Spatiotemporal Changes of Land Ecological Security and Its Obstacle Indicators Diagnosis in the Beijing–Tianjin–Hebei Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Methodology
2.3.1. Construction of Evaluation Index System
2.3.2. Entropy-Weighted TOPSIS Model
- (1)
- Entropy-Weighted Method
- (2)
- Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)
2.3.3. Evaluation Standard
2.3.4. Obstacle Degree Model
3. Results
3.1. Evaluation and Analysis of Land Eco-Security Based on Entropy-Weighted TOPSIS
3.2. Spatiotemporal Variations of LES
3.2.1. Time Change Analysis
3.2.2. Spatial Change Analysis
3.3. Obstacle Indicators of LES
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ezeonu, I.C.; Ezeonu, F.C. The environment and global security. Environmentalist 2000, 20, 41–48. [Google Scholar] [CrossRef]
- Yu, G.; Zhang, S.; Yu, Q.; Fan, Y.; Zeng, Q.; Wu, L.; Zhou, R.R.; Nan, N.; Zhao, P. Assessing ecological security at the watershed scale based on RS/GIS: A case study from the Hanjiang River Basin. Stoch. Environ. Res. Risk Assess. 2014, 28, 307–318. [Google Scholar] [CrossRef]
- Rapport, D.J.; Maffi, L. Eco-cultural health, global health, and sustain-ability. Ecol. Res. 2011, 26, 1039–1049. [Google Scholar] [CrossRef]
- Lonergan, S. Global Environmental Change and Human Security, GECHS: Science Plan; IHDP: Bonn, Germany, 1999. [Google Scholar]
- Chu, X.; Deng, X.; Jin, G.; Wang, Z.; Li, Z. Ecological security assessment based on ecological footprint approach in Beijing-Tianjin-Hebei region, China. Phys. Chem. Earth Parts A/B/C 2017, 101, 43–51. [Google Scholar] [CrossRef]
- Wang, H.Y.; Qin, F.; Zhang, X.C. A spatial exploring model for urban land ecological security based on a modified artificial bee colony algorithm. Ecol. Inform. 2019, 50, 51–61. [Google Scholar] [CrossRef]
- Zhang, H.-B.; Liu, L.-M.; Zhang, J.-L.; Zhu, Z.-Q. A dynamic assessment of ecological security of land resources in loess hills region. Resour. Sci. 2007, 29, 193–200. [Google Scholar]
- Feng, Y.; Yang, Q.; Tong, X.; Chen, L. Evaluating land ecological security and examining its relationships with driving factors using GIS and generalized additive model. Sci. Total Environ. 2018, 633, 1469–1479. [Google Scholar] [CrossRef]
- Bächler, G.; Spillmann, K.R. Environmental Crisis: Regional Conflicts and Ways of Cooperation. In Proceedings of the International Conference at Monte Verità, Ascona, Switzerland, 3–7 October 1994. [Google Scholar]
- Matthew, R.A.; Halle, M.; Switzer, J. Conserving the Peace: Resources, Livelihoods and Security; International Institute for Sustainable Development: Winnipeg, MB, Canada, 2002. [Google Scholar]
- Hurni, H. Assessing sustainable land management (SLM). Agric. Ecosyst. Environ. 2000, 81, 83–92. [Google Scholar] [CrossRef]
- Bouma, J. Land quality indicators of sustainable land management across scales. Agric. Ecosyst. Environ. 2002, 88, 129–136. [Google Scholar] [CrossRef]
- Pieri, C.; Dumanski, J.; Hamblin, A.; Young, A. Land quality indicators. World bank discussion paper 315. Gen. Inf. 1995, 3, 37–75. [Google Scholar]
