Factors Affecting Adaptation to Climate Change through Agroforestry in Kenya
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Procedure and Data Collection
2.3. Analysis Methodology
2.3.1. Research Design
2.3.2. Variable Description
2.3.3. Estimating Strategies
2.3.4. Probit Model
2.3.5. K-Means Clustering Analysis
3. Results
3.1. Descriptive Statistics
3.2. Factors Influencing Farmers’ Adoption of Agroforestry Technologies
3.2.1. Probit Model
3.2.2. K-Means Analysis
4. Discussions
4.1. Probit Model Analysis
4.2. K-Means Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO World Reference Base for Soil Resources 2006. Available online: http://www.fao.org/3/a-a0510e.pdf. (accessed on 20 November 2020).
- FAO. The Future of Food and Agriculture–Trends and Challenges; FAO: Rome, Italy, 2017. [Google Scholar]
- Apuri, I. Agroforestry as An Adaptation Strategy to Climate Change in The Kassena Nankana West District, Upper East Region, Ghana. Ph.D.Thesis, University for Development Studies, Tamale, Ghana, 2016. [Google Scholar]
- Mulungu, K.; Ng’ombe, J.N. Climate change impacts on sustainable maize production in Sub-Saharan Africa: A review. Maize Prod. Use 2019. [Google Scholar] [CrossRef]
- Mandila, B.; Hitimana, J.; Kiplagat, A.; Mengich, E.; Wekesa, T. Prevalence and Adoption of agroforestry technologies and practices in semi-arid regions of West-Pokot County, Kenya. Res. J. Agric. For. Sci. 2015, 2320, 6063. [Google Scholar]
- Gan, T.Y.; Ito, M.; Hülsmann, S.; Qin, X.; Lu, X.X.; Liong, S.-Y.; Rutschman, P.; Disse, M.; Koivusalo, H. Possible climate change/variability and human impacts, vulnerability of drought-prone regions, water resources and capacity building for Africa. Hydrol. Sci. J. 2016, 61, 1209–1226. [Google Scholar] [CrossRef]
- Kovats, R.S.; Campbell-Lendrum, D.H.; McMichel, A.J.; Woodward, A.; Cox, J.S.H. Early effects of climate change: Do they include changes in vector-borne disease? Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2001, 356, 1057–1068. [Google Scholar] [CrossRef]
- Nexus Fragility and Conflict. Available online: https://www.swisspeace.ch/apropos/wp-content/uploads/2018/12/december-2018-2.pdf (accessed on 22 February 2021).
- Reppin, S.; Kuyah, S.; de Neergaard, A.; Oelofse, M.; Rosenstock, T.S. Contribution of agroforestry to climate change mitigation and livelihoods in Western Kenya. Agrofor. Syst. 2020, 94, 203–220. [Google Scholar] [CrossRef]
- Parry, M.L.; Rosenzweig, C.; Iglesias, A.; Livermore, M.; Fischer, G. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob. Environ. Chang. 2004, 14, 53–67. [Google Scholar] [CrossRef]
- Brown, M.E.; Antle, J.M.; Backlund, P.; Carr, E.R.; Easterling, W.E.; Walsh, M.K.; Ammann, C.; Attavanich, W.; Barrett, C.B.; Bellemare, M.F. Climate Change, Global Food Security, and the US Food System; MPRA Paper: Munich, Germany, 2015. [Google Scholar]
- Millar, C.I.; Stephenson, N.L.; Stephens, S.L. Climate change and forests of the future: Managing in the face of uncertainty. Ecol. Appl. 2007, 17, 2145–2151. [Google Scholar] [CrossRef]
- De Giusti, G.; Kristjanson, P.; Rufino, M.C. Agroforestry as a climate change mitigation practice in smallholder farming: Evidence from Kenya. Clim. Change 2019, 153, 379–394. [Google Scholar] [CrossRef]
- Amadu, F.O.; McNamara, P.E.; Miller, D.C. Understanding the adoption of climate-smart agriculture: A farm-level typology with empirical evidence from southern Malawi. World Dev. 2020, 126, 104692. [Google Scholar] [CrossRef]
- Tuwei, J.C. Factors Influencing Farmers’ Decisions to Adopt Agro-Silviculture in Kenya: A Case of Kapenguria Division, West Pokot County. Ph.D. Thesis, University of Nairobi, Nairobi, Kenya, 2015. [Google Scholar]
- Mbow, C.; Skole, D.; Dieng, M.; Justice, C.; Kwesha, D.; Mane, L.; El Gamri, M.; Von Vordzogbe, V.; Virji, H. Challenges and prospects for REDD+ in Africa: Desk review of REDD+ implementation in Africa. Glob. L. Proj. Reports 2012, 5. Available online: https://start.org/wp-content/uploads/REDD_Report.pdf (accessed on 10 December 2020).
