T.; Zhang, C.; Kuang, W.; De Maeyer, P.; Kurban, A.; Hamdi, R.; Du, G. Time tracking of different cropping patterns using Landsat images under different agricultural systems during 1990–2050 in Cold China. Remote Sens. 2018, 10, 2011. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Hu, S.; Du, G.; Zhang, C.; Liu, Y. Cultivated land use benefits under state and collective agrarian property regimes in China. Sustainability 2018, 10, 7. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhou, D.; Chang, X.; Lin, Z. A new grading system for evaluating China’s cultivated land quality. Land Degrad. Dev. 2020, 31, 1482–1501. [Google Scholar] [CrossRef]
- Sun, X.B.; Kong, X.B.; Zhang, Q.P.; Wen, L.Y.; Liao, Y.B. Evaluation of inherent quality and dynamic quality of cultivated land based on comprehensive characteristics of indexes. Trans. Chin. Soc. Agric. Eng. 2020, 36, 254–265. [Google Scholar] [CrossRef]
- Zhen, L.; Zoebisch, M.A.; Chen, G.; Feng, Z. Sustainability of farmers’ soil fertility management practices: A case study in the North China Plain. J. Environ. Manag. 2006, 79, 409–419. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.K.; Fu, B.; Xu, P.; Dai, E.F.; Tian, C.S. Cropland disturbance intensity: Plot-scale measurements, multilevel determinants and applications in rural environmental protection. Ecol. Indic. 2018, 88, 393–401. [Google Scholar] [CrossRef]
- Zhu, M.; Liu, S.; Xia, Z.; Wang, G.; Hu, Y.; Liu, Z. Crop Growth Stage GPP-Driven Spectral Model for Evaluation of Cultivated Land Quality Using GA-BPNN. Agriculture 2020, 10, 318. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, Y.; Jiang, J.H.; Xiao, P.N.; Wu, H. Spatial characteristics of cultivated land quality accounting for ecological environmental condition: A case study in hilly area of northern Hubei province, China. Sci. Total Environ. 2021, 774, 145765. [Google Scholar] [CrossRef]
- Yadav, S.K.; Soni, R. Integrated Soil Fertility Management [M]//Soil Fertility Management for Sustainable Development; Springer: Singapore, 2019; pp. 71–80. [Google Scholar] [CrossRef]
- Song, X.; Huang, Y.; Wu, Z.; Ouyang, Z. Does cultivated land function transition occur in China? J. Geogr. Sci. 2015, 25, 817–835. [Google Scholar] [CrossRef]
- Jiang, G.; Wang, M.; Qu, Y.; Zhou, D.; Ma, W. Towards cultivated land multifunction assessment in China: Applying the “influencing factors-functions-products-demands” integrated framework. Land Use Policy 2020, 99, 104982. [Google Scholar] [CrossRef]
- Zhao, R.; Wu, K.; Li, X.; Gao, N.; Yu, M. Discussion on the Unified Survey and Evaluation of Cultivated Land Quality at County Scale for China’s 3rd National Land Survey: A Case Study of Wen County, Henan Province. Sustainability 2021, 13, 2513. [Google Scholar] [CrossRef]
- Deng, X.; Huang, J.; Rozelle, S.; Uchida, E. Cultivated land conversion and potential agricultural productivity in China. Land Use Policy 2006, 23, 372–384. [Google Scholar] [CrossRef]
- Stellacci, A.M.; Castellini, M.; Diacono, M.; Rossi, R.; Gattullo, C.E. Assessment of Soil Quality under Different Soil Management Strategies: Combined Use of Statistical Approaches to Select the Most Informative Soil Physico-Chemical Indicators. Appl. Sci. 2021, 11, 5099. [Google Scholar] [CrossRef]
- He, M.; Wang, Y.; Tong, Y.; Zhao, Y.; Qiang, X.; Song, Y.; Wang, L.; Song, Y.; Wang, G.; He, C. Evaluation of the environmental effects of intensive land consolidation: A field-based case study of the Chinese Loess Plateau. Land Use Policy 2020, 94, 104523. [Google Scholar] [CrossRef]
- Liang, X.; Li, Y. Identification of spatial coupling between cultivated land functional transformation and settlements in Three Gorges Reservoir Area, China. Habitat Int. 2020, 104, 102236. [Google Scholar] [CrossRef]
- Ministry of Land and Resources of the People’s Republic of China. Rules for Quality Grading of Agricultural Land (GB/T 28407-2012); Standards Press of China: Beijing, China, 2012.