- Costanza, R.; Arge, R.; Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world′s ecosystem services and natural capital. World Environ. 1997, 25, 3–15. [Google Scholar]
- Prato, T. Selection and evaluation of projects to conserve ecosystem services. Ecol. Model. 2007, 203, 290–296. [Google Scholar] [CrossRef]
- Reynaud, A.; Lanzanova, D. A global meta-analysis of the value of ecosystem services provided by lakes. Ecol. Econ. 2017, 137, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Perrodin, Y.; Boillot, C.; Angerville, R.; Donguy, G.; Emmanuel, E. Ecological risk assessment of urban and industrial systems: A review. Sci. Total Environ. 2011, 409, 5162–5176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, E.H.; Landis, W.G. Regional ecological risk assessment of a near shore marine environment:Cherry Point, WA. Hum. Ecol. Risk Assess. 2004, 10, 299–325. [Google Scholar] [CrossRef]
- Bertollo, P. Assessing landscape health:A case study from Northeastern Italy. Environ. Manag. 2001, 27, 349–365. [Google Scholar] [CrossRef]
- Shepherd, K.D.; Shepherd, G.; Walsh, M.G. Land health surveillance and response:A framework for evidence-informed land management. Agric. Syst. 2015, 132, 93–106. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Zhang, T. Research on Early-Warning of Land Ecological Security Based on BP Neural Network—Take Jilin Province as an example. For. Econ. 2017, 39, 83–86. [Google Scholar]
- Cheng, D.; Chen, Y.; Qiao, H.; Xie, B.; Ren, X. Time Series Evaluation of Urban Land Eco-security in Eco-vulnerable Areas of Northwest China—A Case Study of Lanzhou. Nat. Resour. Econ. China 2020, 33, 83–89. [Google Scholar]
- Liu, Y.F.; Ming, L.C.; Kong, X.S. Land ecological security evaluation based on PSR model and matter element mode-Take Daye City in Hubei Province as an example. Jiangsu Agric. Sci. 2017, 45, 271–277. [Google Scholar]
- Peng, W.; Yajuan, W.; Xiaopeng, L.; Xiao, C.; Fuxing, K. Evaluation and Prediction of Land Ecological Security in Qingtongxia City Based on PSR Mode. Bull. Soil Water Conserv. 201 2018, 38, 148–153. [Google Scholar]
- Xu, S.; Yang, G.; Zhang, C.; Sun, D.; Sun, X. Study On Evaluation Of Urban Land Ecological Environment Security Based On PSR Model: A Case Study Of Qindao City. Environ. Eng. 2019, 37, 199–204. [Google Scholar]
- Zhang, B.; Han, L.; Han, F. Land based on DPSIR model Ecological security evaluation--one belt, one road and 18 provinces panel data. World Agric. 2017, 8, 101–105. [Google Scholar]
- Liu, S.; Zhang, J.; Tian, F.; Yang, F. Land ecological security in the Shule River Basin from 2005 to 2014. Ecol. Sci. 2018, 37, 114–122. [Google Scholar]
- Wang, J.; Yuan, W.; Liu, X. Time series evaluation and prediction analysis of urban land ecological security in Harbin City. Arid Land Geogr. 2018, 41, 885–892. [Google Scholar]
- He, R.; Lu, Y.; Zhou, Y.; Li, Q. Evaluation of Land Ecological Security in Huaihe Ecoeconomic Zone Based on Principal Component-Cluster Analysis. J. Shandong Agric. Univ. Soc. Sci. Ed. 2019, 21, 39–47. [Google Scholar]
