Communities’ Adaptation and Vulnerability to Climate Change: Implications for Achieving a Climate-Smart Landscape
Abstract
:1. Introduction
1.1. Climate Change Impacts in the Rural Tropics
1.2. Towards Climate-Smart Landscapes for Mitigation and Adaptation
1.3. Assessing Local Perceptions on Vulnerability and Adaptation
2. Materials and Methods
2.1. Conceptual Framework
2.2. Study Area
2.3. Data Collection
2.4. Data Analyses
3. Results
3.1. Climate and Non-Climate Stressors and Impacts on the Landscapes
3.2. Response Actions at the Landscape Level
3.2.1. Response Actions for Impacts on Ecosystem Services (ES)
3.2.2. Response Actions for Impacts on Agricultural Production (AP)
3.2.3. Adaptation Strategies by Landscape
3.3. Perceived Vulnerability at Landscape Level
3.3.1. Perceived Vulnerability Levels across Landscapes
3.3.2. Perceived Vulnerability and Determining Factors
3.4. Comparison with Knowledge and Perceptions of Stakeholders at District Level
3.4.1. Climate Hazard, Impacts and Adaptation Strategies
3.4.2. Comparison of Vulnerabilities
4. Discussion
4.1. Climate and Non-Climate Stressors
4.2. Incremental Adaptation
4.3. Differences in Vulnerability Perceptions and Determining Factors
4.4. Differences of Vulnerabilities in Landscape Contexts
4.5. Implications for Climate-Smart Interventions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Morton, J.F. The Impact of Climate Change on Smallholder and Subsistence Agriculture. Proc. Natl. Acad. Sci. USA 2007, 104, 19680–19685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osman-Elasha, B.; Adger, N.; Brockhaus, M.; Colfer, C.J.P.; Sohngen, B.; Dafalla, T.; Joyce, L.A.; Nkem, J.; Robledo, C. Future socio-economic impacts and vulnerabilities. In Adaptation of Forests and People to Climate Change. A Global Assessment Report; IUFRO World Series; IUFRO: Helsinki, Finland, 2009; Volume 22. [Google Scholar]
- Molnar, J.J. Climate Change and Societal Response: Livelihoods, Communities, and the Environment. Rural Sociol. 2010, 75, 1–16. [Google Scholar] [CrossRef]
- Harrington, L.J.; Frame, D.J.; Fischer, E.M.; Hawkins, E.; Joshi, M.; Jones, C.D. Poorest Countries Experience Earlier Anthropogenic Emergence of Daily Temperature Extremes. Environ. Res. Lett. 2016, 11, 055007. [Google Scholar] [CrossRef]
- Thornton, P.K.; van de Steeg, J.; Notenbaert, A.; Herrero, M. The Impacts of Climate Change on Livestock and Livestock Systems in Developing Countries: A Review of What We Know and What We Need to Know. Agric. Syst. 2009, 101, 113–127. [Google Scholar] [CrossRef]
- Thornton, P.K.; Ericksen, P.J.; Herrero, M.; Challinor, A.J. Climate Variability and Vulnerability to Climate Change: A Review. Glob. Chang. Biol. 2014, 20, 3313–3328. [Google Scholar] [CrossRef]
- Karki, S.; Burton, P.; Mackey, B. The Experiences and Perceptions of Farmers about the Impacts of Climate Change and Variability on Crop Production: A Review. Clim. Dev. 2020, 12, 80–95. [Google Scholar] [CrossRef]
- Harvey, C.A.; Chacón, M.; Donatti, C.I.; Garen, E.; Hannah, L.; Andrade, A.; Bede, L.; Brown, D.; Calle, A.; Chara, J. Climate-Smart Landscapes: Opportunities and Challenges for Integrating Adaptation and Mitigation in Tropical Agriculture. Conserv. Lett. 2014, 7, 77–90. [Google Scholar] [CrossRef]