- Ministry of Agriculture of the People’s Republic of China. Technical Specification for Soil Fertility Investigation and Quality Evaluation of Cultivated Land (NY/T 1634-2008); China Agriculture Press: Beijing, China, 2008. [Google Scholar]
- Myyra, S.; Pietola, K.; Markku, Y.H. Exploring long-term land improvements under land tenure insecurity. Agric. Syst. 2007, 92, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Lyu, K.Y.; Chen, K.; Zhang, H.Z. Relationship between land tenure and soil quality: Evidence from China’s soil fertility analysis. Land Use Policy 2019, 80, 345–361. [Google Scholar] [CrossRef]
- Qian, L.; Feng, Y.; Lu, H. Impact of land tenure stability on farmer’s cultivated land quality protection behavior: Analysis based on adjustment effect of the new round land certification. J. Nanjing Agric. Univ. Soc. Sci. Ed. 2021, 21, 104–115. [Google Scholar] [CrossRef]
Target Layer | Criterion Layers | Index Layers | Connotation |
---|---|---|---|
Cultivated land quality | Fertility quality | pH value | These indexes were adopted to represent the chemical properties and nutrients of the soil that are important for crop growth. |
soil organic matter | |||
total nitrogen | |||
Alkali-hydrolysable nitrogen | |||
available phosphorus | |||
rapidly available potassium | |||
Engineering quality | field slope | These indexes represent physical environment, including surface drainage and irrigation, transportation convenience, and agricultural production efficiency, all of which have a significant impact on cultivated land use. | |
road accessibility | |||
ditch density | |||
Landscape quality | regularity of plots | These indexes represent the patch shape and spatial distribution of cultivated land, both of which reflect the scale of cultivated land use. | |
cultivated land connectivity | |||
Ecology quality | forest network density | These indexes represent the biological properties of the soil and the ecological state of cultivated land, both of which reflect the sustainable use of cultivated land. | |
soil microbial biomass carbon |
Soil Data | Collected Techniques | MA | TA | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Min | Max | Mean | SD | Min | Max | ||
pH value | potentiometric method | 6.20 | 0.83 | 4.30 | 7.69 | 6.08 | 0.70 | 4.64 | 7.51 |
organic matter | elemental analyzer | 24.99 | 10.89 | 5.80 | 60.97 | 41.20 | 15.24 | 13.62 | 83.03 |
total nitrogen | elemental analyzer | 2.62 | 0.92 | 1.31 | 5.48 | 2.40 | 0.84 | 1.04 | 4.44 |
Alkali-hydrolysable nitrogen | brief diffusion method | 112.43 | 33.77 | 54.88 | 188.16 | 121.28 | 33.20 | 62.72 | 250.88 |
available phosphorus | extracted by 0.5mol/L NaHCO3 solution | 38.77 | 28.95 | 5.52 | 128.15 | 32.66 | 19.71 | 7.73 | 126.68 |
rapidly available potassium | flame photometric method | 211.17 | 75.76 | 80.37 | 386.97 | 265.09 | 69.81 | 74.46 | 413.36 |
soil microbial biomass carbon | elemental analyzer | 43.08 | 18.78 | 10.00 | 105.11 | 23.89 | 8.84 | 7.90 | 48.16 |
Soil samples | 53 | 57 |
Criterion Layers | Index Layers | Indexes Scoring | Weight | |||||||
---|---|---|---|---|---|---|---|---|---|---|
100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | |||
Fertility quality | pH value | 6.0~7.9 | 5.5~6.0, or 7.9~8.5 | 5.0~5.5, or 8.5~9.0 | 4.5~5.0 | ≤4.5, or 9.0~9.5 | >9.5 | 0.211 | ||
