Developing an Ecosystem Services-Based Approach for Land Use Planning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Classification of Land Cover Types
2.2. Selection and Scoring Critical ES
2.3. Classification of Importance of ES
2.4. Delineation of Key ES Zones
3. Case Study
3.1. Study Area
3.2. Classification of Land Cover Types
3.3. Selection and Scoring Critical ES
3.4. Classifification of Importance of ES
3.4.1. Total Capacities
3.4.2. Regulating Services
3.4.3. Provisioning Services
3.4.4. Cultural Services
3.4.5. Comparison of Two Provinces and One Municipality
3.5. Delineation of Key ES Zones
3.5.1. Total Capacities Level ‘V’
3.5.2. Total Capacities Level ‘IV’
3.5.3. Total Capacities Level ‘III’
3.5.4. Total Capacities Level ‘II’
4. Discussion
4.1. The Relationship between the Human Activies and the Pattern of Critical ESs
4.2. Contributions and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haas, J.; Ban, Y. Urban growth and environmental impacts in Jing-Jin-Ji, the Yangtze, River Delta and the Pearl River Delta. Int. J. Appl. Earth Obs. Geoinform. 2014, 30, 42–55. [Google Scholar] [CrossRef]
- UN, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2011 Revision; UN: New York, NY, USA, 2012. [Google Scholar]
- Han, J.; Meng, X.; Zhou, X.; Yi, B.L.; Liu, M.; Xiang, W.N. A long-term analysis of urbanization process, landscape change, and carbon sources and sinks: A case study in China’s Yangtze River Delta region. J. Clean. Prod. 2017, 141, 1040–1050. [Google Scholar] [CrossRef]
- Su, S.; Xiao, R.; Jiang, Z.; Zhang, Y. Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Appl. Geogr. 2012, 34, 295–305. [Google Scholar] [CrossRef]
- Zhou, Z.X.; Li, J.; Zhang, W. Coupled urbanization and agricultural ecosystem services in Guanzhong-Tianshui Economic Zone. Environ. Sci. Pollut. Res. 2016, 23, 15407–15417. [Google Scholar] [CrossRef]
- Su, S.; Li, D.; Hu, Y.; Xiao, R.; Zhang, Y. Spatially non-stationary response of ecosystem service value changes to urbanization in Shanghai, China. Ecol. Indic. 2014, 45, 332–339. [Google Scholar] [CrossRef]
- Qiu, B.; Li, H.; Zhou, M.; Zhang, L. Vulnerability of ecosystem services provisioning to urbanization: A case of China. Ecol. Indic. 2015, 57, 505–513. [Google Scholar] [CrossRef]
- Li, B.J.; Chen, D.X.; Wu, S.H.; Zhou, S.L.; Wang, T.; Chen, H. Spatio-Temporal Assessment of Urbanization Impacts on Ecosystem Services: Case Study of Nanjing City, China. Ecol. Indic. 2016, 71, 416–427. [Google Scholar] [CrossRef]
- Lü, Y.; Ma, Z.; Zhang, L.; Fu, B.; Gao, G. Redlines for the greening of China. Environ. Sci. Policy 2013, 33, 346–353. [Google Scholar] [CrossRef]
- Xu, X.; Tan, Y.; Chen, S.; Yang, G. Changing patterns and determinants of natural capital in the Yangtze River Delta of China 2000–2010. Sci. Total Environ. 2014, 466-467, 326–337. [Google Scholar] [CrossRef]
- La Notte, A.; D’Amato, D.; Mäkinen, H.; Paracchini, M.L.; Liquete, C.; Egoh, B.; Geneletti, D.; Crossman, N.D. Ecosystem services classification: A systems ecology perspective of the cascade framework. Ecol. Indic. 2017, 74, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R. Ecosystem services: Multiple classification systems are needed. Biol. Conserv. 2008, 141, 350–352. [Google Scholar] [CrossRef]
- Fisher, B.; Turner, R.K. Ecosystem services: Classification for valuation. Biol. Conserv. 2008, 141, 1167–1169. [Google Scholar] [CrossRef]
- Wallace, K.J. Classification of ecosystem services: Problems and solutions. Biol. Conserv. 2007, 139, 235–246. [Google Scholar] [CrossRef] [Green Version]
- MA Board. Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005; p. 13. [Google Scholar]