- Magaju, C.; Ann Winowiecki, L.; Crossland, M.; Frija, A.; Ouerghemmi, H.; Hagazi, N.; Sola, P.; Ochenje, I.; Kiura, E.; Kuria, A. Assessing Context-Specific Factors to Increase Tree Survival for Scaling Ecosystem Restoration Efforts in East Africa. Land 2020, 9, 494. [Google Scholar] [CrossRef]
- Charles, R.L.; Nzunda, E.F.; Munishi, P.K.T. Agroforestry as a resilient strategy in mitigating climate change in Mwanga District, Kilimanjaro, Tanzania. Glob. J. Biol. Agric. Health Sci. 2014, 3, 11–17. [Google Scholar]
- Yadav, R.P.; Bisht, J.K.; Bhatt, J.C. Biomass, carbon stock under different production systems in the mid hills of Indian Himalaya. Trop. Ecol. 2017, 58, 15–21. [Google Scholar]
- Quandt, A. Contribution of agroforestry trees for climate change adaptation: Narratives from smallholder farmers in Isiolo, Kenya. Agrofor. Syst. 2020, 94, 2125–2136. [Google Scholar] [CrossRef]
- Rao, K.P.C.; Verchot, L.V.; Laarman, J. Adaptation to climate change through sustainable management and development of agroforestry systems. J. SAT Agric. Res. 2007, 4, 1–30. [Google Scholar]
- Mbow, C.; Smith, P.; Skole, D.; Duguma, L.; Bustamante, M. Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 8–14. [Google Scholar] [CrossRef]
- Carsan, S.; Stroebel, A.; Dawson, I.; Kindt, R.; Mbow, C.; Mowo, J.; Jamnadass, R. Can agroforestry option values improve the functioning of drivers of agricultural intensification in Africa? Curr. Opin. Environ. Sustain. 2014, 6, 35–40. [Google Scholar] [CrossRef]
- Mbow, C.; Van Noordwijk, M.; Luedeling, E.; Neufeldt, H.; Minang, P.A.; Kowero, G. Agroforestry solutions to address food security and climate change challenges in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 61–67. [Google Scholar] [CrossRef]
- Tchoundjeu, Z.; Degrande, A.; Leakey, R.R.B.; Nimino, G.; Kemajou, E.; Asaah, E.; Facheux, C.; Mbile, P.; Mbosso, C.; Sado, T. Impacts of participatory tree domestication on farmer livelihoods in West and Central Africa. For. Trees Livelihoods 2010, 19, 217–234. [Google Scholar] [CrossRef]
- Slingo, J.M.; Challinor, A.J.; Hoskins, B.J.; Wheeler, T.R. Introduction: Food crops in a changing climate. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 1983–1989. [Google Scholar] [CrossRef]
- Huho, J.M. Conflict resolution among pastoral communities in West Pokot County, Kenya: A missing link. Acad. Res. Int. 2012, 3, 458–468. [Google Scholar]
- Savatia, V. Impacts of climate change on water and pasture resulting in cross-border conflicts: A case study of Turkana and Pokot pastoralists of northwestern Kenya. J. Meteorol. Rel. Sci. 2011, 5. Available online: https://www.kms.or.ke/images/stories/v5p3.pdf (accessed on 23 December 2020).