- Harvey, C.A.; Saborio-Rodríguez, M.; Martinez-Rodríguez, M.R.; Viguera, B.; Chain-Guadarrama, A.; Vignola, R.; Alpizar, F. Climate Change Impacts and Adaptation among Smallholder Farmers in Central America. Agric. Food Secur. 2018, 7, 1–20. [Google Scholar] [CrossRef]
- Fischlin, A.; Ayres, M.; Karnosky, D.; Kellomäki, S.; Louman, B.; Ong, C.; Plattner, G.-K.; Santoso, H.; Thompson, I.; Booth, T.H. Future Environmental Impacts and Vulnerabilities. IUFRO World Ser. 2009, 22, 53–100. [Google Scholar]
- Brawn, J.D.; Benson, T.J.; Stager, M.; Sly, N.D.; Tarwater, C.E. Impacts of Changing Rainfall Regime on the Demography of Tropical Birds. Nat. Clim. Chang. 2017, 7, 133–136. [Google Scholar] [CrossRef]
- Frishkoff, L.O.; Karp, D.S.; Flanders, J.R.; Zook, J.; Hadly, E.A.; Daily, G.C.; M’Gonigle, L.K. Climate Change and Habitat Conversion Favour the Same Species. Ecol. Lett. 2016, 19, 1081–1090. [Google Scholar] [CrossRef]
- Lamsal, P.; Kumar, L.; Atreya, K.; Pant, K.P. Vulnerability and Impacts of Climate Change on Forest and Freshwater Wetland Ecosystems in Nepal: A Review. Ambio 2017, 46, 915–930. [Google Scholar] [CrossRef]
- Li, Z.; Fang, H. Impacts of Climate Change on Water Erosion: A Review. Earth Sci. Rev. 2016, 163, 94–117. [Google Scholar] [CrossRef]
- Peters, M.K.; Hemp, A.; Appelhans, T.; Becker, J.N.; Behler, C.; Classen, A.; Detsch, F.; Ensslin, A.; Ferger, S.W.; Frederiksen, S.B. Climate–Land-Use Interactions Shape Tropical Mountain Biodiversity and Ecosystem Functions. Nature 2019, 568, 88–92. [Google Scholar] [CrossRef]
- Jetz, W.; Wilcove, D.S.; Dobson, A.P. Projected Impacts of Climate and Land-Use Change on the Global Diversity of Birds. PLoS Biol. 2007, 5, e157. [Google Scholar] [CrossRef] [Green Version]
- De Chazal, J.; Rounsevell, M.D. Land-Use and Climate Change within Assessments of Biodiversity Change: A Review. Glob. Environ. Chang. 2009, 19, 306–315. [Google Scholar] [CrossRef]
- Hardwick, S.R.; Toumi, R.; Pfeifer, M.; Turner, E.C.; Nilus, R.; Ewers, R.M. The Relationship between Leaf Area Index and Microclimate in Tropical Forest and Oil Palm Plantation: Forest Disturbance Drives Changes in Microclimate. Agric. For. Meteorol. 2015, 201, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Meijide, A.; Badu, C.S.; Moyano, F.; Tiralla, N.; Gunawan, D.; Knohl, A. Impact of Forest Conversion to Oil Palm and Rubber Plantations on Microclimate and the Role of the 2015 ENSO Event. Agric. For. Meteorol. 2018, 252, 208–219. [Google Scholar] [CrossRef]
- Field, C.B.; Barros, V.R.; Mastrandrea, M.D.; Mach, K.J.; Abdrabo, M.-K.; Adger, N.; Anokhin, Y.A.; Anisimov, O.A.; Arent, D.J.; Barnett, J. Summary for policymakers. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 1–32. [Google Scholar]
- Ministry of Environment and Forestry. Third National Communication under the United Nations Framework Convention on Climate Change; Ministry of Environment and Forestry of the Republic of Indonesia: Jakarta, Indonesia, 2018.