- Wang, L.; Zhang, J. Evaluation of land ecological security in Shandong Province and analysis of its influencing factors based on principal component cluster analysis. Jiangsu Agric. Sci. 2017, 45, 246–250. [Google Scholar]
- Yang, R.; Yang, Q.; Zeng, L. Evaluation on ecological security and analysis of influence factors of rural land based on BP-ANN model. Res. Soil Water Conserv. 2017, 24, 206–213. [Google Scholar]
- Zhang, T.; Zhang, X. Evaluation of land ecological security in Siping based on ecological footprint. Shanghai Land Resour. 2016, 37, 17–20. [Google Scholar]
- Xu, D.; He, R.; Gao, C.; Sun, P. Study on the Evaluation of Land Ecological Security in Anhui Province Based on Ecological Footprint. J. Yunnan Agric. Univ. Soc. Sci. 2017, 11, 35–44. [Google Scholar]
- Xiang, W.; Tu, J.; Li, Q.; Zhu, Y.; Liu, L. Early-warning of urban land ecological security in Yangtze River Economic Belt based on grey forecasting model. Ecol. Sci. 2018, 37, 78–88. [Google Scholar]
- Lu, G.; Liao, T.; Yao, Q.; Deng, W. Spatiotemporal variation and land ecological security and its evaluation in chongqing city based on dpsir-ees-topsis model. Res. Soil Water. Conserv. 2019, 26, 249–258. [Google Scholar]
- Ma, Y. Evaluation of land ecological security in Hubei province based on entropy-weight TOPSIS modeling. Hubei Agric. Sci. 2019, 58, 28–34. [Google Scholar]
- Jiang, C.; Luo, Z.; Zhao, J.; Zhao, Y. Dynamic evaluation of land ecological security in Jiangxi Province based on DPSIR-TOPSIS model. Jiangsu Agric. Sci. 2018, 46, 294–298. [Google Scholar]
- Zhu, Q.; Luan, J. Evaluation of Land Ecological Security Based on Improved TOPSIS Model: Taking Anhui Province as an Example. J. Anhui Agric. Univ. Soc. Sci. Ed. 2018, 27, 36–41. [Google Scholar]
- Wang, L.; Guo, C.; Li, H. Evaluation of Land Ecological Security in Ningxia Autonomous Region Based on PSR-TOPSIS model. Res. Soil Water Conserv. 2016, 23, 154–159. [Google Scholar]
- Chen, Y.; Yang, Q.; Yang, R.; Zeng, L. Evaluation of land ecological security based on entropy weighted matter-element model: A case of Jiangjin District, Chongqing. Arid Land Geogr. 2018, 41, 185–194. [Google Scholar]
- Liu, B.; Wang, X.; Shuai, L.; Ruiqing, Q. Diagnosis on Cultivated Land Ecological Security in Jilin Province Based on Normal Cloud Model. Areal Res. Dev. 2019, 38, 119–124. [Google Scholar]
- Huang, L.; Yang, P. Spatio-temporal Evolution Characteristics and Influencing Factors of Land Ecological Security in the Yangtze River Economic Belt. Resour. Environ. Yangtze Basin 2019, 28, 1780–1790. [Google Scholar]
- Yu, X.; Lu, C.; Guo, X.; Zhang, Z.; Shuangcheng, L.; Hao, J. Assessment on the Status of Land Ecosystem in Beijing-Tianjin-Hebei Region. China Land Sci. 2018, 32, 89–96. [Google Scholar]
- Yan, C.; Zhang, A.; Shi, R.; Guo, H.; Guo, D.; Wu, S.; Rong, H. Spatiotemporal Change Analysis and Land Ecological Security Evaluation in Qianjiang District of Chongqing City. Bull. Soil Water Conserv. 2016, 36, 262–268. [Google Scholar]
- Yu, H.; Zhang, F.; Cao, L.; Wang, J.; Yang, S. Spatial-temporal pattern of land ecological security at a township scale in the bortala mongolian autonomous prefecture. Acta Ecol. Sin. 2018, 37, 6355–6369. [Google Scholar]