- Geutjes, L. Coping with Climate Variability in West Pokot, Kenya: The Influences of Land Use on Responses to Climate Variability, by Pastoralist and Agro-Pastoralist Communities in Arid and Semi-Arid Areas of West Pokot, Kenya. 2015. Available online: https://gupea.ub.gu.se/bitstream/2077/38428/1/gupea_2077_38428_1.pdf (accessed on 22 February 2021).
- Zomer, R.J.; Neufeldt, H.; Xu, J.; Ahrends, A.; Bossio, D.; Trabucco, A.; Van Noordwijk, M.; Wang, M. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef]
- Idrisa, Y.L.; Ogunbameru, B.O.; Madukwe, M.C. Logit and Tobit analyses of the determinants of likelihood of adoption and extent of adoption of improved soybean seed in Borno State, Nigeria. Greener J. Agric. Sci. 2012, 2, 37–45. [Google Scholar] [CrossRef]
- Deressa, T.T.; Hassan, R.M.; Ringler, C.; Alemu, T.; Yesuf, M. Determinants of farmers’ choice of adaptation methods to climate change in the Nile Basin of Ethiopia. Glob. Environ. Chang. 2009, 19, 248–255. [Google Scholar] [CrossRef]
- Nhemachena, C.; Hassan, R. Micro-Level Analysis of Farmers Adaption to Climate Change in Southern Africa; International Food Policy Research Institute: Washington, DC, USA, 2007. [Google Scholar]
- Thangata, P.H.; Alavalapati, J.R.R. Agroforestry adoption in southern Malawi: The case of mixed intercropping of Gliricidia sepium and maize. Agric. Syst. 2003, 78, 57–71. [Google Scholar] [CrossRef]
- Noordin, Q.; Niang, A.; Jama, B.; Nyasimi, M. Scaling up adoption and impact of agroforestry technologies: Experiences from western Kenya. Dev. Pract. 2001, 11, 509–523. [Google Scholar] [CrossRef]
- Matocha, J.; Schroth, G.; Hills, T.; Hole, D. Integrating climate change adaptation and mitigation through agroforestry and ecosystem conservation. In Agroforestry-the Future of Global Land Use; Springer: Berlin, Germany, 2012; pp. 105–126. [Google Scholar]
- Glover, E.K.; Hassan, B.A.; Glover, M.K. Analysis of socio-economic conditions influencing adoption of agroforestry practices. Int. J. Agric. For. 2013, 3, 178–184. [Google Scholar] [CrossRef]
- Matata, P.Z.; Ajay, O.C.; Oduol, P.A.; Agumya, A. Socio-economic factors influencing adoption of improved fallow practices among smallholder farmers in western Tanzania. Afr. J. Agric. Res. 2010, 5, 818–823. [Google Scholar] [CrossRef]
- Oino, P.; Mugure, A. Farmer-oriented factors that influence adoption of agroforestry practices in Kenya: Expériences from Nambale District, Busia County. Int. J. Sci. Res. 2013, 2, 450–456. [Google Scholar]
- Cerdán, C.R.; Rebolledo, M.C.; Soto, G.; Rapidel, B.; Sinclair, F.L. Local knowledge of impacts of tree cover on ecosystem services in smallholder coffee production systems. Agric. Syst. 2012, 110, 119–130. [Google Scholar] [CrossRef]
- Mekuria, M.; Waddington, S.R.; Siziba, S. Breaking the “Fertilizer Poverty” and Food Insecurity Traps in Smallholder Maize Based Farming System in Southern Africa: Experiences and Lessons from Soil Fertility Network/Economics and Policy Working Group (EPWG); AgEcon Search: St Paul, MN, USA, 2004. [Google Scholar]
- Langyintuo, A.S.; Mekuria, M. Assessing the influence of neighborhood effects on the adoption of improved agricultural technologies in developing agriculture. Afr. J. Agric. Resour. Econ. 2008, 2, 151–169. [Google Scholar]