- Millennium Ecosystem Assessment (MEA). Strengthening Capacity to Manage Ecosystems Sustainably for Human Well-Being; World Resources Institute: Washington, DC, USA, 2003. [Google Scholar]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being: Biodiversity Synthesis; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Rao, E.; Jiang, L.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Daily, G.C.; Polasky, S.; Goldstein, J.; Kareiva, P.M.; Mooney, H.A.; Pejchar, L.; Ricketts, T.H.; Salzman, J.; Shallenberger, R. Ecosystem services in decision making: Time to deliver. Front. Ecol. Environ. 2009, 7, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Fisher, B.; Turner, R.K.; Morling, P. Defining and classifying ecosystem services for decision making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef] [Green Version]
- Turner, W.R.; Brandon, K.; Brooks, T.M.; Costanza, R.; Da Fonseca, G.A.B.; Portela, R. Global Conservation of Biodiversity and Ecosystem Services. Bioscience 2007, 57, 868–873. [Google Scholar] [CrossRef] [Green Version]
- Fu, N.; Li, X. Study on the Division Method of Ecological Red Line Area in Land Use Planning; Abstracts of Academic Papers of the 2007 Annual Meeting of the Chinese Geographical Society; Chinese Geographical Society: Beijing, China, 2007. (In Chinese) [Google Scholar]
- Rao, S.; Zhang, Q.; Mou, X. Delineating ecological red line and innovating ecosystem management. Environ. Econ. 2012, 6, 57–60. (In Chinese) [Google Scholar]
- Zheng, H.; Ouyang, Z. Practice and Thinking of Ecological Red Line. Bull. Chin. Acad. Sci. 2014, 29, 457–461. (In Chinese) [Google Scholar]
- Li, S.; Ma, C.; Wang, Y. The Geography of Ecosystem Services; Sciencep: Beijing, China, 2014. [Google Scholar]
- People’s Republic of China Ministry of Environmental Protection (MEP). Technical Guide for Ecological Red Line. No. 2015.5.; Chinese Ministry of Environmental Protection: Beijing, China, 2015. [Google Scholar]
- Burkhard, B.; Müller, F. Driver–Pressure–State–Impact–Response. In Encyclopedia of Ecology; Jørgensen, S.E., Fath, B.D., Eds.; Academic Press: Oxford, UK, 2008; pp. 967–970. [Google Scholar]
- De Groot, R.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Kroll, F.; Muller, F.; Hasse, D.; Fohrer, N. Rural–urban gradient analysis of ecosystem services supply and demand dynamics 2012. Land Use Policy 2012, 29, 521–535. [Google Scholar] [CrossRef]
- Crossman, N.D.; Burkhard, B.; Nedkov, S.; Willemen, L.; Petz, K.; Palomo, I.; Drakou, E.G.; Martín-Lopez, B.; McPhearson, T.; Boyanova, K.; et al. A blueprint for mapping and modelling ecosystem services. Ecosyst. Serv. 2013, 4, 4–14. [Google Scholar] [CrossRef]
- Martínez-Harms, M.J.; Balvanera, P. Methods for mapping ecosystem service supply: A review. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2012, 8, 17–25. [Google Scholar] [CrossRef]
- Nedkov, S.; Burkhard, B. Flood regulating ecosystem services—Mapping supply and demand, in the Etropole municipality, Bulgaria. Ecol. Indic. 2012, 21, 67–79. [Google Scholar] [CrossRef]
- Palomo, I.; Bagstad, K.J.; Nedkov, S.; Klug, H.; Adamescu, M.; Cazacu, C. Tools for mapping ecosystem services. In Mapping Ecosystem Services; Pensoft Publishers: Sofia, Bulgaria, 2017. [Google Scholar]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Burkhard, B.; Kandziora, M.; Hou, Y.; Müller, F. Ecosystem service potentials, flows and demands-concepts for spatial localisation, indication and quantification. Landsc. Online 2014, 34, 1–32. [Google Scholar] [CrossRef]
- Willemen, L.; Burkhard, B.; Crossman, N.; Drakou, E.G.; Palomo, I. Editorial: Best practices for mapping ecosystem services. Ecosyst. Serv. 2015, 13, 1–5. [Google Scholar] [CrossRef]
- Gong, J.; Li, J.; Yang, J.; Li, S.; Tang, W. Land Use and Land Cover Change in the Qinghai Lake Region of the Tibetan Plateau and Its Impact on Ecosystem Services. Int. J. Environ. Res. Public. Health 2017, 14, 818. [Google Scholar] [CrossRef]