- Laukkonen, J.; Blanco, P.K.; Lenhart, J.; Keiner, M.; Cavric, B.; Kinuthia-Njenga, C. Combining Climate Change Adaptation and Mitigation Measures at the Local Level. Habitat Int. 2009, 33, 287–292. [Google Scholar] [CrossRef]
- Locatelli, B.; Pavageau, C.; Pramova, E.; Di Gregorio, M. Integrating Climate Change Mitigation and Adaptation in Agriculture and Forestry: Opportunities and Trade-Offs. WIREs Clim. Chang. 2015, 6, 585–598. [Google Scholar] [CrossRef]
- Scherr, S.; Shames, S.; Friedman, R. Defining Integrated Landscape Management for Policy Makers; EcoAgriculture Partners: Washington, DC, USA, 2013. [Google Scholar]
- Duguma, L.A.; Minang, P.A.; van Noordwijk, M. Climate Change Mitigation and Adaptation in the Land Use Sector: From Complementarity to Synergy. Environ. Manag. 2014, 54, 420–432. [Google Scholar] [CrossRef] [Green Version]
- Louman, B.; Campos Arce, J.J.; Mercado, L.; Imbach, P.A.; Bouroncle, C.; Finegan, B.; Martínez, C.; Mendoza Rivarola, C.A.; Villalobos Soto, R.; Medellín, M.C. Climate Smart Territories (CST): An Integrated Approach to Food Security, Ecosystem Services, and Climate Change in Rural Areas. In Climate smart-landscapes: Multifunctionality in practice; Minang, P.A., van Noordwijk, M., Freeman, O.E., Mbow, C., de Leeuw, J., Catacutan, D., Eds.; World Agroforestry Center: Nairobi, Kenya, 2015; Chapter 6. [Google Scholar]
- Climate-Smart Landscapes: Multifunctionality in Practice; Minang, P.A.; Van Noordwijk, M.; Freeman, O.E.; Catacutan, D. (Eds.) World Agroforestry Centre (ICRAF): Nairobi, Kenya, 2015. [Google Scholar]
- Kusters, K. Climate-Smart Landscapes and the Landscape Approach: An Exploration of the Concepts and Their Practical Implications; Tropenbos International: Wageningen, The Netherlands, 2015. [Google Scholar]
- Reed, J.; Barlow, J.; Carmenta, R.; van Vianen, J.; Sunderland, T. Engaging Multiple Stakeholders to Reconcile Climate, Conservation and Development Objectives in Tropical Landscapes. Biol. Conserv. 2019, 238, 108229. [Google Scholar] [CrossRef]
- Binternagel, N.B.; Juhrbandt, J.; Koch, S.; Purnomo, M.; Schwarze, S.; Barkmann, J.; Faust, H. Adaptation to climate change in Indonesia—livelihood strategies of rural households in the face of ENSO related droughts. In Soil and Recycling Management in the Anthropocene Era; Springer: Berlin/Heidelberg, Germany, 2010; pp. 351–375. [Google Scholar]
- Arshad, M.; Kächele, H.; Krupnik, T.J.; Amjath-Babu, T.S.; Aravindakshan, S.; Abbas, A.; Mehmood, Y.; Müller, K. Climate Variability, Farmland Value, and Farmers’ Perceptions of Climate Change: Implications for Adaptation in Rural Pakistan. Int. J. Sustain. Dev. World Ecol. 2017, 24, 532–544. [Google Scholar] [CrossRef]
- Bohensky, E.L.; Kirono, D.G.C.; Butler, J.R.A.; Rochester, W.; Habibi, P.; Handayani, T.; Yanuartati, Y. Climate Knowledge Cultures: Stakeholder Perspectives on Change and Adaptation in Nusa Tenggara Barat, Indonesia. Clim. Risk Manag. 2016, 12, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Touch, V.; Martin, R.J.; Scott, F.; Cowie, A.; Liu, D.L. Climate Change Impacts on Rainfed Cropping Production Systems in the Tropics and the Case of Smallholder Farms in North-West Cambodia. Environ. Dev. Sustain. 2017, 19, 1631–1647. [Google Scholar] [CrossRef]
- Walshe, R.A.; Chang Seng, D.; Bumpus, A.; Auffray, J. Perceptions of Adaptation, Resilience and Climate Knowledge in the Pacific. Int. J. Clim. Chang. Strat. Manag. 2018, 10, 303–322. [Google Scholar] [CrossRef]
- Bunce, M.; Rosendo, S.; Brown, K. Perceptions of Climate Change, Multiple Stressors and Livelihoods on Marginal African Coasts. Environ. Dev. Sustain. 2010, 12, 407–440. [Google Scholar] [CrossRef]
- Jiri, O.; Mafongoya, P.; Chivenge, P. Smallholder Farmer Perceptions on Climate Change and Variability: A Predisposition for Their Subsequent Adaptation Strategies. J. Earth Sci. Clim. Chang. 2015, 5, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Mercer, J.; Kelman, I.; Alfthan, B.; Kurvits, T. Ecosystem-Based Adaptation to Climate Change in Caribbean Small Island Developing States: Integrating Local and External Knowledge. Sustainability 2012, 4, 1908–1932. [Google Scholar] [CrossRef] [Green Version]