- Kumar, B.M.; Nair, P.K.R. Tropical Homegardens; Springer: Berlin, Germany, 2006; ISBN 1402049471. [Google Scholar]
- Nair, P.K.R. Agroecosystem management in the 21st century: It is time for a paradigm shift. J. Trop. Agric. 2008, 46, 1–12. [Google Scholar]
- Wambua, B.N. Analysis of the Current and Potential Future Climate Hazards and their Impacts on Livelihoods and Adaptation Strategies in Arid and Semiarid Lands. Asian J. Agric. Food Sci. 2019, 7. [Google Scholar] [CrossRef]
- Bostedt, G.; Hörnell, A.; Nyberg, G. Agroforestry extension and dietary diversity–an analysis of the importance of fruit and vegetable consumption in West Pokot, Kenya. Food Secur. 2016, 8, 271–284. [Google Scholar] [CrossRef]
- Nyberg, G.; Knutsson, P.; Ostwald, M.; Öborn, I.; Wredle, E.; Otieno, D.J.; Mureithi, S.; Mwangi, P.; Said, M.Y.; Jirström, M. Enclosures in West Pokot, Kenya: Transforming land, livestock and livelihoods in drylands. Pastoralism 2015, 5, 25. [Google Scholar] [CrossRef]
- Nyberg, Y.; Musee, C.; Wachiye, E.; Jonsson, M.; Wetterlind, J.; Öborn, I. Effects of Agroforestry and Other Sustainable Practices in the Kenya Agricultural Carbon Project (KACP). Land 2020, 9, 389. [Google Scholar] [CrossRef]
- Makokha, W.; Lonyakou, S.; Nyang, M.; Kareko, K.K.; Holdings, C.; Njoka, T.J.; Kitalyi, A. We Work Together: Land Rehabilitation and Household Dynamics in Chepareria Division, West. Pokot District, Kenya; Regional Land Management Unit: Nairobi, Kenya, 1999. [Google Scholar]
- Ntshangase, N.L.; Muroyiwa, B.; Sibanda, M. Farmers’ perceptions and factors influencing the adoption of no-till conservation agriculture by small-scale farmers in Zashuke, KwaZulu-Natal Province. Sustainability 2018, 10, 555. [Google Scholar] [CrossRef]
- Yamane, T. Elementary Sampling Theory; Taylor & Francisc: Oxfordshire, UK, 1967. [Google Scholar]
- Osewe, M.; Liu, A.; Njagi, T. Farmer-Led Irrigation and Its Impacts on Smallholder Farmers’ Crop Income: Evidence from Southern Tanzania. Int. J. Environ. Res. Public Health 2020, 17, 1512. [Google Scholar] [CrossRef]
- Kiprop, E.K.; Okinda, C.; Akter, A.; Geng, X. Factors influencing marketing channel choices for improved indigenous chicken farmers: Insights from Baringo, Kenya. Br. Food J. 2020. [Google Scholar] [CrossRef]
- Ye, F.; Lord, D. Comparing three commonly used crash severity models on sample size requirements: Multinomial logit, ordered probit and mixed logit models. Anal. Methods Accid. Res. 2014, 1, 72–85. [Google Scholar] [CrossRef]
- Okinda, C.; Shen, M.; Li, J.; Nyalala, I.; Liu, L.; Lu, M.; Zhang, G. Detection of an onset of farrowing by classification of crated sow’s activities. Int. Agric. Eng. J. 2018, 27, 387–395. [Google Scholar]
- Opaluwa, H.I.; Onuche, U.; Sale, F.A. Factors affecting the collection and utilization of non-timber forest products in rural communities of North Central, Nigeria. J. Agric. Food. Tech. 2011, 1, 47–49. [Google Scholar]
- Lambert, O.; Ozioma, A.F. Adoption of improved agroforestry technologies among contact farmers in Imo State, Nigeria. Asian J. Agric. Rural Dev. 2012, 2, 1–9. [Google Scholar] [CrossRef]
- Mwase, W.; Sefasi, A.; Njoloma, J.; Nyoka, B.I.; Manduwa, D.; Nyaika, J. Factors affecting adoption of agroforestry and evergreen agriculture in Southern Africa. Environ. Nat. Resour. Res. 2015, 5, 148. [Google Scholar] [CrossRef]