- Keller, A.A.; Fournier, E.; Fox, J. Minimizing impacts of land use change on ecosystem services using multi-criteria heuristic analysis. J. Environ. Manag. 2015, 156, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Metzger, M.; Rounsevell, M.; Acosta-Michlik, L.; Leemans, R.; Schröter, D. The vulnerability of ecosystem services to land use change. Agric. Ecosyst. Environ. 2006, 114, 69–85. [Google Scholar] [CrossRef]
- Grafius, D.R.; Corstanje, R.; Warren, P.H.; Evans, K.L.; Hancock, S.; Harris, J.A. The impact of land use/land cover scale on modelling urban ecosystem services. Landsc. Ecol. 2016, 31, 1509–1522. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.-B.; Li, H.-M.; Ye, X.-Y.; Zhang, H. Analyzing Three-Decadal Patterns of Land Use/Land Cover Change and Regional Ecosystem Services at the Landscape Level: Case Study of Two Coastal Metropolitan Regions, Eastern China. Sustainability 2016, 8, 773. [Google Scholar] [CrossRef] [Green Version]
- Gaglio, M.; Aschonitis, V.G.; Gissi, E.; Castaldelli, G.; Fano, E.A. Land use change effects on ecosystem services of river deltas andcoastal wetlands: Case study in Volano–Mesola–Goro in Po river delta (Italy). Wetl. Ecol. Manag. 2017, 25, 67–86. [Google Scholar] [CrossRef]
- Bai, Y.; Wong, C.P.; Jiang, B.; Hughes, A.C.; Wang, M.; Wang, Q. Developing China’s Ecological Redline Policy using ecosystem services assessments for land use planning. Nat. Commun. 2018, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Nordborg, M.; Sasu-Boakye, Y.; Cederberg, C.; Berndes, G. Challenges in developing regionalized characterization factors in land use impact assessment: Impacts on ecosystem services in case studies of animal protein production in Sweden. Int. J. Life Cycle Assess. 2017, 22, 328–345. [Google Scholar] [CrossRef] [Green Version]
- Tolvanen, A.; Aronson, J. Ecological restoration, ecosystem services, and land use: A European perspective. Ecol. Soc. 2016, 21. [Google Scholar] [CrossRef] [Green Version]
- Kopperoinen, L.; Itkonen, P.; Niemelä, J. Using expert knowledge in combining green infrastructure and ecosystem services in land use planning: An insight into a new place-based methodology. Landsc. Ecol. 2014, 29, 1361–1375. [Google Scholar] [CrossRef]
- Fürst, C.; Opdam, P.; Inostroza, L.; Luque, S. Evaluating the role of ecosystem services in participatory land use planning: Proposing a balanced score card. Landsc. Ecol. 2014, 29, 1435–1446. [Google Scholar] [CrossRef]
- Van Noordwijk, M.; Tanika, L.; Lusiana, B. Flood risk reduction and flow buffering as ecosystem services–Part 2: Land use and rainfall intensity effects in Southeast Asia. Hydrol. Earth Syst. Sci. 2017, 21, 2341–2360. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Zhang, X.; Liu, Q.; Liu, Y.; Ding, Y.; Zhang, Q. Impact of Land Use Intensity on Ecosystem Services: An Example from the Agro-Pastoral Ecotone of Central Inner Mongolia. Sustainability 2017, 9, 1030. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.-Y.; Ye, X.-Y.; Qi, Z.-F.; Zhang, H. Impacts of land use/land cover change and socioeconomic development on regional ecosystem services: The case of fast-growing Hangzhou metropolitan area, China. Cities 2013, 31, 276–284. [Google Scholar] [CrossRef]
- Nin, M.; Soutullo, A.; Rodríguez-Gallego, L.; Di Minin, E. Ecosystem services-based land planning for environmental impact avoidance. Ecosyst. Serv. 2016, 17, 172–184. [Google Scholar] [CrossRef]
- Jiang, B.; Bai, Y.; Wong, C.P.; Xu, X.; Alatalo, J.M. China’s ecological civilization program–Implementing ecological redline policy. Land Use Policy 2019, 81, 111–114. [Google Scholar] [CrossRef]
- Xu, C.; Pu, L.; Zhu, M.; Li, J.; Chen, X.; Wang, X.; Xie, X. Ecological Security and Ecosystem Services in Response to Land Use Change in the Coastal Area of Jiangsu, China. Sustainability 2016, 8, 816. [Google Scholar] [CrossRef] [Green Version]