- Kinose, Y.; Masutomi, Y. Impact Assessment of Climate Change on Rice Yield Using a Crop Growth Model and Activities Toward Adaptation: Targeting Three Provinces in Indonesia. In Adaptation to Climate Change in Agriculture: Research and Practices; Iizumi, T., Hirata, R., Matsuda, R., Eds.; Springer: Singapore, 2019; pp. 67–80. ISBN 978-981-13-9235-1. [Google Scholar]
- Cinner, J.E.; Adger, W.N.; Allison, E.H.; Barnes, M.L.; Brown, K.; Cohen, P.J.; Gelcich, S.; Hicks, C.C.; Hughes, T.P.; Lau, J.; et al. Building Adaptive Capacity to Climate Change in Tropical Coastal Communities. Nat. Clim. Chang. 2018, 8, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Noble, I.R.; Huq, S.; Anokhin, Y.A.; Carmin, J.; Goudou, D.; Lansigan, F.P.; Osman-Elasha, B.; Villamizar, A. Adaptation needs and options. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2015. [Google Scholar]
- Ferdinand, T.; Tye, S.; Gebregziabher, D.; Suberi, B.; Carter, R. Driving System Shifts for Climate Resilience: Case Studies of Transformative Adaptation in Bhutan, Ethiopia, and Costa Rica. WRI Publ. 2020. Available online: https://www.researchgate.net/publication/347812480_Driving_System_Shifts_for_Climate_Resilience_Case_Studies_of_Transformative_Adaptation_in_Bhutan_Ethiopia_and_Costa_Rica (accessed on 11 June 2021). [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Fellmann, T. The Assessment of Climate Change-Related Vulnerability in the Agricultural Sector: Reviewing Conceptual Frameworks. Build. Resil. Adapt. Clim. Chang. Agric. Sect. 2012, 23, 37. [Google Scholar]
- Field, C.B.; Barros, V.; Stocker, T.F.; Dahe, Q. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Levine, S.; Ludi, E.; Jones, L. Rethinking Support for Adaptive Capacity to Climate Change: The Role of Development Interventions; Overseas Development Institute: London, UK, 2011. [Google Scholar]
- Handmer, J.; Honda, Y.; Kundzewicz, Z.W.; Arnell, N.; Benito, G.; Hatfield, J.; Mohamed, I.F.; Peduzzi, P.; Wu, S.; Sherstyukov, B. Changes in impacts of climate extremes: Human systems and ecosystems. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012; pp. 231–290. [Google Scholar]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- De Groot, R.S.; Wilson, M.A.; Boumans, R.M. A Typology for the Classification, Description and Valuation of Ecosystem Functions, Goods and Services. Ecol. Econ. 2002, 41, 393–408. [Google Scholar] [CrossRef] [Green Version]
- World Resources Institute. Millennium Ecosystem Assessment: Ecosystems and Human Well-Being: A Framework for Assessment; Island Press: Washington, DC, USA, 2003. [Google Scholar]
- Herawati, H.; Santoso, H. Tropical Forest Susceptibility to and Risk of Fire under Changing Climate: A Review of Fire Nature, Policy and Institutions in Indonesia. For. Policy Econ. 2011, 13, 227–233. [Google Scholar] [CrossRef]
- Christensen, J.H.; Kanikicharla, K.K.; Aldrian, E.; An, S.I.; Cavalcanti, I.F.A.; de Castro, M.; Dong, W.; Goswami, P.; Hall, A.; Kanyanga, J.K. Climate phenomena and their relevance for future regional climate change. In Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 1217–1308. [Google Scholar]
- Edwards, R.B.; Naylor, R.L.; Higgins, M.M.; Falcon, W.P. Causes of Indonesia’s Forest Fires. World Dev. 2020, 127, 104717. [Google Scholar] [CrossRef]
- Butler, J.R.A.; Suadnya, W.; Puspadi, K.; Sutaryono, Y.; Wise, R.M.; Skewes, T.D.; Kirono, D.; Bohensky, E.L.; Handayani, T.; Habibi, P. Framing the Application of Adaptation Pathways for Rural Livelihoods and Global Change in Eastern Indonesian Islands. Glob. Environ. Chang. 2014, 28, 368–382. [Google Scholar] [CrossRef]
- Sleet, P. The State of Indonesian Food Security and Nutrition; Future Directions International: Nedlands, Australia, 2020. [Google Scholar]
- Wijaya, A.; Samadhi, T.N.K.; Juliane, R. Indonesia Is Reducing Deforestation but Problem Areas Remain.2019. Available online: https://www.wri.org/insights/indonesia-reducing-deforestation-problem-areas-remain (accessed on 21 May 2021).