- Han, S.; Xiong, J.; Li, D. Evaluation index system of land ecological security in the Pearl River Delta urban agglomeration. Guangdong Agric. Sci. 2016, 43, 83–88. [Google Scholar]
- Jie, C.; Shi, F. Research on Evaluation and Regulation of Land Ecological Security in Beijing-Tianjin-Hebei Region. J. Agric. Manag. Inst. Minist. Agric. 2016, 1, 37–43. [Google Scholar]
- Xiang, L. Comprehensive evaluation and comparative study on ecological security of land in the Yangtze River economic belt. Jiangsu Agric. Sci. 2018, 46, 282–286. [Google Scholar]
- Peng, W. Land Ecological Pressure and Coordinated Regulation Strategy in Beijing-Tianjin-Hebei Region. China Bus. Mark. 2018, 32, 95–101. [Google Scholar]
- Xie, H.L.; Kung, C.C.; Zhao, Y.L. Spatial disparities of regional forest land change based on ESDA and GIS at the county level in Beijing-Tianjin-Hebei area. Front. Earth Sci. 2012, 6, 445e452. [Google Scholar] [CrossRef]
- Zhang, W.; Xie, G. Research on the Evaluation System of Ecological Environment Quality and Analysis of Current Situation. Sci. Technol. Inf. 2011, 1, 367+383–384. [Google Scholar]
- Bai, Y.; Liu, H.; Han, W. Study on Remote Sensing Monitoring of Land Ecology on Regional Scale in Beijing-Tianjin-Hebei Urban Agglomerations. J. Hebei GEO Univ. 2019, 42, 50–55. [Google Scholar]
- Bagherzadeh, A.; Gholizadeh, A. Parametric-based neural networks and TOPSIS modeling in land suitability evaluation for alfalfa production using GIS. Modeling Earth Syst. Environ. 2017, 3, 2. [Google Scholar] [CrossRef]
- Lu, Y.; He, R.; Li, Q.; Zhou, Y. Evaluation of Urban Land Ecological Security and Diagnosis of Obstacles in Bengbu City. J. Heilongjiang Bayi Agric. Univ. 2020, 32, 85–92. [Google Scholar]
- Wang, J.; Peng, W.; Li, R. Land Ecological Pressure of Population and Spatial Regulation Strategy in Beijing-Tianjin-Hebei Region. Popul. Econ. 2018, 5, 83–90. [Google Scholar]
- Li, R. Study on the Regulation and Control of Land Ecological Pressure in Beijing-Tianjin-Hebei Region; Capital University of Economics and Business: Beijing, China, 2019. [Google Scholar]
- Xue, L.; Weng, L. Thoughts on China’s Belt and Road Initiative for Promoting UN 2030 Sustainable Development Goals. Bull. Chin. Acad. Sci. 2018, 33, 40–47. [Google Scholar]
- Sutton, P.C.; Anderson, S.J.; Costanza, R.; Kubiszewski, I. The ecological economics of land degradation: Impacts on ecosystemservice values. Ecol. Econ. 2016, 129, 182–192. [Google Scholar] [CrossRef]
- Drescher, J.; Rembold, K.; Allen, K.; Beckschäfer, P.; Buchori, D.; Clough, Y.; Heiko Faust, H.; Fauzi, A.M.; Gunawan, D.; Hertel, D.; et al. Ecological and Socio-economic Functions across Tropical Land Use Systems after Rainforest Conversion. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150275. [Google Scholar] [CrossRef]
- Galbraith, S.M.; Hall, T.E.; Tavarez, H.S.; Kooistra, C.M.; Ordoñez, J.C.; Bosque-Pérez, N.A. Local Ecological Knowledge Reveals Effects of Policy-driven Land Use and Cover Change on Beekeepers in Costa Rica. Land Use Policy 2017, 69, 112–122. [Google Scholar] [CrossRef]