- Long, H.; Liu, Y.; Hou, X.; Li, T.; Li, Y. Effects of land use transitions due to rapid urbanization on ecosystem services: Implications for urban planning in the new developing area of China. Habitat Int. 2014, 44, 536–544. [Google Scholar] [CrossRef]
- Jacobs, S.; Burkhard, B.; Van Daele, T.; Staes, J.; Schneiders, A. ‘The Matrix Reloaded’: A review of expert knowledge use for mapping ecosystem services. Ecol. Model. 2015, 295, 21–30. [Google Scholar] [CrossRef]
- Tian, G.; Jiang, J.; Yang, Z.; Zhang, Y. The urban growth, size distribution and spatio-temporal dynamic pattern of the Yangtze River Delta megalopolitan region. China. Ecol. Model. 2011, 222, 865–878. [Google Scholar] [CrossRef]
- Wei, S.; Liu, X.; Cheng, M. Global Manufacturing Center into Global Innovation Center: The Case of the Yangtze River Delta, in Transition of the Yangtze River Delta. In Transition of the Yangtze River Delta; Springer: Tokyo, Japan, 2015; pp. 49–73. [Google Scholar]
- Zhang, Y. Yangtze River Delta’s system integration: Institutional barriers and countermeasures. IDE Discuss. Paper. 2010, 264, 1–20. [Google Scholar]
- Cai, W.; Wu, T.; Jiang, W.; Peng, W.; Cai, Y. Integrating Ecosystem Services Supply–Demand and Spatial Relationships for Intercity Cooperation: A Case Study of the Yangtze River Delta. Sustainability 2020, 12, 4131. [Google Scholar] [CrossRef]
- Cai, W.; Gibbs, D.; Zhang, L.; Ferrier, G.; Cai, Y. Identifying hotspots and management of critical ecosystem services in rapidly urbanizing Yangtze River Delta Region, China. J. Environ. Manag. 2017, 191, 258–267. [Google Scholar] [CrossRef]
- Regional Plan for the Yangtze River Delta Region (RPYRDR). China’s State Council and the National Development and Reform Commission (NDRC). 2009–2020. Available online: https://wenku.baidu.com/view/4ae7c62c2af90242a895e5ee.html (accessed on 1 December 2020).
- Wang, T.; Jiang, F.; Deng, J.; Shen, Y.; Fu, Q.; Wang, Q.; Fu, Y.; Xu, J.; Zhang, D. Urban air quality and regional haze weather forecast for Yangtze River Delta region. Atmos. Environ. 2012, 58, 70–83. [Google Scholar] [CrossRef]
- Qiao, X.; Gu, Y.; Zou, C.; Xu, D.; Wang, L.; Ye, X.; Yang, Y.; Huang, X. Temporal variation and spatial scale dependency of the trade-offs and synergies among multiple ecosystem services in the Taihu Lake Basin of China. Sci. Total Environ. 2019, 651, 218–229. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Gao, S.; Ge, J. Dynamic land use and its policy in response to environmental and social-economic changes in China: A case study of the Jiangsu coast (1750–2015). Land Use Policy 2019, 82, 169–180. [Google Scholar] [CrossRef]
- Yu, W.; Zhou, W. Spatial pattern of urban change in two Chinese megaregions: Contrasting responses to national policy and economic mode. Sci. Total Environ. 2018, 634, 1362–1371. [Google Scholar] [CrossRef]
- Li, J.; Jiang, H.; Bai, Y.; Alatalo, J.M.; Li, X.; Jiang, H.; Liu, G.; Xu, J. Indicators for spatial–temporal comparisons of ecosystem service status between regions: A case study of the Taihu River Basin, China. Ecol. Indic. 2016, 60, 1008–1016. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, L.; Zhang, Q. Spatial and temporal dynamics of land use and its influence on ecosystem service value in Yangtze River Delta. Acta Ecol. Sin. 2014, 34, 3311–3319, (In Chinese, English Abstract). [Google Scholar]
- Zhou, F.; Tang, Q.; Ren, W. Annual Report on Resources and Environment of Shanghai 2016. Social Sciences Academic Press: Beijing, China, 2016; pp. 1–64. [Google Scholar]
- Campagne, C.S.; Roche, P.; Müller, F.; Burkhard, B. Ten years of ecosystem services matrix: Review of a (r)evolution. One Ecosyst. 2020, 5, e51103. [Google Scholar] [CrossRef]