- Carlson, K.M.; Curran, L.M.; Ratnasari, D.; Pittman, A.M.; Soares-Filho, B.S.; Asner, G.P.; Trigg, S.N.; Gaveau, D.A.; Lawrence, D.; Rodrigues, H.O. Committed Carbon Emissions, Deforestation, and Community Land Conversion from Oil Palm Plantation Expansion in West Kalimantan, Indonesia. Proc. Natl. Acad. Sci. USA 2012, 109, 7559–7564. [Google Scholar] [CrossRef] [Green Version]
- Austin, K.G.; Kasibhatla, P.S.; Urban, D.L.; Stolle, F.; Vincent, J. Reconciling Oil Palm Expansion and Climate Change Mitigation in Kalimantan, Indonesia. PLoS ONE 2015, 10, e0127963. [Google Scholar] [CrossRef]
- Gaveau, D.L.; Salim, M.A.; Hergoualc’h, K.; Locatelli, B.; Sloan, S.; Wooster, M.; Marlier, M.E.; Molidena, E.; Yaen, H.; DeFries, R. Major Atmospheric Emissions from Peat Fires in Southeast Asia during Non-Drought Years: Evidence from the 2013 Sumatran Fires. Sci. Rep. 2014, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Jauhiainen, J.; Hooijer, A.; Page, S.E. Carbon Dioxide Emissions from an Acacia Plantation on Peatland in Sumatra, Indonesia. Biogeosciences 2012, 9, 617–630. [Google Scholar] [CrossRef] [Green Version]
- Huijnen, V.; Wooster, M.J.; Kaiser, J.W.; Gaveau, D.L.A.; Flemming, J.; Parrington, M.; Inness, A.; Murdiyarso, D.; Main, B.; van Weele, M. Fire Carbon Emissions over Maritime Southeast Asia in 2015 Largest since 1997. Sci. Rep. 2016, 6, 26886. [Google Scholar] [CrossRef] [Green Version]
- Badan Pusat Statistik, Provinsi Kalimantan Barat (Statistics of West Kalimantan Province). Available online: https://kalbar.bps.go.id/ (accessed on 16 July 2021).
- Penot, E.; Chambon, B.; Wibawa, G. An History of Rubber Agroforestry Systems Development in Indonesia and Thailand as Alternatives for a Sustainable Agriculture and Income Stability. In Proceedings of the International Rubber Conference, Bali, Indonesia, 4 October 2017; pp. 1–26. [Google Scholar]
- Milieudefensie; WALHI. Failing Governance-Avoiding Responsibilities: European Biofuel Policies and Oil Palm Plantation Expansion in Ketapang District, West Kalimantan (Indonesia); Friends of the Earth Netherlands (Milieudefensie): Amsterdam, The Netherlands, 2009. [Google Scholar]
- West Kalimantan Statistics Agency. West Kalimantan Statistics 2020. Available online: https://kalbar.bps.go.id/publication/2020/04/27/62fcae2341a7a6e3d98d335f/provinsi-kalimantan-barat-dalam-angka-2020.html (accessed on 7 February 2021).
- Directorate General of Estate, Ministry of Agriculture. Crops Tree Crop Estate Statistics of Indonesia (2018–2020)—Palm Oil. Available online: www.ditjenbun.pertanian.go.id (accessed on 7 February 2021).
- Ministry of Environment and Forestry. Indonesia Land Cover Map 2019. Available online: http://dbgis.menlhk.go.id/arcgis/rest/services/KLHK/Penutupan_Lahan_Tahun_2019/MapServer. (accessed on 7 February 2021).