- Kassie, M.; Teklewold, H.; Jaleta, M.; Marenya, P.; Erenstein, O. Understanding the adoption of a portfolio of sustainable intensification practices in eastern and southern Africa. Land Use Policy 2015, 42, 400–411. [Google Scholar] [CrossRef]
- Dhakal, A.; Rai, R.K. Who Adopts Agroforestry in A Subsistence Economy?—Lessons from the Terai of Nepal. Forests 2020, 11, 565. [Google Scholar] [CrossRef]
- Keil, A.; Zeller, M.; Franzel, S. Improved tree fallows in smallholder maize production in Zambia: Do initial testers adopt the technology? Agrofor. Syst. 2005, 64, 225–236. [Google Scholar] [CrossRef]
- Imo, M. Interactions amongst trees and crops in taungya systems of western Kenya. Agrofor. Syst. 2009, 76, 265–273. [Google Scholar] [CrossRef]
- Millard, E. Incorporating agroforestry approaches into commodity value chains. Environ. Manag. 2011, 48, 365–377. [Google Scholar] [CrossRef]
- Sharma, R.; Chauhan, S.K.; Tripathi, A.M. Carbon sequestration potential in agroforestry system in India: An analysis for carbon project. Agrofor. Syst. 2016, 90, 631–644. [Google Scholar] [CrossRef]




| Variable | Description | Measurement | Sign |
|---|---|---|---|
| Dependent variable | |||
| Agroforestry adoption | Type of household (adopters/non-adopters) | Dummy 1 = adopters, 0 = non-adopters | +/− |
| Independent variables | |||
| Gender | Sex of the household head | 1 = male, 0 = female | +/− |
| Household Size | Number of household members | 1~3 = 1 4~7 = 2 8~10 = 3 Above 10 = 4 | +/− |
| Age | Age of the household head | 18~24 = 1 25~35 = 2 36~45 = 3 Above 45 = 4 | +/− |
| Education level | The education level of the household head | Years of education (continuous) | + |
| Topography of land | The topography of land | flat = 1, gentle slope = 2, steep slope = 3 | +/− |
| Farm Size | Total land owned by household | Acres | +/− |
| Access to climate information | Farmers access to climate information | Dummy, 1 = yes, 0 = no | + |
| Group membership | Farmer belonging to a particular group | Dummy 1 = yes, 0 = no | +/− |
| Access to Training | Farmers access to training services | Dummy. 1 = yes, 0 = no | +/− |
| Extension frequency | The number of times farmers receive extension services | Continuous (number of extension meetings | + |
| Access to transport facilities | If farmers have access to transport facilities | Dummy 1 = yes, 0 = no | |
| Access to market | Farmers access to market | Dummy 1 = yes, 0 = no | +/− |
| Access to credit | Farmers access to credit services | Dummy 1 = yes,0 = no | +/− |
| Distance to the trading center | Distance from farmers home to the nearest trading center | Distance in kilometers | +/− |
| Off-farm income | Income from other sources from farming | Income in shillings | +/− |
| Total yield | Total yield farmer obtains from maize crop | Yield in kilograms | +/− |
| Variables | Adopters of AF | Non-Adopters of AF | |||||
|---|---|---|---|---|---|---|---|
| Column N% | Mean | SD | Column N% | Mean | SD | ||
| Gender | Female | 61.5 | 34.4 | ||||
| Male | 38.5 | 65.6 | |||||
| Household size | 100 | 2.4 | 0.7 | 100 | 2.6 | 0.9 | |
| Age | 100 | 45.0 | 12.0 | 100 | 44.0 | 11.0 | |