Target Layer | Criterion Layer | Factor Layer | Index Layer | Weight | Direction |
---|---|---|---|---|---|
Land ecological security | Pressure | Population | D1 Population density (person/km2) | 0.0463 | − |
Industry | D2 Secondary industry ratio (%) | 0.0085 | − | ||
Traffic | D3 Highway passenger traffic per unit land area (ten thousand /km2) | 0.0103 | − | ||
D4 Road freight per unit land area (ten thousand ton/km2) | 0.0210 | − | |||
Environment | D5 The usage of fertilizer per unit cultivated area (ton/ km2) | 0.0629 | − | ||
D6 Industrial dust emissions per unit land area (ton/km2) | 0.0026 | − | |||
D7 Industrial wastewater discharge per unit land area (ten thousand ton /km2) | 0.0034 | − | |||
State | Land structure | D8 Cultivated land ratio (%) | 0.0696 | + | |
D9 Green coverage of urban built-up areas (%) | 0.0314 | + | |||
Land function | D10 Food production per unit land area (ton/km2) | 0.0421 | + | ||
D11 Land economic density (ten thousand yuan /km2) | 0.2241 | + | |||
Response | Population | D12 population growth rate (%) | 0.0201 | + | |
Industry | D13 Per capita GDP (ten thousand yuan/person) | 0.1234 | + | ||
D14 Tertiary industry ratio (%) | 0.0826 | + | |||
Traffic | D15 Transportation, warehousing and postal investment per unit land area (ten thousand yuan/km2) | 0.2199 | + | ||
Environment | D16 Comprehensive utilization rate of industrial solid waste (%) | 0.0319 | + |
LES Index | LES Level | System Status | System Characteristics |
---|---|---|---|
[0,0.2) | I | Dangerous | Land development and utilization seriously exceeds the land ecological carrying capacity. The structure and function of the ecosystem are severely damaged, and restoration is very difficult. The LES is seriously threatened. |
[0.2,0.3) | II | Sensitive | Land development and utilization exceeds the land carrying capacity to a large extent. The structure and function of the ecosystem are greatly damaged, and recovery is difficult. The LES is seriously threatened. |
[0.3,0.4) | III | Critical | Land development and utilization just started to exceed the land ecological carrying capacity. The ecosystem structure and functions are relatively complete, and can be restored. The LES is threatened. |
[0.4,06) | IV | Good | Land development and utilization is lower than the land ecological carrying capacity. The ecosystem structure and function are relatively complete, and can be restored. The land ecological environment is relatively safe. |
[0.6,1.0) | V | Secure | Land development and utilization is way below the land ecological carrying capacity. The ecosystem structure and functions are perfect, and the system can be restored. The land ecological environment is safe. |
Year | Pressure (P) | State (S) | Response (R) | LES | LES Level | System Status |
---|---|---|---|---|---|---|
2007 | 0.5777 | 0.1542 | 0.1584 | 0.1934 | I | Dangerous |
2008 | 0.5758 | 0.1637 | 0.1712 | 0.2019 | II | Sensitive |
2009 | 0.5811 | 0.1701 | 0.2019 | 0.2187 | II | Sensitive |