- Agricultural Land Resources Agency. Peatland Distribution in Indonesia; Agricultural Land Resources Agency, Ministry of Agriculture of the Republic of Indonesia: Jakarta, Indonesia, 2019.
- Béné, C.; Newsham, A.; Davies, M.; Ulrichs, M.; Godfrey-Wood, R. Resilience, Poverty and Development. J. Int. Dev. 2014, 5, 598–623. [Google Scholar] [CrossRef]
- Winarno, B.; Rohadi, D.; Herawati, T.; Rahmat, M.; Suwarno, E. Out of Fire Disaster: Dynamics of Livelihood Strategies of Rural Community on Peatland Use and Management. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Bogor, Indonesia, 28 August 2019; IOP Publishing: Bristol, UK, 2020. [Google Scholar]
- Cattau, M.E.; Harrison, M.E.; Shinyo, I.; Tungau, S.; Uriarte, M.; DeFries, R. Sources of Anthropogenic Fire Ignitions on the Peat-Swamp Landscape in Kalimantan, Indonesia. Glob. Environ. Chang. 2016, 39, 205–219. [Google Scholar] [CrossRef]
- Page, S.E.; Siegert, F.; Rieley, J.O.; Boehm, H.-D.V.; Jaya, A.; Limin, S. The Amount of Carbon Released from Peat and Forest Fires in Indonesia during 1997. Nature 2002, 420, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Meijaard, E.; Garcia-Ulloa, J.; Sheil, D.; Wich, S.A.; Carlson, K.M.; Juffe-Bignoli, D.; Brooks, T.M. Oil Palm and Biodiversity: A Situation Analysis by the IUCN Oil Palm Task Force; IUCN Oil Palm Task Force: Gland, Switzerland, 2018. [Google Scholar] [CrossRef]
- Paterson, R.R.M.; Kumar, L.; Taylor, S.; Lima, N. Future Climate Effects on Suitability for Growth of Oil Palms in Malaysia and Indonesia. Sci. Rep. 2015, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bruijnzeel, L.A. Hydrological Functions of Tropical Forests: Not Seeing the Soil for the Trees? Agric. Ecosyst. Environ. 2004, 104, 185–228. [Google Scholar] [CrossRef]
- Adnan, N.A.; Atkinson, P.M. Exploring the Impact of Climate and Land Use Changes on Streamflow Trends in a Monsoon Catchment. Int. J. Climatol. 2011, 31, 815–831. [Google Scholar] [CrossRef]
- Peña-Arancibia, J.L.; Bruijnzeel, L.A.; Mulligan, M.; van Dijk, A.I. Forests as ‘Sponges’ and ‘Pumps’: Assessing the Impact of Deforestation on Dry-Season Flows across the Tropics. J. Hydrol. 2019, 574, 946–963. [Google Scholar] [CrossRef]
- Ministry of Villages, Village Development Index (Indeks Desa Membangun). Available online: https://idm.kemendesa.go.id/status (accessed on 5 March 2021).