| Education level | 100 | 6.7 | 2.8 | 100 | 7.3 | 3.3 | |
| Topography of land | Flat | 65.0 | 71.8 | ||||
| Gentle | 33.3 | 28.2 | |||||
| steep | 1.7 | 0.0 | |||||
| Farm size | 100 | 1.0 | 0.4 | 100 | 0.9 | 0.5 | |
| Extension frequency | 100 | 4.5 | 3 | 100 | 2.5 | 2 | |
| Access to climate information | Yes | 70 | 64.1 | ||||
| No | 30 | 35.9 | |||||
| Access to training | Yes | 59.0 | 45.6 | ||||
| No | 41.0 | 54.4 | |||||
| Access to credit | Yes | 35.9 | 27.7 | ||||
| No | 64.1 | 72.3 | |||||
| Access to market | Yes | 82.1 | 58.3 | ||||
| No | 17.9 | 41.7 | |||||
| Access to transport | Yes | 95.6 | 74.3 | ||||
| No | 4.4 | 25.6 | |||||
| Group membership | Yes | 35.3 | 34.2 | ||||
| No | 64.7 | 65.8 | |||||
| Distance to the nearest trading center (km) | 100 | 2.8 | 2.0 | 100 | 4.2 | 3.3 | |
| Off-farm income (KSh) | 100 | 171,864 | 224,753.3 | 100 | 152,168 | 358,022.3 | |
| Total yield | 100 | 519.7 | 306.1 | 100% | 493.6 | 311.5 | |
| Variables | Probit Model | K-Means Clustering | ||||
|---|---|---|---|---|---|---|
| Coefficient | Std Error | z | p > |z| | F-Values | Sig | |
| Gender | −1.564 *** | 0.405 | −3.86 | 0.000 | 8.356 ** | 0.004 |
| Household size | −0.345 | 0.189 | −1.82 | 0.068 | 0.821 | 0.366 |
| Age | 0.205 | 0.192 | 1.07 | 0.286 | 0.912 | 0.341 |
| Education level | 0.051 | 0.0624 | 0.81 | 0.416 | 3.799 | 0.053 |
| Topography of land | 0.077 | 0.329 | 0.23 | 0.816 | 1.080 | 0.300 |
| Farm size | 1.987 ** | 0.596 | 3.33 | 0.001 | 96.432 ** | 0.000 |
| Extension frequency | 0.233 ** | 0.070 | 3.30 | 0.001 | 33.827 ** | 0.000 |
| Access to climate information | 0.459 | 0.322 | 1.43 | 0.154 | 1.933 | 0.166 |
| Access to training | 0.452 | 0.329 | 1.37 | 0.170 | 25.849 ** | 0.000 |
| Access to credit | 0.335 | 0.338 | 0.99 | 0.323 | 12.136 ** | 0.001 |
| Access to market | −1.052 ** | 0.398 | −2.65 | 0.008 | 8.696 ** | 0.004 |
| Access to transport | −1.837 ** | 0.491 | −3.74 | 0.000 | 10.872 ** | 0.001 |
| Group membership | 0.016 | 0.341 | 0.04 | 0.965 | 8.988 ** | 0.003 |
| Distance to nearest trading center (km) | −0.124 | 0.070 | −1.78 | 0.075 | 8.143 ** | 0.005 |
| Off-farm income (KSh) | 0.219 | 0.323 | 0.68 | 0.499 | 29.597 ** | 0.000 |
| Total yield | −0.003 ** | 0.001 | −3.30 | 0.001 | 101.106 ** | 0.000 |
| Constant | −0.060 | 1.370 | −0.04 | 0.965 | ||
| Number of observations | 189 | |||||
| LR chi2(14) | 79.280 | |||||
| Log-likelihood | −49.421 | |||||
| Prob > chi2 | 0.0000 | |||||
| Pseudo R2 | 0.4451 | |||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pello, K.; Okinda, C.; Liu, A.; Njagi, T. Factors Affecting Adaptation to Climate Change through Agroforestry in Kenya. Land 2021, 10, 371. https://doi.org/10.3390/land10040371
Pello K, Okinda C, Liu A, Njagi T. Factors Affecting Adaptation to Climate Change through Agroforestry in Kenya. Land. 2021; 10(4):371. https://doi.org/10.3390/land10040371
Chicago/Turabian StylePello, Kevin, Cedric Okinda, Aijun Liu, and Tim Njagi. 2021. "Factors Affecting Adaptation to Climate Change through Agroforestry in Kenya" Land 10, no. 4: 371. https://doi.org/10.3390/land10040371
APA StylePello, K., Okinda, C., Liu, A., & Njagi, T. (2021). Factors Affecting Adaptation to Climate Change through Agroforestry in Kenya. Land, 10(4), 371. https://doi.org/10.3390/land10040371