2010 | 0.5686 | 0.1798 | 0.2098 | 0.2250 | II | Sensitive |
2011 | 0.5628 | 0.1955 | 0.2145 | 0.2323 | II | Sensitive |
2012 | 0.5557 | 0.2031 | 0.2284 | 0.2413 | II | Sensitive |
2013 | 0.5520 | 0.2108 | 0.2517 | 0.2556 | II | Sensitive |
2014 | 0.5499 | 0.2155 | 0.2643 | 0.2639 | II | Sensitive |
2015 | 0.5509 | 0.2215 | 0.2865 | 0.2779 | II | Sensitive |
2016 | 0.5559 | 0.2329 | 0.2941 | 0.2866 | II | Sensitive |
2017 | 0.5695 | 0.2410 | 0.3269 | 0.3081 | III | Critical |
2018 | 0.5950 | 0.2446 | 0.3575 | 0.3284 | III | Critical |
Area | 2007 | 2010 | 2015 | 2018 |
---|---|---|---|---|
Beijing | 0.3744 | 0.4713 | 0.6259 | 0.8040 |
Tianjin | 0.2995 | 0.4770 | 0.6915 | 0.6669 |
Shijiazhuang | 0.1966 | 0.2249 | 0.2952 | 0.3561 |
Chengde | 0.1729 | 0.1818 | 0.1945 | 0.2032 |
Zhangjiakou | 0.2000 | 0.2068 | 0.2148 | 0.2289 |
Qinhuangdao | 0.1726 | 0.1779 | 0.1897 | 0.2201 |
Tangshan | 0.2098 | 0.2756 | 0.3506 | 0.3498 |
Langfang | 0.2125 | 0.2261 | 0.2789 | 0.3628 |
Baoding | 0.1731 | 0.1809 | 0.1959 | 0.2035 |
Cangzhou | 0.2154 | 0.2415 | 0.2654 | 0.2651 |
Hengshui | 0.2190 | 0.2218 | 0.2350 | 0.2428 |
Xingtai | 0.1911 | 0.2056 | 0.2178 | 0.2413 |
Handan | 0.2012 | 0.2281 | 0.2623 | 0.2720 |
Year | Ranking and Degree of Obstacles | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
2007 | D11 | D15 | D13 | D14 | D8 | D5 | D9 |
28.63 | 27.89 | 14.58 | 7.26 | 5.47 | 4.55 | 3.64 | |
2008 | D11 | D15 | D13 | D14 | D8 | D5 | D9 |
28.69 | 28.35 | 14.21 | 6.94 | 5.55 | 4.62 | 3.61 | |
2009 | D11 | D15 | D13 | D14 | D8 | D5 | D9 |
29.36 | 27.92 | 14.34 | 6.58 | 5.54 | 4.64 | 3.42 | |
2010 | D11 | D15 | D13 | D14 | D8 | D5 | D9 |
28.83 | 27.34 | 13.61 | 6.66 | 5.56 | 4.76 | 3.79 | |
2011 | D11 | D15 | D13 | D14 | D8 | D5 | D9 |
28.64 | 28.26 | 12.82 | 6.87 | 5.64 | 4.87 | 3.42 | |
2012 | D11 | D15 | D13 | D14 | D8 | D5 | D9 |
28.53 | 28.22 | 12.37 | 6.83 | 5.72 | 4.99 | 3.48 | |
2013 | D11 | D15 | D13 | D14 | D8 | D5 | D9 |
28.75 | 28.04 | 12.05 | 6.74 | 5.85 | 5.12 | 3.53 | |
2014 | D11 | D15 | D13 | D14 | D8 | D5 | D9 |
28.83 | 28.26 | 11.82 | 6.44 | 5.95 | 5.25 | 3.52 | |
2015 | D11 | D15 | D13 | D8 | D14 | D5 | D9 |
29.27 | 28.38 | 11.82 | 6.12 | 6.00 | 5.35 | 3.62 | |
2016 | D15 | D11 | D13 | D8 | D14 | D5 | D9 |
29.53 | 29.19 | 11.21 | 6.23 | 5.47 | 5.36 | 3.70 | |
2017 | D11 | D15 | D13 | D8 | D14 | D5 | D9 |
29.85 | 29.10 | 10.94 | 6.46 | 5.03 | 5.28 | 3.83 | |
2018 | D11 | D15 | D13 | D8 | D5 | D14 | D9 |
30.71 | 29.75 | 9.43 | 6.76 | 5.24 | 5.10 | 4.05 |
Area | 2007 | 2018 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
Beijing | D11 | D15 | D13 | D8 | D5 | D1 | D9 | D8 | D10 | D1 | D9 | D5 | D16 | D12 |
25.25 | 22.75 | 13.01 | 10.33 | 6.89 | 5.80 | 4.25 | 32.17 | 19.39 | 14.20 | 10.36 | 10.03 | 5.24 | 2.57 | |
Tianjin | D11 | D15 | D13 | D14 | D5 | D8 | D1 | D15 | D14 | D8 | D1 | D11 | D9 | D5 |
25.99 | 22.72 | 13.57 | 9.12 | 6.02 | 5.12 | 4.80 | 29.38 | 9.90 | 9.67 | 8.88 | 8.65 | 7.21 | 6.73 | |
Shijiazhuang | D15 | D11 | D13 | D14 | D5 | D8 | D9 | D11 | D15 | D13 | D5 | D14 | D8 | D9 |