- Paumgarten, F.; Locatelli, B.; Witkowski, E.T.; Vogel, C. Prepare for the Unanticipated: Portfolios of Coping Strategies of Rural Households Facing Diverse Shocks. J. Rural Stud. 2020, 80, 91–100. [Google Scholar] [CrossRef]
- Paterson, R.R.M.; Lima, N. Climate Change Affecting Oil Palm Agronomy, and Oil Palm Cultivation Increasing Climate Change, Require Amelioration. Ecol. Evol. 2018, 8, 452–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, C.-H.; Liao, P.-C.; Chen, S.-H.; Wang, Y.-C.; Cheng, C.; Wu, C.-F. Risk Perception and Adaptation of Climate Change: An Assessment of Community Resilience in Rural Taiwan. Sustainability 2021, 13, 3651. [Google Scholar] [CrossRef]
- Adger, W.N.; Arnell, N.W.; Tompkins, E.L. Successful Adaptation to Climate Change across Scales. Glob. Environ. Chang. 2005, 15, 77–86. [Google Scholar] [CrossRef]
General Characteristics | Simpang Dua (Upstream) | Gunung Palung (Transition) | Sungai Putri (Coastal) | Pematang Gadung (Peatlands) |
---|---|---|---|---|
Location and elevation | Upstream-hinterlands | Transitional (lowland to foothills) | Coastal with peatlands | Peatland-predominated lowland |
Ethnicity | Indigenous Dayak | Dayak and Malay | Malay migrants | Malay and Javanese migrants |
Area * | 73,000 ha | 57,000 ha | 55,000 ha | 46,000 ha |
Population size ** | 4300 | 9700 | 12,300 | 12,400 |
Forest area *,# | 13,400 ha (19%) | 17,500 ha (30%) | 31,900 ha (58%) | 9800 ha (20%) |
No | Type of Response Action and Examples | Categories of Adaptation Strategies |
---|---|---|
1 | Ad hoc solutions (e.g., purchasing water for water shortage) | Short-term strategies |
2 | Improvement of management (e.g., tree-planting as part of addressing tree-cover loss; planting time adjustment for rice farming) | Longer-term strategies |
3 | Improvement or fixing of construction (e.g., fixing the ditch for a water issue in rice fields) | |
4 | Alternative source (for ES)/alternative farm income (for AP) (e.g., river water as an alternative to spring water; planting oil palm as alternative to rubber tapping) | Finding alternatives |
5 | Alternative non-farm income (for AP) (e.g., working at oil palm plantations) | |
6 | Government programme or regulation (e.g., forest protection programme) | Reliance on government (programme or regulation) |
No | Impact Group | Impacts | Major Climate Stressors/Hazards | Simpang Dua | Gunung Palung | Sungai Putri | Pematang Gadung |
---|---|---|---|---|---|---|---|
1 | Ecosystem Services (ES) | Declining water discharge | Drought | √ | √ | √ | √ |
2 | Floods | Extreme rainy season | √ | √ | |||
3 | Heat | Drought, fire | √ | √ | √ | √ | |
4 | Declining forest products | Drought, fire | √ | √ | √ | ||
5 | Agricultural Production (AP) | Rubber *: production decline | Extreme seasons | √ | √ | √ | √ |
6 | Coconut *: production decline | Extreme seasons, sea level rise | √ | √ | |||
7 | Rice *: production decline, irregular planting time | Extreme and erratic seasons | √ | √ | √ | √ | |
8 | Vegetable *: production decline | Extreme seasons | √ | √ |
Impacts | Frequency of Determinant Factors (as Number of Landscapes) | |||||
---|---|---|---|---|---|---|
High Vulnerability | Low-Medium Vulnerability | |||||
Adaptive Capacity | Sensitivity | Both * | Adaptive Capacity | Sensitivity | Both * | |
ES Impact Group | ||||||
Water discharge | 1 | 3 | ||||
Heat | 2 | 1 | 1 | |||
Forest products | 1 | 2 | ||||
Floods | 1 | 1 | ||||
AP Impact Group | ||||||
Rice | 1 | 1 | 2 | |||
Vegetables | 1 | 1 | ||||
Tree cash crops ** | 3 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Widayati, A.; Louman, B.; Mulyoutami, E.; Purwanto, E.; Kusters, K.; Zagt, R. Communities’ Adaptation and Vulnerability to Climate Change: Implications for Achieving a Climate-Smart Landscape. Land 2021, 10, 816. https://doi.org/10.3390/land10080816
Widayati A, Louman B, Mulyoutami E, Purwanto E, Kusters K, Zagt R. Communities’ Adaptation and Vulnerability to Climate Change: Implications for Achieving a Climate-Smart Landscape. Land. 2021; 10(8):816. https://doi.org/10.3390/land10080816
Chicago/Turabian StyleWidayati, Atiek, Bastiaan Louman, Elok Mulyoutami, Edi Purwanto, Koen Kusters, and Roderick Zagt. 2021. "Communities’ Adaptation and Vulnerability to Climate Change: Implications for Achieving a Climate-Smart Landscape" Land 10, no. 8: 816. https://doi.org/10.3390/land10080816
APA StyleWidayati, A., Louman, B., Mulyoutami, E., Purwanto, E., Kusters, K., & Zagt, R. (2021). Communities’ Adaptation and Vulnerability to Climate Change: Implications for Achieving a Climate-Smart Landscape. Land, 10(8), 816. https://doi.org/10.3390/land10080816