soil organic matter | >40 | 40~30 | 30~20 | 20~10 | 10~6 | ≤6 | 0.387 | |||
total nitrogen | >2 | 1.5~2 | 1~1.5 | 0.75~1 | 0.5~0.75 | <0.5 | 0.117 | |||
alkali-hydrolysable nitrogen | ≥160 | 130–160 | 100–130 | <100 | 0.107 | |||||
available phosphorus | >40 | 20~40 | 10~20 | 5~10 | 3~5 | <3 | 0.087 | |||
rapidly available potassium | >200 | 150~200 s | 100~150 | 50~100 | 30~50 | <30 | 0.091 | |||
Engineering quality | field slope | ≤2 | 2~5 | 5~8 | 8~15 | 15~25 | 0.423 | |||
road accessibility | >80 | >60~80 | >40~60 | ≤40 | 0.205 | |||||
ditch density | fully meeting | basic meeting | usually meeting | no irrigation condition | 0.372 | |||||
Landscape quality | regularity of plots | best regular cultivated land morphology, SHAPE ≤ 2 | more regular cultivated land morphology, 2 < SHAPE ≤ 4 | more disorganized cultivated land morphology, 4 < SHAPE ≤ 6 | most disorganized cultivated land morphology, SHAPE > 6 | 0.423 | ||||
cultivated land connectivity | >1000 | 500~100 | 100~500 | 50~100 | <50 | 0.577 | ||||
Ecology quality | forest network density | >100 | 50~100 | <50 | 0.493 | |||||
soil microbial biomass carbon | >348.25 | 229.94~348.25 | <229.94 | 0.507 |
Criterion Layers | MA | TA | ||
---|---|---|---|---|
Mean | CV | Mean | CV | |
Fertility quality | 13.07 | 0.11 | 15.7 | 0.13 |
Project quality | 31.88 | 0.13 | 25.09 | 0.14 |
Landscape quality | 31.91 | 0.06 | 29.87 | 0.11 |
Ecology quality | 13.71 | 0.03 | 13.56 | 0.07 |
Comprehensive quality | 90.57 | 0.06 | 84.23 | 0.06 |
Area | Fertility Quality | Project Quality | Landscape Quality | Ecology Quality | Comprehensive Quality |
---|---|---|---|---|---|
MA | 2.47 | 1.65 | 1.20 | 1.90 | 2.09 |
TA | 1.54 | 3.32 | 1.87 | 1.94 | 3.09 |
CLQ | MA | TA | ||||||
---|---|---|---|---|---|---|---|---|
Fertility Quality | Project Quality | Landscape Quality | Ecology Quality | Fertility Quality | Project Quality | Landscape Quality | Ecology Quality | |
Fertility quality | 1 | 1 | ||||||
Project quality | 0.264 ** | 1 | −0.396 ** | 1 | ||||
Landscape quality | 0.121 * | 0.016 | 1 | −0.164 ** | 0.070 ** | 1 | ||
Ecology quality | 0.224 ** | −0.257 ** | 0.133 ** | 1 | −0.149 ** | 0.234 ** | 0.336 ** | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Guo, W.; Sun, X.; Yang, A.; Qu, S.; Chi, W. The Differentiation in Cultivated Land Quality between Modern Agricultural Areas and Traditional Agricultural Areas: Evidence from Northeast China. Land 2021, 10, 842. https://doi.org/10.3390/land10080842
Li Q, Guo W, Sun X, Yang A, Qu S, Chi W. The Differentiation in Cultivated Land Quality between Modern Agricultural Areas and Traditional Agricultural Areas: Evidence from Northeast China. Land. 2021; 10(8):842. https://doi.org/10.3390/land10080842
Chicago/Turabian StyleLi, Quanfeng, Wenhao Guo, Xiaobing Sun, Aizheng Yang, Shijin Qu, and Wenfeng Chi. 2021. "The Differentiation in Cultivated Land Quality between Modern Agricultural Areas and Traditional Agricultural Areas: Evidence from Northeast China" Land 10, no. 8: 842. https://doi.org/10.3390/land10080842
APA StyleLi, Q., Guo, W., Sun, X., Yang, A., Qu, S., & Chi, W. (2021). The Differentiation in Cultivated Land Quality between Modern Agricultural Areas and Traditional Agricultural Areas: Evidence from Northeast China. Land, 10(8), 842. https://doi.org/10.3390/land10080842