27.65 | 27.62 | 15.12 | 8.40 | 7.94 | 3.80 | 3.46 | 30.56 | 21.96 | 13.92 | 8.44 | 6.70 | 5.88 | 4.08 | |
Chengde | D11 | D15 | D13 | D14 | D8 | D9 | D16 | D11 | D15 | D13 | D8 | D14 | D10 | D16 |
27.50 | 26.83 | 14.60 | 9.74 | 8.54 | 3.59 | 2.67 | 29.50 | 28.91 | 12.70 | 8.98 | 7.08 | 3.82 | 3.43 | |
Zhangjiakou | D11 | D15 | D13 | D14 | D8 | D10 | D9 | D11 | D15 | D13 | D8 | D14 | D10 | D9 |
28.83 | 28.14 | 15.66 | 7.90 | 6.67 | 5.41 | 3.43 | 31.27 | 28.66 | 14.42 | 6.88 | 6.35 | 5.18 | 3.46 | |
Qinhuangdao | D11 | D15 | D13 | D8 | D5 | D14 | D10 | D15 | D11 | D13 | D8 | D5 | D14 | D9 |
28.08 | 27.94 | 14.83 | 6.54 | 6.19 | 6.17 | 3.19 | 28.60 | 28.45 | 12.04 | 7.12 | 6.97 | 5.79 | 3.39 | |
Tangshan | D11 | D15 | D13 | D14 | D5 | D8 | D9 | D11 | D15 | D14 | D5 | D13 | D8 | D9 |
28.07 | 25.93 | 13.76 | 10.02 | 6.49 | 4.29 | 3.18 | 27.54 | 24.96 | 10.61 | 8.40 | 8.38 | 5.20 | 3.94 | |
Langfang | D15 | D11 | D13 | D14 | D5 | D10 | D1 | D11 | D15 | D13 | D14 | D1 | D10 | D5 |
29.19 | 28.54 | 15.60 | 10.25 | 3.83 | 3.16 | 2.79 | 30.09 | 27.58 | 13.12 | 6.68 | 4.46 | 4.55 | 4.43 | |
Baoding | D11 | D15 | D13 | D14 | D5 | D8 | D9 | D15 | D11 | D13 | D14 | D5 | D8 | D9 |
28.32 | 27.58 | 15.99 | 8.91 | 4.77 | 4.62 | 3.35 | 29.27 | 28.88 | 14.76 | 7.33 | 5.17 | 4.88 | 3.28 | |
Cangzhou | D11 | D15 | D13 | D14 | D9 | D5 | D1 | D15 | D11 | D13 | D14 | D9 | D5 | D10 |
29.71 | 29.69 | 16.12 | 9.12 | 3.88 | 3.57 | 2.12 | 31.19 | 30.37 | 13.81 | 7.45 | 3.98 | 3.52 | 2.79 | |
Hengshui | D15 | D11 | D13 | D14 | D9 | D5 | D10 | D15 | D11 | D13 | D14 | D5 | D9 | D1 |
29.77 | 29.57 | 16.66 | 9.63 | 4.24 | 3.92 | 2.42 | 31.57 | 30.22 | 15.03 | 7.76 | 5.82 | 3.59 | 2.38 | |
Xingtai | D15 | D11 | D13 | D14 | D5 | D9 | D1 | D11 | D15 | D13 | D14 | D5 | D9 | D1 |
28.37 | 28.35 | 16.03 | 10.37 | 4.40 | 3.37 | 2.29 | 30.40 | 29.34 | 15.90 | 7.63 | 4.32 | 3.53 | 3.08 | |
Handan | D15 | D11 | D13 | D14 | D5 | D1 | D9 | D11 | D15 | D13 | D14 | D5 | D1 | D9 |
28.77 | 28.31 | 15.88 | 9.32 | 6.46 | 3.23 | 3.06 | 29.24 | 26.11 | 15.36 | 8.10 | 7.14 | 4.53 | 3.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, D.; Wang, D.; Zhong, X.; Yang, Y.; Jiang, L. Spatiotemporal Changes of Land Ecological Security and Its Obstacle Indicators Diagnosis in the Beijing–Tianjin–Hebei Region. Land 2021, 10, 706. https://doi.org/10.3390/land10070706
Guo D, Wang D, Zhong X, Yang Y, Jiang L. Spatiotemporal Changes of Land Ecological Security and Its Obstacle Indicators Diagnosis in the Beijing–Tianjin–Hebei Region. Land. 2021; 10(7):706. https://doi.org/10.3390/land10070706
Chicago/Turabian StyleGuo, Dongyan, Dongyan Wang, Xiaoyong Zhong, Yuanyuan Yang, and Lixin Jiang. 2021. "Spatiotemporal Changes of Land Ecological Security and Its Obstacle Indicators Diagnosis in the Beijing–Tianjin–Hebei Region" Land 10, no. 7: 706. https://doi.org/10.3390/land10070706
APA StyleGuo, D., Wang, D., Zhong, X., Yang, Y., & Jiang, L. (2021). Spatiotemporal Changes of Land Ecological Security and Its Obstacle Indicators Diagnosis in the Beijing–Tianjin–Hebei Region. Land, 10(7), 706. https://doi.org/10.3390/land10070706