- Hou, Y.; Burkhard, B.; Müller, F. Uncertainties in landscape analysis and ecosystem service assessment. J. Environ. Manag. 2013, 127, S117–S131. [Google Scholar] [CrossRef]
Regulating Services | Global Climate Regulation | Local Climate Regulation | Air Quality Regulation | Water Flow Regulation | Water Purification | Nutrient Regulation | Erosion Regulation | Pollination | Provisioning Services | Crops | Biomanss of Energy | Fodder | Livestock | Wild Foods | Timber | Wood Fuel | Capture Fisheries | Biochemicals and Medicine | Freshwater | Culturral Services | Recreation & Asthetic Values | Intrinsic Value of Biodiversity | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Continuous urban fabric | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
Discontinuous urban fabric | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
Construtcted sites | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
Non-irrigated arable land | 3 | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 5 | 2 | 5 | 5 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | |||
Rice fields | 3 | 3 | 0 | 1 | 0 | 0 | 0 | 1 | 5 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | |||
Forest | 5 | 5 | 5 | 3 | 5 | 5 | 5 | 5 | 0 | 1 | 1 | 0 | 5 | 5 | 5 | 0 | 5 | 0 | 5 | 5 | |||
Shrub | 4 | 1 | 0 | 2 | 0 | 0 | 0 | 2 | 0 | 1 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | 2 | |||
Fruit trees | 4 | 2 | 2 | 2 | 1 | 1 | 4 | 5 | 2 | 1 | 0 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 5 | 0 | |||
Grassland | 4 | 2 | 0 | 2 | 5 | 5 | 3 | 0 | 0 | 0 | 2 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | |||
Bareland | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | |||
Inland marshes | 4 | 2 | 0 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 5 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
Salt marshes | 4 | 1 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | |||
Water courses | 4 | 1 | 0 | 4 | 3 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 4 | 0 | 0 | 3 | 0 | 5 | 5 | 5 | |||
Water bodies | 4 | 2 | 0 | 5 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 3 | 0 | 5 | 5 | 4 |
Total Capacities | Area (km2) | % |
---|---|---|
I (0–20) | 28,458.60 | 13.24 |
II (20–40) | 101,286.50 | 47.12 |
III (40–60) | 14,440.98 | 6.72 |
IV (60–80) | 11,789.34 | 5.48 |
V (80–100) | 58,975.78 | 27.44 |
Total | 214,951.19 | 100.00 |
Total Capacities | Area (km2) | % |
---|---|---|
I (0–10) | 28,458.60 | 13.24 |
II (10–20) | 101,286.50 | 47.12 |
III (20–30) | 20,904.24 | 9.73 |
IV (30–40) | 5326.08 | 2.48 |
V (40–50) | 58,975.78 | 27.44 |
Total | 214,951.19 | 100.00 |
Total Capacities | Area (km2) | % |
---|---|---|
I (0–5) | 29,939.30 | 13.93 |
II (5–10) | 76,002.52 | 35.36 |
III (10–15) | 13,305.65 | 6.19 |
IV (15–20) | 36,727.94 | 17.09 |
V (20–25) | 58,975.78 | 27.44 |
Total | 214,951.19 | 100.00 |
Total Capacities | Area (km2) | % |
---|---|---|
I (0–5) | 4313.86 | 2.01 |
II (5–10) | 123,893.41 | 57.64 |
III (10–15) | 14,481.64 | 6.74 |
IV (15–20) | 13,286.50 | 6.18 |
V (20–25) | 58,975.78 | 27.44 |
Total | 214,951.19 | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, W.; Jiang, W.; Cai, Y. Developing an Ecosystem Services-Based Approach for Land Use Planning. Land 2021, 10, 419. https://doi.org/10.3390/land10040419
Cai W, Jiang W, Cai Y. Developing an Ecosystem Services-Based Approach for Land Use Planning. Land. 2021; 10(4):419. https://doi.org/10.3390/land10040419
Chicago/Turabian StyleCai, Wenbo, Wei Jiang, and Yongli Cai. 2021. "Developing an Ecosystem Services-Based Approach for Land Use Planning" Land 10, no. 4: 419. https://doi.org/10.3390/land10040419
APA StyleCai, W., Jiang, W., & Cai, Y. (2021). Developing an Ecosystem Services-Based Approach for Land Use Planning. Land, 10(4), 419. https://doi.org/10.3390/land10040419